mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-02 09:12:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			308 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			308 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# 7b pth llama --> gguf conversion
 | 
						|
# Only models with a single datafile are supported, like 7B
 | 
						|
# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
 | 
						|
 | 
						|
import gguf
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import struct
 | 
						|
import json
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
 | 
						|
from typing import Any, List
 | 
						|
from pathlib import Path
 | 
						|
from sentencepiece import SentencePieceProcessor
 | 
						|
 | 
						|
#NDArray = np.ndarray[Any, Any]
 | 
						|
# compatible with python < 3.9
 | 
						|
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
						|
 | 
						|
 | 
						|
def count_model_parts(dir_model: str) -> int:
 | 
						|
    num_parts = 0
 | 
						|
    for filename in os.listdir(dir_model):
 | 
						|
        if filename.startswith("consolidated."):
 | 
						|
            num_parts += 1
 | 
						|
 | 
						|
    if num_parts > 0:
 | 
						|
        print("gguf: found " + str(num_parts) + " model parts")
 | 
						|
    return num_parts
 | 
						|
 | 
						|
 | 
						|
if len(sys.argv) < 3:
 | 
						|
    print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | 
						|
    print("  ftype == 0 -> float32")
 | 
						|
    print("  ftype == 1 -> float16")
 | 
						|
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
 | 
						|
# output in the same directory as the model
 | 
						|
dir_model = sys.argv[1]
 | 
						|
last_dir = os.path.basename(os.path.normpath(dir_model))
 | 
						|
 | 
						|
 | 
						|
# possible tensor data types
 | 
						|
#   ftype == 0 -> float32
 | 
						|
#   ftype == 1 -> float16
 | 
						|
 | 
						|
# map from ftype to string
 | 
						|
ftype_str = ["f32", "f16"]
 | 
						|
 | 
						|
ftype = 1
 | 
						|
if len(sys.argv) > 2:
 | 
						|
    ftype = int(sys.argv[2])
 | 
						|
    if ftype < 0 or ftype > 1:
 | 
						|
        print("Invalid ftype: " + str(ftype))
 | 
						|
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | 
						|
 | 
						|
print("gguf: loading model "+last_dir)
 | 
						|
 | 
						|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | 
						|
    hparams = json.load(f)
 | 
						|
 | 
						|
if hparams["architectures"][0] != "LlamaForCausalLM":
 | 
						|
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
						|
    sys.exit()
 | 
						|
 | 
						|
# get number of model parts
 | 
						|
num_parts = count_model_parts(dir_model)
 | 
						|
 | 
						|
if num_parts > 1:
 | 
						|
    print("gguf: Only models with a single datafile are supported.")
 | 
						|
 | 
						|
    sys.exit()
 | 
						|
 | 
						|
ARCH=gguf.MODEL_ARCH.LLAMA
 | 
						|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | 
						|
 | 
						|
 | 
						|
print("gguf: get model metadata")
 | 
						|
 | 
						|
block_count = hparams["num_hidden_layers"]
 | 
						|
head_count = hparams["num_attention_heads"]
 | 
						|
 | 
						|
if "num_key_value_heads" in hparams:
 | 
						|
    head_count_kv = hparams["num_key_value_heads"]
 | 
						|
else:
 | 
						|
    head_count_kv = head_count
 | 
						|
 | 
						|
if "_name_or_path" in hparams:
 | 
						|
    hf_repo = hparams["_name_or_path"]
 | 
						|
else:
 | 
						|
    hf_repo = ""
 | 
						|
 | 
						|
if "max_sequence_length" in hparams:
 | 
						|
    ctx_length = hparams["max_sequence_length"]
 | 
						|
elif "max_position_embeddings" in hparams:
 | 
						|
    ctx_length = hparams["max_position_embeddings"]
 | 
						|
else:
 | 
						|
    print("gguf: can not find ctx length parameter.")
 | 
						|
 | 
						|
    sys.exit()
 | 
						|
 | 
						|
 | 
						|
gguf_writer.add_name(last_dir)
 | 
						|
gguf_writer.add_source_hf_repo(hf_repo)
 | 
						|
gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | 
						|
gguf_writer.add_context_length(ctx_length)
 | 
						|
gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
						|
gguf_writer.add_block_count(block_count)
 | 
						|
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
						|
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
						|
gguf_writer.add_head_count(head_count)
 | 
						|
gguf_writer.add_head_count_kv(head_count_kv)
 | 
						|
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | 
						|
 | 
						|
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
 | 
						|
    if "type" in hparams["rope_scaling"]:
 | 
						|
        if hparams["rope_scaling"]["type"] == "linear":
 | 
						|
            gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
 | 
						|
 | 
						|
 | 
						|
# TOKENIZATION
 | 
						|
 | 
						|
print("gguf: get tokenizer metadata")
 | 
						|
 | 
						|
tokens: List[bytes] = []
 | 
						|
scores: List[float] = []
 | 
						|
toktypes: List[int] = []
 | 
						|
 | 
						|
if Path(dir_model + "/tokenizer.model").is_file():
 | 
						|
    # vocab type sentencepiece
 | 
						|
    print("gguf: get sentencepiece tokenizer vocab and scores")
 | 
						|
 | 
						|
    tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
 | 
						|
 | 
						|
    for i in range(tokenizer.vocab_size()):
 | 
						|
        text: bytes
 | 
						|
        score: float
 | 
						|
 | 
						|
        piece = tokenizer.id_to_piece(i)
 | 
						|
        text = piece.encode("utf-8")
 | 
						|
        score = tokenizer.get_score(i)
 | 
						|
 | 
						|
        toktype = 1  # defualt to normal token type
 | 
						|
        if tokenizer.is_unknown(i):
 | 
						|
            toktype = 2
 | 
						|
        if tokenizer.is_control(i):
 | 
						|
            toktype = 3
 | 
						|
 | 
						|
        # toktype = 4 is user-defined = tokens from added_tokens.json
 | 
						|
 | 
						|
        if tokenizer.is_unused(i):
 | 
						|
            toktype = 5
 | 
						|
        if tokenizer.is_byte(i):
 | 
						|
            toktype = 6
 | 
						|
 | 
						|
        tokens.append(text)
 | 
						|
        scores.append(score)
 | 
						|
        toktypes.append(toktype)
 | 
						|
 | 
						|
    if Path(dir_model + "/added_tokens.json").is_file():
 | 
						|
        with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
 | 
						|
            addtokens_json = json.load(f)
 | 
						|
 | 
						|
            print("gguf: get added tokens")
 | 
						|
 | 
						|
            for key in addtokens_json:
 | 
						|
                tokens.append( key.encode("utf-8") )
 | 
						|
                scores.append(-1000.0)
 | 
						|
                toktypes.append(4) # user-defined token type
 | 
						|
 | 
						|
    gguf_writer.add_tokenizer_model("llama")
 | 
						|
    gguf_writer.add_token_list(tokens)
 | 
						|
    gguf_writer.add_token_scores(scores)
 | 
						|
    gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
 | 
						|
print("gguf: get special token ids")
 | 
						|
 | 
						|
if Path(dir_model + "/tokenizer.json").is_file():
 | 
						|
    # Look for special tokens in tokenizer.json if it exists
 | 
						|
 | 
						|
    with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
 | 
						|
        tokenizer = json.load(f)
 | 
						|
 | 
						|
    if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
 | 
						|
 | 
						|
        with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
 | 
						|
            tokenizer_config = json.load(f)
 | 
						|
 | 
						|
        if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
 | 
						|
            for key in tokenizer["added_tokens"]:
 | 
						|
                if key["content"] == tokenizer_config["bos_token"]["content"]:
 | 
						|
                    gguf_writer.add_bos_token_id(key["id"])
 | 
						|
 | 
						|
        if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
 | 
						|
            for key in tokenizer["added_tokens"]:
 | 
						|
                if key["content"] == tokenizer_config["eos_token"]["content"]:
 | 
						|
                    gguf_writer.add_eos_token_id(key["id"])
 | 
						|
 | 
						|
        if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
 | 
						|
            for key in tokenizer["added_tokens"]:
 | 
						|
                if key["content"] == tokenizer_config["unk_token"]["content"]:
 | 
						|
                    gguf_writer.add_unk_token_id(key["id"])
 | 
						|
 | 
						|
        if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
 | 
						|
            for key in tokenizer["added_tokens"]:
 | 
						|
                if key["content"] == tokenizer_config["sep_token"]["content"]:
 | 
						|
                    gguf_writer.add_sep_token_id(key["id"])
 | 
						|
 | 
						|
        if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
 | 
						|
            for key in tokenizer["added_tokens"]:
 | 
						|
                if key["content"] == tokenizer_config["pad_token"]["content"]:
 | 
						|
                    gguf_writer.add_pad_token_id(key["id"])
 | 
						|
else:
 | 
						|
    # If no tokenizer.json: Look for special tokens in config.json
 | 
						|
 | 
						|
    if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
 | 
						|
        gguf_writer.add_bos_token_id(hparams["bos_token_id"])
 | 
						|
 | 
						|
    if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
 | 
						|
        gguf_writer.add_eos_token_id(hparams["eos_token_id"])
 | 
						|
 | 
						|
    if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
 | 
						|
        gguf_writer.add_unk_token_id(hparams["unk_token_id"])
 | 
						|
 | 
						|
    if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
 | 
						|
        gguf_writer.add_sep_token_id(hparams["sep_token_id"])
 | 
						|
 | 
						|
    if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
 | 
						|
        gguf_writer.add_pad_token_id(hparams["pad_token_id"])
 | 
						|
 | 
						|
 | 
						|
# TENSORS
 | 
						|
 | 
						|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | 
						|
 | 
						|
# tensor info
 | 
						|
print("gguf: get tensor metadata")
 | 
						|
 | 
						|
part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
 | 
						|
 | 
						|
for part_name in part_names:
 | 
						|
    print("gguf: loading model part '" + part_name + "'")
 | 
						|
    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | 
						|
 | 
						|
    for name in model_part.keys():
 | 
						|
        data = model_part[name]
 | 
						|
 | 
						|
        # we don't need these
 | 
						|
        if name == "rope.freqs":
 | 
						|
            continue
 | 
						|
 | 
						|
        old_dtype = data.dtype
 | 
						|
 | 
						|
        # convert any unsupported data types to float32
 | 
						|
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
						|
            data = data.to(torch.float32)
 | 
						|
 | 
						|
        data = data.squeeze().numpy()
 | 
						|
 | 
						|
        # map tensor names
 | 
						|
        if name.endswith(".weight") and name[:-7] in tensor_map:
 | 
						|
            name = tensor_map[name[:-7]] + ".weight"
 | 
						|
        elif name.endswith(".bias") and name[:-5] in tensor_map:
 | 
						|
            name = tensor_map[name[:-5]] + ".bias"
 | 
						|
        else:
 | 
						|
            print("Can not map tensor '" + name + "'")
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
        n_dims = len(data.shape)
 | 
						|
        data_dtype = data.dtype
 | 
						|
 | 
						|
        # if f32 desired, convert any float16 to float32
 | 
						|
        if ftype == 0 and data_dtype == np.float16:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
            data = data.astype(np.float16)
 | 
						|
 | 
						|
        print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
						|
 | 
						|
        gguf_writer.add_tensor(name, data)
 | 
						|
 | 
						|
 | 
						|
print("gguf: write header")
 | 
						|
gguf_writer.write_header_to_file()
 | 
						|
print("gguf: write metadata")
 | 
						|
gguf_writer.write_kv_data_to_file()
 | 
						|
print("gguf: write tensors")
 | 
						|
gguf_writer.write_tensors_to_file()
 | 
						|
 | 
						|
gguf_writer.close()
 | 
						|
 | 
						|
 | 
						|
print("gguf: model successfully exported to '" + fname_out + "'")
 | 
						|
print("")
 |