mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			455 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			455 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| from __future__ import annotations
 | |
| 
 | |
| import logging
 | |
| import argparse
 | |
| import os
 | |
| import re
 | |
| import sys
 | |
| from pathlib import Path
 | |
| from typing import Any
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| # Necessary to load the local gguf package
 | |
| if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent.parent / 'gguf-py').exists():
 | |
|     sys.path.insert(0, str(Path(__file__).parent.parent.parent))
 | |
| 
 | |
| from gguf import GGUFReader, GGUFValueType, ReaderTensor  # noqa: E402
 | |
| 
 | |
| logger = logging.getLogger("gguf-dump")
 | |
| 
 | |
| 
 | |
| def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
 | |
|     host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
 | |
|     if reader.byte_order == 'S':
 | |
|         file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
 | |
|     else:
 | |
|         file_endian = host_endian
 | |
|     return (host_endian, file_endian)
 | |
| 
 | |
| 
 | |
| # For more information about what field.parts and field.data represent,
 | |
| # please see the comments in the modify_gguf.py example.
 | |
| def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
 | |
|     host_endian, file_endian = get_file_host_endian(reader)
 | |
|     print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.')  # noqa: NP100
 | |
|     print(f'* Dumping {len(reader.fields)} key/value pair(s)')  # noqa: NP100
 | |
|     for n, field in enumerate(reader.fields.values(), 1):
 | |
|         if not field.types:
 | |
|             pretty_type = 'N/A'
 | |
|         elif field.types[0] == GGUFValueType.ARRAY:
 | |
|             nest_count = len(field.types) - 1
 | |
|             pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
 | |
|         else:
 | |
|             pretty_type = str(field.types[-1].name)
 | |
| 
 | |
|         log_message = f'  {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
 | |
|         if len(field.types) == 1:
 | |
|             curr_type = field.types[0]
 | |
|             if curr_type == GGUFValueType.STRING:
 | |
|                 log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]))
 | |
|             elif field.types[0] in reader.gguf_scalar_to_np:
 | |
|                 log_message += ' = {0}'.format(field.parts[-1][0])
 | |
|         print(log_message)  # noqa: NP100
 | |
|     if args.no_tensors:
 | |
|         return
 | |
|     print(f'* Dumping {len(reader.tensors)} tensor(s)')  # noqa: NP100
 | |
|     for n, tensor in enumerate(reader.tensors, 1):
 | |
|         prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
 | |
|         print(f'  {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}')  # noqa: NP100
 | |
| 
 | |
| 
 | |
| def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
 | |
|     import json
 | |
|     host_endian, file_endian = get_file_host_endian(reader)
 | |
|     metadata: dict[str, Any] = {}
 | |
|     tensors: dict[str, Any] = {}
 | |
|     result = {
 | |
|         "filename": args.model,
 | |
|         "endian": file_endian,
 | |
|         "metadata": metadata,
 | |
|         "tensors": tensors,
 | |
|     }
 | |
|     for idx, field in enumerate(reader.fields.values()):
 | |
|         curr: dict[str, Any] = {
 | |
|             "index": idx,
 | |
|             "type": field.types[0].name if field.types else 'UNKNOWN',
 | |
|             "offset": field.offset,
 | |
|         }
 | |
|         metadata[field.name] = curr
 | |
|         if field.types[:1] == [GGUFValueType.ARRAY]:
 | |
|             curr["array_types"] = [t.name for t in field.types][1:]
 | |
|             if not args.json_array:
 | |
|                 continue
 | |
|             itype = field.types[-1]
 | |
|             if itype == GGUFValueType.STRING:
 | |
|                 curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
 | |
|             else:
 | |
|                 curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
 | |
|         elif field.types[0] == GGUFValueType.STRING:
 | |
|             curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
 | |
|         else:
 | |
|             curr["value"] = field.parts[-1].tolist()[0]
 | |
|     if not args.no_tensors:
 | |
|         for idx, tensor in enumerate(reader.tensors):
 | |
|             tensors[tensor.name] = {
 | |
|                 "index": idx,
 | |
|                 "shape": tensor.shape.tolist(),
 | |
|                 "type": tensor.tensor_type.name,
 | |
|                 "offset": tensor.field.offset,
 | |
|             }
 | |
|     json.dump(result, sys.stdout)
 | |
| 
 | |
| 
 | |
| def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
 | |
|     # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
 | |
| 
 | |
|     # Alignment Utility Function
 | |
|     def strAlign(padding: int, alignMode: str | None, strVal: str):
 | |
|         if alignMode == 'center':
 | |
|             return strVal.center(padding)
 | |
|         elif alignMode == 'right':
 | |
|             return strVal.rjust(padding - 1) + ' '
 | |
|         elif alignMode == 'left':
 | |
|             return ' ' + strVal.ljust(padding - 1)
 | |
|         else: # default left
 | |
|             return ' ' + strVal.ljust(padding - 1)
 | |
| 
 | |
|     def dashAlign(padding: int, alignMode: str | None):
 | |
|         if alignMode == 'center':
 | |
|             return ':' + '-' * (padding - 2) + ':'
 | |
|         elif alignMode == 'right':
 | |
|             return '-' * (padding - 1) + ':'
 | |
|         elif alignMode == 'left':
 | |
|             return ':' + '-' * (padding - 1)
 | |
|         else: # default left
 | |
|             return '-' * (padding)
 | |
| 
 | |
|     # Calculate Padding For Each Column Based On Header and Data Length
 | |
|     rowsPadding = {}
 | |
|     for index, columnEntry in enumerate(header_map):
 | |
|         padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
 | |
|         headerPadCount = len(columnEntry['header_name']) + 2
 | |
|         rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
 | |
| 
 | |
|     # Render Markdown Header
 | |
|     rows = []
 | |
|     rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
 | |
|     rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
 | |
| 
 | |
|     # Render Tabular Data
 | |
|     for item in data:
 | |
|         rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
 | |
| 
 | |
|     # Convert Tabular String Rows Into String
 | |
|     tableString = ""
 | |
|     for row in rows:
 | |
|         tableString += f'|{row}|\n'
 | |
| 
 | |
|     return tableString
 | |
| 
 | |
| 
 | |
| def element_count_rounded_notation(count: int) -> str:
 | |
|     if count > 1e15 :
 | |
|         # Quadrillion
 | |
|         scaled_amount = count * 1e-15
 | |
|         scale_suffix = "Q"
 | |
|     elif count > 1e12 :
 | |
|         # Trillions
 | |
|         scaled_amount = count * 1e-12
 | |
|         scale_suffix = "T"
 | |
|     elif count > 1e9 :
 | |
|         # Billions
 | |
|         scaled_amount = count * 1e-9
 | |
|         scale_suffix = "B"
 | |
|     elif count > 1e6 :
 | |
|         # Millions
 | |
|         scaled_amount = count * 1e-6
 | |
|         scale_suffix = "M"
 | |
|     elif count > 1e3 :
 | |
|         # Thousands
 | |
|         scaled_amount = count * 1e-3
 | |
|         scale_suffix = "K"
 | |
|     else:
 | |
|         # Under Thousands
 | |
|         scaled_amount = count
 | |
|         scale_suffix = ""
 | |
|     return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
 | |
| 
 | |
| 
 | |
| def translate_tensor_name(name):
 | |
|     words = name.split(".")
 | |
| 
 | |
|     # Source: https://github.com/ggml-org/ggml/blob/master/docs/gguf.md#standardized-tensor-names
 | |
|     abbreviation_dictionary = {
 | |
|         'token_embd': 'Token embedding',
 | |
|         'pos_embd': 'Position embedding',
 | |
|         'output_norm': 'Output normalization',
 | |
|         'output': 'Output',
 | |
|         'attn_norm': 'Attention normalization',
 | |
|         'attn_norm_2': 'Attention normalization',
 | |
|         'attn_qkv': 'Attention query-key-value',
 | |
|         'attn_q': 'Attention query',
 | |
|         'attn_k': 'Attention key',
 | |
|         'attn_v': 'Attention value',
 | |
|         'attn_output': 'Attention output',
 | |
|         'ffn_norm': 'Feed-forward network normalization',
 | |
|         'ffn_up': 'Feed-forward network "up"',
 | |
|         'ffn_gate': 'Feed-forward network "gate"',
 | |
|         'ffn_down': 'Feed-forward network "down"',
 | |
|         'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
 | |
|         'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
 | |
|         'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
 | |
|         'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
 | |
|         'ssm_in': 'State space model input projections',
 | |
|         'ssm_conv1d': 'State space model rolling/shift',
 | |
|         'ssm_x': 'State space model selective parametrization',
 | |
|         'ssm_a': 'State space model state compression',
 | |
|         'ssm_d': 'State space model skip connection',
 | |
|         'ssm_dt': 'State space model time step',
 | |
|         'ssm_out': 'State space model output projection',
 | |
|         'blk': 'Block',
 | |
|         'enc': 'Encoder',
 | |
|         'dec': 'Decoder',
 | |
|     }
 | |
| 
 | |
|     expanded_words = []
 | |
|     for word in words:
 | |
|         word_norm = word.strip().lower()
 | |
|         if word_norm in abbreviation_dictionary:
 | |
|             expanded_words.append(abbreviation_dictionary[word_norm].title())
 | |
|         else:
 | |
|             expanded_words.append(word.title())
 | |
| 
 | |
|     return ' '.join(expanded_words)
 | |
| 
 | |
| 
 | |
| def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
 | |
|     host_endian, file_endian = get_file_host_endian(reader)
 | |
|     markdown_content = ""
 | |
|     markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
 | |
|     markdown_content += f'- Endian: {file_endian} endian\n'
 | |
|     markdown_content += '\n'
 | |
|     markdown_content += '## Key Value Metadata Store\n\n'
 | |
|     markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
 | |
|     markdown_content += '\n'
 | |
| 
 | |
|     kv_dump_table: list[dict[str, str | int]] = []
 | |
|     for n, field in enumerate(reader.fields.values(), 1):
 | |
|         if not field.types:
 | |
|             pretty_type = 'N/A'
 | |
|         elif field.types[0] == GGUFValueType.ARRAY:
 | |
|             nest_count = len(field.types) - 1
 | |
|             pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
 | |
|         else:
 | |
|             pretty_type = str(field.types[-1].name)
 | |
| 
 | |
|         def escape_markdown_inline_code(value_string):
 | |
|             # Find the longest contiguous sequence of backticks in the string then
 | |
|             # wrap string with appropriate number of backticks required to escape it
 | |
|             max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0)
 | |
|             inline_code_marker = '`' * (max_backticks + 1)
 | |
| 
 | |
|             # If the string starts or ends with a backtick, add a space at the beginning and end
 | |
|             if value_string.startswith('`') or value_string.endswith('`'):
 | |
|                 value_string = f" {value_string} "
 | |
| 
 | |
|             return f"{inline_code_marker}{value_string}{inline_code_marker}"
 | |
| 
 | |
|         total_elements = len(field.data)
 | |
|         value = ""
 | |
|         if len(field.types) == 1:
 | |
|             curr_type = field.types[0]
 | |
|             if curr_type == GGUFValueType.STRING:
 | |
|                 truncate_length = 60
 | |
|                 value_string = str(bytes(field.parts[-1]), encoding='utf-8')
 | |
|                 if len(value_string) > truncate_length:
 | |
|                     head = escape_markdown_inline_code(value_string[:truncate_length // 2])
 | |
|                     tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
 | |
|                     value = "{head}...{tail}".format(head=head, tail=tail)
 | |
|                 else:
 | |
|                     value = escape_markdown_inline_code(value_string)
 | |
|             elif curr_type in reader.gguf_scalar_to_np:
 | |
|                 value = str(field.parts[-1][0])
 | |
|         else:
 | |
|             if field.types[0] == GGUFValueType.ARRAY:
 | |
|                 curr_type = field.types[1]
 | |
|                 array_elements = []
 | |
| 
 | |
|                 if curr_type == GGUFValueType.STRING:
 | |
|                     render_element = min(5, total_elements)
 | |
|                     for element_pos in range(render_element):
 | |
|                         truncate_length = 30
 | |
|                         value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8')
 | |
|                         if len(value_string) > truncate_length:
 | |
|                             head = escape_markdown_inline_code(value_string[:truncate_length // 2])
 | |
|                             tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
 | |
|                             value = "{head}...{tail}".format(head=head, tail=tail)
 | |
|                         else:
 | |
|                             value = escape_markdown_inline_code(value_string)
 | |
|                         array_elements.append(value)
 | |
| 
 | |
|                 elif curr_type in reader.gguf_scalar_to_np:
 | |
|                     render_element = min(7, total_elements)
 | |
|                     for element_pos in range(render_element):
 | |
|                         array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0]))
 | |
| 
 | |
|                 value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]'
 | |
| 
 | |
|         kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
 | |
| 
 | |
|     kv_dump_table_header_map = [
 | |
|         {'key_name':'n',                'header_name':'POS',      'align':'right'},
 | |
|         {'key_name':'pretty_type',      'header_name':'TYPE',     'align':'left'},
 | |
|         {'key_name':'total_elements',   'header_name':'Count',    'align':'right'},
 | |
|         {'key_name':'field_name',       'header_name':'Key',      'align':'left'},
 | |
|         {'key_name':'value',            'header_name':'Value',    'align':'left'},
 | |
|     ]
 | |
| 
 | |
|     markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
 | |
| 
 | |
|     markdown_content += "\n"
 | |
| 
 | |
|     if not args.no_tensors:
 | |
|         # Group tensors by their prefix and maintain order
 | |
|         tensor_prefix_order: list[str] = []
 | |
|         tensor_name_to_key: dict[str, int] = {}
 | |
|         tensor_groups: dict[str, list[ReaderTensor]] = {}
 | |
|         total_elements = sum(tensor.n_elements for tensor in reader.tensors)
 | |
| 
 | |
|         # Parsing Tensors Record
 | |
|         for key, tensor in enumerate(reader.tensors):
 | |
|             tensor_components = tensor.name.split('.')
 | |
| 
 | |
|             # Classify Tensor Group
 | |
|             tensor_group_name = "base"
 | |
|             if tensor_components[0] == 'blk':
 | |
|                 tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
 | |
|             elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
 | |
|                 tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
 | |
|             elif tensor_components[0] in ['enc', 'dec']:
 | |
|                 tensor_group_name = f"{tensor_components[0]}"
 | |
| 
 | |
|             # Check if new Tensor Group
 | |
|             if tensor_group_name not in tensor_groups:
 | |
|                 tensor_groups[tensor_group_name] = []
 | |
|                 tensor_prefix_order.append(tensor_group_name)
 | |
| 
 | |
|             # Record Tensor and Tensor Position
 | |
|             tensor_groups[tensor_group_name].append(tensor)
 | |
|             tensor_name_to_key[tensor.name] = key
 | |
| 
 | |
|         # Tensors Mapping Dump
 | |
|         markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
 | |
|         markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
 | |
|         markdown_content += '\n'
 | |
| 
 | |
|         for group in tensor_prefix_order:
 | |
|             tensors = tensor_groups[group]
 | |
|             group_elements = sum(tensor.n_elements for tensor in tensors)
 | |
|             markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
 | |
| 
 | |
|         markdown_content += "\n"
 | |
| 
 | |
|         markdown_content += "### Tensor Data Offset\n"
 | |
|         markdown_content += '\n'
 | |
|         markdown_content += 'This table contains the offset and data segment relative to start of file\n'
 | |
|         markdown_content += '\n'
 | |
| 
 | |
|         tensor_mapping_table: list[dict[str, str | int]] = []
 | |
|         for key, tensor in enumerate(reader.tensors):
 | |
|             data_offset_pretty = '{0:#16x}'.format(tensor.data_offset)
 | |
|             data_size_pretty = '{0:#16x}'.format(tensor.n_bytes)
 | |
|             tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty})
 | |
| 
 | |
|         tensors_mapping_table_header_map = [
 | |
|             {'key_name':'t_id',         'header_name':'T_ID',               'align':'right'},
 | |
|             {'key_name':'layer_name',   'header_name':'Tensor Layer Name',  'align':'left'},
 | |
|             {'key_name':'data_offset',  'header_name':'Data Offset (B)',    'align':'right'},
 | |
|             {'key_name':'data_size',    'header_name':'Data Size (B)',      'align':'right'},
 | |
|         ]
 | |
| 
 | |
|         markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table)
 | |
|         markdown_content += "\n"
 | |
| 
 | |
|         for group in tensor_prefix_order:
 | |
|             tensors = tensor_groups[group]
 | |
|             group_elements = sum(tensor.n_elements for tensor in tensors)
 | |
|             group_percentage = group_elements / total_elements * 100
 | |
|             markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
 | |
| 
 | |
|             # Precalculate column sizing for visual consistency
 | |
|             prettify_element_est_count_size: int = 1
 | |
|             prettify_element_count_size: int = 1
 | |
|             prettify_dimension_max_widths: dict[int, int] = {}
 | |
|             for tensor in tensors:
 | |
|                 prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
 | |
|                 prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
 | |
|                 for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
 | |
|                     prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
 | |
| 
 | |
|             # Generate Tensor Layer Table Content
 | |
|             tensor_dump_table: list[dict[str, str | int]] = []
 | |
|             for tensor in tensors:
 | |
|                 human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
 | |
|                 pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
 | |
|                 element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
 | |
|                 element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
 | |
|                 type_name_string = f"{tensor.tensor_type.name}"
 | |
|                 tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
 | |
| 
 | |
|             tensor_dump_table_header_map = [
 | |
|                 {'key_name':'t_id',             'header_name':'T_ID',                             'align':'right'},
 | |
|                 {'key_name':'layer_name',       'header_name':'Tensor Layer Name',                'align':'left'},
 | |
|                 {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
 | |
|                 {'key_name':'element_count',    'header_name':'Elements',                         'align':'left'},
 | |
|                 {'key_name':'pretty_dimension', 'header_name':'Shape',                            'align':'left'},
 | |
|                 {'key_name':'tensor_type',      'header_name':'Type',                             'align':'left'},
 | |
|             ]
 | |
| 
 | |
|             markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
 | |
| 
 | |
|             markdown_content += "\n"
 | |
|             markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
 | |
|             markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
 | |
|             markdown_content += "\n\n"
 | |
| 
 | |
|     print(markdown_content)  # noqa: NP100
 | |
| 
 | |
| 
 | |
| def main() -> None:
 | |
|     parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
 | |
|     parser.add_argument("model",           type=str,            help="GGUF format model filename")
 | |
|     parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
 | |
|     parser.add_argument("--json",       action="store_true", help="Produce JSON output")
 | |
|     parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
 | |
|     parser.add_argument("--data-offset",    action="store_true", help="Start of data offset")
 | |
|     parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field")
 | |
|     parser.add_argument("--markdown",   action="store_true", help="Produce markdown output")
 | |
|     parser.add_argument("--verbose",    action="store_true", help="increase output verbosity")
 | |
| 
 | |
|     args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
 | |
| 
 | |
|     logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
 | |
| 
 | |
|     if not args.json and not args.markdown and not args.data_offset and not args.data_alignment:
 | |
|         logger.info(f'* Loading: {args.model}')
 | |
| 
 | |
|     reader = GGUFReader(args.model, 'r')
 | |
| 
 | |
|     if args.json:
 | |
|         dump_metadata_json(reader, args)
 | |
|     elif args.markdown:
 | |
|         dump_markdown_metadata(reader, args)
 | |
|     elif args.data_offset:
 | |
|         print(reader.data_offset)  # noqa: NP100
 | |
|     elif args.data_alignment:
 | |
|         print(reader.alignment)  # noqa: NP100
 | |
|     else:
 | |
|         dump_metadata(reader, args)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     main()
 | 
