mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			211 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
import argparse
 | 
						|
import json
 | 
						|
import subprocess
 | 
						|
from time import sleep, time
 | 
						|
from typing import Optional
 | 
						|
 | 
						|
import datasets
 | 
						|
import logging
 | 
						|
import matplotlib.pyplot as plt
 | 
						|
import numpy as np
 | 
						|
import requests
 | 
						|
from tqdm.contrib.concurrent import thread_map
 | 
						|
 | 
						|
 | 
						|
logging.basicConfig(level=logging.INFO, format='%(message)s')
 | 
						|
logger = logging.getLogger("server-bench")
 | 
						|
 | 
						|
 | 
						|
def get_prompts(n_prompts: int) -> list[str]:
 | 
						|
    logger.info("Loading MMLU dataset...")
 | 
						|
    ret = datasets.load_dataset("cais/mmlu", "all")["test"]["question"]  # type: ignore
 | 
						|
    if n_prompts >= 0:
 | 
						|
        ret = ret[:n_prompts]
 | 
						|
    return ret
 | 
						|
 | 
						|
 | 
						|
def get_server(path_server: str, path_model: str, path_log: Optional[str], port: int, n_gpu_layers: int, parallel: int, ctx_size: int) -> dict:
 | 
						|
    logger.info("Starting the llama.cpp server...")
 | 
						|
    address = f"http://localhost:{port}"
 | 
						|
 | 
						|
    popen_args: list[str] = [
 | 
						|
        path_server,
 | 
						|
        "--flash-attn",
 | 
						|
        "--n-gpu-layers", str(n_gpu_layers),
 | 
						|
        "--parallel", str(parallel),
 | 
						|
        "--ctx-size", str(parallel * ctx_size),
 | 
						|
        "--model", path_model,
 | 
						|
        "--port", str(port),
 | 
						|
        "--swa-full",  # FIXME performance bad otherwise
 | 
						|
        # "--attn-streams",
 | 
						|
    ]
 | 
						|
    fout = open("bench.log", "w") if path_log is not None else subprocess.DEVNULL
 | 
						|
    process = subprocess.Popen(popen_args, stdout=fout, stderr=subprocess.STDOUT)
 | 
						|
 | 
						|
    n_failures: int = 0
 | 
						|
    while True:
 | 
						|
        try:
 | 
						|
            sleep(1.0)
 | 
						|
            exit_code = process.poll()
 | 
						|
            if exit_code is not None:
 | 
						|
                raise RuntimeError(f"llama.cpp server for {path_model} exited unexpectedly with exit code {exit_code}")
 | 
						|
            response = requests.get(f"{address}/health")
 | 
						|
            if response.status_code == 200:
 | 
						|
                break
 | 
						|
        except requests.ConnectionError:
 | 
						|
            n_failures += 1
 | 
						|
            if n_failures >= 10:
 | 
						|
                raise RuntimeError(f"llama.cpp server for {path_model} is not healthy after 10 seconds")
 | 
						|
 | 
						|
    return {"process": process, "address": address, "fout": fout}
 | 
						|
 | 
						|
 | 
						|
def get_prompt_length(data: dict) -> int:
 | 
						|
    session = data["session"]
 | 
						|
    server_address: str = data["server_address"]
 | 
						|
 | 
						|
    response = session.post(
 | 
						|
        f"{server_address}/apply-template",
 | 
						|
        json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
 | 
						|
    )
 | 
						|
    if response.status_code != 200:
 | 
						|
        raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
 | 
						|
    prompt: str = json.loads(response.text)["prompt"]
 | 
						|
    response = session.post(
 | 
						|
        f"{server_address}/tokenize",
 | 
						|
        json={"content": prompt, "add_special": True}
 | 
						|
    )
 | 
						|
    if response.status_code != 200:
 | 
						|
        raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
 | 
						|
    tokens: list[str] = json.loads(response.text)["tokens"]
 | 
						|
    return len(tokens)
 | 
						|
 | 
						|
 | 
						|
def send_prompt(data: dict) -> tuple[float, list[float]]:
 | 
						|
    session = data["session"]
 | 
						|
    server_address: str = data["server_address"]
 | 
						|
 | 
						|
    response = session.post(
 | 
						|
        f"{server_address}/apply-template",
 | 
						|
        json={"messages": [{"role": "user", "content": data["prompt"], "stream": True}]}
 | 
						|
    )
 | 
						|
    if response.status_code != 200:
 | 
						|
        raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
 | 
						|
    prompt: str = json.loads(response.text)["prompt"]
 | 
						|
 | 
						|
    json_data: dict = {"prompt": prompt, "seed": data["seed"], "n_predict": data["n_predict"], "stream": True}
 | 
						|
    response = session.post(f"{server_address}/completion", json=json_data, stream=True)
 | 
						|
 | 
						|
    last_valid_line: str = ""
 | 
						|
    token_arrival_times: list[float] = []
 | 
						|
    for line in response.iter_lines(decode_unicode=True):
 | 
						|
        if not line.startswith("data: "):
 | 
						|
            continue
 | 
						|
        last_valid_line = line
 | 
						|
        token_arrival_times.append(time())
 | 
						|
    token_arrival_times = token_arrival_times[:-1]
 | 
						|
 | 
						|
    if response.status_code != 200:
 | 
						|
        raise RuntimeError(f"Server returned status code {response.status_code}: {response.text}")
 | 
						|
    timings: dict = json.loads(last_valid_line[6:])["timings"]
 | 
						|
 | 
						|
    return (timings["prompt_ms"], token_arrival_times)
 | 
						|
 | 
						|
 | 
						|
def benchmark(path_server: str, path_model: str, path_log: Optional[str], port: int, n_gpu_layers: int, parallel: int, ctx_size: int, n_prompts: int, n_predict: int):
 | 
						|
    num_workers: int = parallel + 1
 | 
						|
    prompts: list[str] = get_prompts(n_prompts)
 | 
						|
 | 
						|
    server: Optional[dict] = None
 | 
						|
    session = None
 | 
						|
    try:
 | 
						|
        server = get_server(path_server, path_model, path_log, port, n_gpu_layers, parallel, ctx_size)
 | 
						|
        server_address: str = server["address"]
 | 
						|
 | 
						|
        adapter = requests.adapters.HTTPAdapter(pool_connections=num_workers, pool_maxsize=num_workers)  # type: ignore
 | 
						|
        session = requests.Session()
 | 
						|
        session.mount("http://", adapter)
 | 
						|
        session.mount("https://", adapter)
 | 
						|
 | 
						|
        data: list[dict] = []
 | 
						|
        for i, p in enumerate(prompts):
 | 
						|
            data.append({"session": session, "server_address": server_address, "prompt": p, "n_predict": n_predict, "seed": i})
 | 
						|
 | 
						|
        logger.info("Getting the prompt lengths...")
 | 
						|
        prompt_n = [get_prompt_length(d) for d in data]
 | 
						|
 | 
						|
        logger.info("Starting the benchmark...\n")
 | 
						|
        t0 = time()
 | 
						|
        results: list[tuple[int, list[float]]] = thread_map(send_prompt, data, max_workers=num_workers, chunksize=1)
 | 
						|
    finally:
 | 
						|
        if server is not None:
 | 
						|
            server["process"].terminate()
 | 
						|
            server["process"].wait()
 | 
						|
        if session is not None:
 | 
						|
            session.close()
 | 
						|
 | 
						|
    prompt_ms = []
 | 
						|
    token_t = []
 | 
						|
    depth_sum: int = 0
 | 
						|
    for pn, (pms, tat) in zip(prompt_n, results):
 | 
						|
        prompt_ms.append(pms)
 | 
						|
        token_t += tat
 | 
						|
        n_tokens: int = len(tat)
 | 
						|
        depth_sum += n_tokens * pn
 | 
						|
        depth_sum += n_tokens * (n_tokens + 1) // 2
 | 
						|
    prompt_n = np.array(prompt_n, dtype=np.int64)
 | 
						|
    prompt_ms = np.array(prompt_ms, dtype=np.float64)
 | 
						|
    token_t = np.array(token_t, dtype=np.float64)
 | 
						|
 | 
						|
    token_t -= t0
 | 
						|
    token_t_last = np.max(token_t)
 | 
						|
 | 
						|
    logger.info("")
 | 
						|
    logger.info(f"Benchmark duration:                {token_t_last:.2f} s")
 | 
						|
    logger.info(f"Request throughput:                {n_prompts / token_t_last:.2f} requests/s = {n_prompts / (token_t_last/60):.2f} requests/min")
 | 
						|
    logger.info(f"Total prompt length:               {np.sum(prompt_n)} tokens")
 | 
						|
    logger.info(f"Average prompt length:             {np.mean(prompt_n):.2f} tokens")
 | 
						|
    logger.info(f"Average prompt latency:            {np.mean(prompt_ms):.2f} ms")
 | 
						|
    logger.info(f"Average prompt speed:              {np.sum(prompt_n) / (1e-3 * np.sum(prompt_ms)):.2f} tokens/s")
 | 
						|
    logger.info(f"Total generated tokens:            {token_t.shape[0]}")
 | 
						|
    logger.info(f"Average generation depth:          {depth_sum / token_t.shape[0]:.2f} tokens")
 | 
						|
    logger.info(f"Average total generation speed:    {token_t.shape[0] / token_t_last:.2f} tokens/s")
 | 
						|
    logger.info(f"Average generation speed per slot: {token_t.shape[0] / (parallel * token_t_last):.2f} tokens/s / slot")
 | 
						|
 | 
						|
    plt.figure()
 | 
						|
    plt.scatter(prompt_n, prompt_ms, s=10.0, marker=".", alpha=0.25)
 | 
						|
    plt.xlim(0, 1.05 * np.max(prompt_n))
 | 
						|
    plt.ylim(0, 1.05 * np.max(prompt_ms))
 | 
						|
    plt.title(path_model)
 | 
						|
    plt.xlabel("Prompt length [tokens]")
 | 
						|
    plt.ylabel("Time to first token [ms]")
 | 
						|
    plt.savefig("prompt_time.png", dpi=240)
 | 
						|
 | 
						|
    bin_max = np.ceil(token_t_last) + 1
 | 
						|
    plt.figure()
 | 
						|
    plt.hist(token_t, np.arange(0, bin_max))
 | 
						|
    plt.xlim(0, bin_max + 1)
 | 
						|
    plt.title(path_model)
 | 
						|
    plt.xlabel("Time [s]")
 | 
						|
    plt.ylabel("Num. tokens generated per second")
 | 
						|
    plt.savefig("gen_rate.png", dpi=240)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(
 | 
						|
        description="Tool for benchmarking the throughput of the llama.cpp HTTP server. "
 | 
						|
        "Results are printed to console and visualized as plots (saved to current working directory).")
 | 
						|
    parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")
 | 
						|
    parser.add_argument("--path_model", type=str, required=True, help="Path to the model to use for the benchmark")
 | 
						|
    parser.add_argument("--path_log", type=str, default=None, help="Path to the model to use for the benchmark")
 | 
						|
    parser.add_argument("--port", type=int, default=18725, help="Port to use for the server during the benchmark")
 | 
						|
    parser.add_argument("--n_gpu_layers", type=int, default=999, help="Number of GPU layers for the server")
 | 
						|
    parser.add_argument("--parallel", type=int, default=16, help="Number of slots for the server")
 | 
						|
    parser.add_argument("--ctx_size", type=int, default=4096, help="Server context size per slot")
 | 
						|
    parser.add_argument("--n_prompts", type=int, default=1000, help="Number of prompts to evaluate")
 | 
						|
    parser.add_argument("--n_predict", type=int, default=2048, help="Max. number of tokens to predict per prompt")
 | 
						|
    args = parser.parse_args()
 | 
						|
    benchmark(**vars(args))
 |