Files
llama.cpp/ggml/src/ggml-cuda/mmq.cuh
deepsek 66906cd82a HIP: Enable Matrix cores for MMQ Kernels, Enable stream-K for CDNA 3 (#14624)
This commit adds support for MFMA instructions to MMQ. CDNA1/GFX908 CDNA2/GFX90a and CDNA3/GFX942 are supported by the MFMA-enabled code path added by this commit. The code path and stream-k is only enabled on CDNA3 for now as it fails to outperform blas in all cases on the other devices.
Blas is currently only consistently outperformed on CDNA3 due to issues in the amd-provided blas libraries.
This commit also improves the awareness of MMQ towards different warp sizes and as a side effect improves the performance of all quant formats besides q4_0 and q4_1, which regress slightly, on GCN gpus.
2025-07-27 00:28:14 +02:00

3675 lines
146 KiB
Plaintext

#pragma once
#include "common.cuh"
#include "vecdotq.cuh"
#include "mma.cuh"
#include <climits>
#include <cstdint>
using namespace ggml_cuda_mma;
#define MMQ_DP4A_MAX_BATCH_SIZE 64 // Max. batch size to use for dp4a MMQ kernels when FP16 tensor cores are available.
#define MMQ_ITER_K 256
#define MMQ_NWARPS 8
typedef void (*load_tiles_mmq_t)(const char * __restrict__ x, int * x_tile, const int kbx0, const int i_max, const int stride);
typedef void (*vec_dot_mmq_t)(const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00);
typedef void (*mmq_write_back_t)(const float * __restrict__ sum, const int32_t * __restrict__ get_rows_to_sorted,
float * __restrict__ dst, const int stride, const int i_max, const int j_max);
enum mmq_q8_1_ds_layout {
MMQ_Q8_1_DS_LAYOUT_D4,
MMQ_Q8_1_DS_LAYOUT_DS4,
MMQ_Q8_1_DS_LAYOUT_D2S6,
};
struct block_q8_1_mmq {
// The y float data is converted to a data layout that can simply be copied to shared memory as a contiguous block.
// The y float data is first grouped as blocks of 128 values.
// These blocks are then treated as individual data values and transposed.
//
// To avoid shared memory bank conflicts each block is padded with 16 bytes.
// This padding is also used to store block scales/partial sums.
// The scales multiplied with the quantized data are equal to the unquantized values.
// The partial sums are obtained by summing up a subgroup of the contained values (prior to quantization)
// and are only needed for performance reasons.
//
// The exact data stored depends on the x data type.
union {
float d4[4]; // 1 32 bit scale per 32 values, stored as d0,d1,d2,d3
half2 ds4[4]; // 1 16 bit scale + 1 16 bit partial sum per 32 values, stored as d0,s0,d1,s1,d2,s2,d3,s3
half d2s6[8]; // 1 16 bit scale per 64 values + 1 16 bit partial sum per 16 values for the first 96 values,
// stored as d0,d1,s1,s2,s3,s4,s5
};
int8_t qs[4*QK8_1]; // 128 values quantized to 8 bit each
};
static_assert(sizeof(block_q8_1_mmq) == 4*QK8_1 + 4*sizeof(half2), "Unexpected block_q8_1_mmq size");
static_assert(sizeof(block_q8_1_mmq) == 4*sizeof(block_q8_1), "Unexpected block_q8_1_mmq size");
static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) {
switch (type_x) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
return MMQ_Q8_1_DS_LAYOUT_DS4;
case GGML_TYPE_Q5_0:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_Q5_1:
return MMQ_Q8_1_DS_LAYOUT_DS4;
case GGML_TYPE_Q8_0:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_Q2_K:
return MMQ_Q8_1_DS_LAYOUT_D2S6;
case GGML_TYPE_Q3_K:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
return MMQ_Q8_1_DS_LAYOUT_DS4;
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_IQ1_S:
return MMQ_Q8_1_DS_LAYOUT_DS4;
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
return MMQ_Q8_1_DS_LAYOUT_D4;
default:
GGML_ABORT("fatal error");
break;
}
}
struct tile_x_sizes {
int qs;
int dm;
int sc;
};
static int get_mmq_x_max_host(const int cc) {
return (amd_mfma_available(cc) || new_mma_available(cc)) ? 128 :
GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ?
#ifdef GGML_CUDA_FORCE_MMQ
128 : 64;
#else
MMQ_DP4A_MAX_BATCH_SIZE : 64;
#endif // GGML_CUDA_FORCE_MMQ
}
static constexpr __device__ int get_mmq_x_max_device() {
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
return 128;
#else // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
return 64;
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#ifdef GGML_CUDA_FORCE_MMQ
return 128;
#else // GGML_CUDA_FORCE_MMQ
return MMQ_DP4A_MAX_BATCH_SIZE;
#endif // GGML_CUDA_FORCE_MMQ
#else // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
return 64;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
static int get_mmq_y_host(const int cc) {
return GGML_CUDA_CC_IS_AMD(cc) ? (GGML_CUDA_CC_IS_RDNA1(cc) ? 64 : 128) :
((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ? 128 : 64);
}
static constexpr __device__ int get_mmq_y_device() {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA1)
return 64;
#else
return 128;
#endif // defined RDNA1
#else
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
return 128;
#else
return 64;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}
// Decouple shared memory tile sizes from WARP_SIZE to allow for different warp sizes.
// The K dimension of the tiles has either,
// 1*MMQ_TILE_NE_K==32 (always for TILE_Y_K) or 2*MMQ_TILE_NE_K==64 (typically for TILE_X_K),
// 32 bit elements for the quantized data (does not include scales).
// In other words, the size of the quantized data in the K dimension is a multiple of MMQ_TILE_NE_K.
// The final tile size in K direction is padded to avoid shared memory bank conflicts,
// in terms of 32 bit elements that means K % 2 == 1 for dp4a or K % 8 == 4 for mma.
#define MMQ_TILE_NE_K 32
#define MMQ_DP4A_TXS_Q4_0 tile_x_sizes{mmq_y*MMQ_TILE_NE_K + mmq_y, mmq_y*MMQ_TILE_NE_K/QI4_0 + mmq_y/QI4_0, 0}
#define MMQ_DP4A_TXS_Q4_1 tile_x_sizes{mmq_y*MMQ_TILE_NE_K + mmq_y, mmq_y*MMQ_TILE_NE_K/QI4_1 + mmq_y/QI4_1, 0}
#define MMQ_DP4A_TXS_Q8_0 tile_x_sizes{mmq_y*MMQ_TILE_NE_K*2 + mmq_y, mmq_y*MMQ_TILE_NE_K*2/QI8_0 + mmq_y/(QI8_0/2), 0}
#define MMQ_DP4A_TXS_Q8_0_16 tile_x_sizes{mmq_y*MMQ_TILE_NE_K*2 + mmq_y, mmq_y*MMQ_TILE_NE_K*4/QI8_0 + mmq_y/(QI8_0/4), 0}
#define MMQ_DP4A_TXS_Q8_1 tile_x_sizes{mmq_y*MMQ_TILE_NE_K*2 + mmq_y, mmq_y*MMQ_TILE_NE_K*2/QI8_1 + mmq_y/(QI8_1/2), 0}
#define MMQ_DP4A_TXS_Q2_K tile_x_sizes{mmq_y*MMQ_TILE_NE_K*2 + mmq_y, mmq_y*MMQ_TILE_NE_K + mmq_y, 0}
#define MMQ_DP4A_TXS_Q3_K tile_x_sizes{mmq_y*MMQ_TILE_NE_K*2 + mmq_y, mmq_y, mmq_y*MMQ_TILE_NE_K/8 + mmq_y/8}
#define MMQ_DP4A_TXS_Q4_K tile_x_sizes{mmq_y*MMQ_TILE_NE_K + mmq_y, mmq_y*MMQ_TILE_NE_K/QI4_K, mmq_y*MMQ_TILE_NE_K/8 + mmq_y/8}
#define MMQ_DP4A_TXS_Q5_K tile_x_sizes{mmq_y*MMQ_TILE_NE_K*2 + mmq_y, mmq_y*MMQ_TILE_NE_K/QI5_K + mmq_y/QI5_K, mmq_y*MMQ_TILE_NE_K/8 + mmq_y/8}
#define MMQ_DP4A_TXS_Q6_K tile_x_sizes{mmq_y*MMQ_TILE_NE_K*2 + mmq_y, mmq_y*MMQ_TILE_NE_K/QI6_K + mmq_y/QI6_K, mmq_y*MMQ_TILE_NE_K/8 + mmq_y/8}
static constexpr __host__ __device__ tile_x_sizes mmq_get_dp4a_tile_x_sizes(ggml_type type, int mmq_y) {
switch (type) {
case GGML_TYPE_Q4_0: return MMQ_DP4A_TXS_Q4_0;
case GGML_TYPE_Q4_1: return MMQ_DP4A_TXS_Q4_1;
case GGML_TYPE_Q5_0: return MMQ_DP4A_TXS_Q8_0;
case GGML_TYPE_Q5_1: return MMQ_DP4A_TXS_Q8_1;
case GGML_TYPE_Q8_0: return MMQ_DP4A_TXS_Q8_0;
case GGML_TYPE_Q2_K: return MMQ_DP4A_TXS_Q2_K;
case GGML_TYPE_Q3_K: return MMQ_DP4A_TXS_Q3_K;
case GGML_TYPE_Q4_K: return MMQ_DP4A_TXS_Q4_K;
case GGML_TYPE_Q5_K: return MMQ_DP4A_TXS_Q5_K;
case GGML_TYPE_Q6_K: return MMQ_DP4A_TXS_Q6_K;
case GGML_TYPE_IQ2_XXS: return MMQ_DP4A_TXS_Q8_0;
case GGML_TYPE_IQ2_XS: return MMQ_DP4A_TXS_Q8_0_16;
case GGML_TYPE_IQ2_S: return MMQ_DP4A_TXS_Q8_0_16;
case GGML_TYPE_IQ3_XXS: return MMQ_DP4A_TXS_Q8_0;
case GGML_TYPE_IQ3_S: return MMQ_DP4A_TXS_Q8_0;
case GGML_TYPE_IQ1_S: return MMQ_DP4A_TXS_Q8_0;
case GGML_TYPE_IQ4_XS: return MMQ_DP4A_TXS_Q8_0;
case GGML_TYPE_IQ4_NL: return MMQ_DP4A_TXS_Q8_0;
default: return tile_x_sizes{0, 0, 0};
}
}
#define MMQ_MMA_TILE_X_K_Q8_0 (2*MMQ_TILE_NE_K + 2*MMQ_TILE_NE_K/QI8_0 + 4)
#define MMQ_MMA_TILE_X_K_Q8_1 (2*MMQ_TILE_NE_K + 2*MMQ_TILE_NE_K/QI8_0 + 4)
#define MMQ_MMA_TILE_X_K_Q2_K (2*MMQ_TILE_NE_K + MMQ_TILE_NE_K + 4)
#define MMQ_MMA_TILE_X_K_Q3_K (2*MMQ_TILE_NE_K + MMQ_TILE_NE_K/2 + 4)
#define MMQ_MMA_TILE_X_K_Q6_K (2*MMQ_TILE_NE_K + MMQ_TILE_NE_K/QI6_K + MMQ_TILE_NE_K/8 + 7)
static_assert(MMQ_MMA_TILE_X_K_Q8_0 % 8 == 4, "Wrong padding.");
static_assert(MMQ_MMA_TILE_X_K_Q8_1 % 8 == 4, "Wrong padding.");
static_assert(MMQ_MMA_TILE_X_K_Q2_K % 8 == 4, "Wrong padding.");
static_assert(MMQ_MMA_TILE_X_K_Q3_K % 8 == 4, "Wrong padding.");
static_assert(MMQ_MMA_TILE_X_K_Q6_K % 8 == 4, "Wrong padding.");
static constexpr __host__ __device__ int mmq_get_mma_tile_x_k(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_Q4_1: return MMQ_MMA_TILE_X_K_Q8_1;
case GGML_TYPE_Q5_0: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_Q5_1: return MMQ_MMA_TILE_X_K_Q8_1;
case GGML_TYPE_Q8_0: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_Q2_K: return MMQ_MMA_TILE_X_K_Q2_K;
case GGML_TYPE_Q3_K: return MMQ_MMA_TILE_X_K_Q3_K;
case GGML_TYPE_Q4_K: return MMQ_MMA_TILE_X_K_Q8_1;
case GGML_TYPE_Q5_K: return MMQ_MMA_TILE_X_K_Q8_1;
case GGML_TYPE_Q6_K: return MMQ_MMA_TILE_X_K_Q6_K;
case GGML_TYPE_IQ2_XXS: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_IQ2_XS: return MMQ_MMA_TILE_X_K_Q3_K;
case GGML_TYPE_IQ2_S: return MMQ_MMA_TILE_X_K_Q3_K;
case GGML_TYPE_IQ3_XXS: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_IQ3_S: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_IQ1_S: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_IQ4_XS: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_IQ4_NL: return MMQ_MMA_TILE_X_K_Q8_0;
default: return 0;
}
}
// block_q8_1_mmq has (128 8-bit ints == 32 32-bit ints + 4 32-bit scales)
#define MMQ_TILE_Y_K (MMQ_TILE_NE_K + MMQ_TILE_NE_K/QI8_1)
static int mmq_get_granularity_host(const int mmq_x, const int cc) {
if (amd_mfma_available(cc)) {
return mmq_x >= 128 ? 32 : 16;
} else if (new_mma_available(cc) && mmq_x >= 48) {
return 16;
} else {
return 8;
}
}
#if defined(AMD_MFMA_AVAILABLE)
static constexpr __device__ int mmq_get_granularity_device(const int mmq_x) {
return mmq_x >= 128 ? 32 : 16;
}
#elif defined(NEW_MMA_AVAILABLE)
static constexpr __device__ int mmq_get_granularity_device(const int mmq_x) {
return mmq_x >= 48 ? 16 : 8;
}
#else
static constexpr __device__ int mmq_get_granularity_device(const int /*mmq_x*/) {
return 8;
}
#endif // AMD_MFMA_AVAILABLE
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
static int mmq_get_nwarps_host(const int cc) {
return amd_mfma_available(cc) ? 8 : 4;
}
#else
static int mmq_get_nwarps_host(const int /*cc*/) {
return 8;
}
#endif // (GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
static constexpr __device__ int mmq_get_nwarps_device() {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(AMD_MFMA_AVAILABLE)
return 8;
#else
return 4;
#endif // AMD_MFMA_AVAILABLE
#else
return 8;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}
// ------------------------------------------------------------
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + 2*MMQ_TILE_NE_K);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR4_0);
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
const int kbx = txi / QI4_0;
const int kqsx = txi % QI4_0;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbx;
const int qs0 = get_int_b2(bxi->qs, kqsx);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + 0] = __vsubss4((qs0 >> 0) & 0x0F0F0F0F, 0x08080808);
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + QI4_0] = __vsubss4((qs0 >> 4) & 0x0F0F0F0F, 0x08080808);
#else
x_qs[i*(MMQ_TILE_NE_K + 1) + txi] = qs0;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
constexpr int blocks_per_tile_x_row = MMQ_TILE_NE_K / QI4_0;
constexpr int rows_per_warp = warp_size / blocks_per_tile_x_row;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * rows_per_warp) {
int i = i0 + threadIdx.y * rows_per_warp + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbxd;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d;
#else
x_df[i*(MMQ_TILE_NE_K/QI4_0) + i/QI4_0 + kbxd] = bxi->d;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q4_0_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QR4_0*VDR_Q4_0_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2);
int u[2*VDR_Q4_0_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l];
u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_0)];
}
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
(&x_qs[i*(MMQ_TILE_NE_K + 1) + k0/QR4_0], u,
x_df[i*(MMQ_TILE_NE_K/QI4_0) + i/QI4_0 + k0/(QR4_0*QI4_0)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + 2*MMQ_TILE_NE_K);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR4_1);
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
const int kbx = txi / QI4_1;
const int kqsx = txi % QI4_1;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbx;
const int qs0 = get_int_b4(bxi->qs, kqsx);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + 0] = (qs0 >> 0) & 0x0F0F0F0F;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + QI4_1] = (qs0 >> 4) & 0x0F0F0F0F;
#else
x_qs[i*(MMQ_TILE_NE_K + 1) + txi] = qs0;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
constexpr int blocks_per_tile_x_row = MMQ_TILE_NE_K / QI4_1;
constexpr int rows_per_warp = warp_size / blocks_per_tile_x_row;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * rows_per_warp) {
int i = i0 + threadIdx.y * rows_per_warp + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbxd;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm;
#else
x_dm[i*(MMQ_TILE_NE_K/QI4_1) + i/QI4_1 + kbxd] = bxi->dm;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q4_1_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QR4_1*VDR_Q4_1_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2);
int u[2*VDR_Q4_1_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l];
u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_1)];
}
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
(&x_qs[i*(MMQ_TILE_NE_K + 1) + k0/QR4_1], u,
x_dm[i*(MMQ_TILE_NE_K/QI4_1) + i/QI4_1 + k0/(QR4_1*QI4_1)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_0, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR5_0);
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
const int kbx = txi / QI5_0;
const int kqsx = txi % QI5_0;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbx;
const int ql = get_int_b2(bxi->qs, kqsx);
const int qh = get_int_b2(bxi->qh, 0) >> (4 * kqsx);
int qs0 = (ql >> 0) & 0x0F0F0F0F;
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
int qs1 = (ql >> 4) & 0x0F0F0F0F;
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + 0] = qs0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + kbx*(2*QI5_0) + kqsx + 0] = qs0;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
constexpr int blocks_per_tile_x_row = MMQ_TILE_NE_K / QI5_0;
constexpr int rows_per_warp = warp_size / blocks_per_tile_x_row;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * rows_per_warp) {
int i = i0 + threadIdx.y * rows_per_warp + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbxd;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d;
#else
x_df[i*(MMQ_TILE_NE_K/QI5_0) + i/QI5_0 + kbxd] = bxi->d;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + 2*MMQ_TILE_NE_K);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR5_1);
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
const int kbx = txi / QI5_1;
const int kqsx = txi % QI5_1;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbx;
const int ql = get_int_b4(bxi->qs, kqsx);
const int qh = get_int_b4(bxi->qh, 0) >> (4 * kqsx);
int qs0 = (ql >> 0) & 0x0F0F0F0F;
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
int qs1 = (ql >> 4) & 0x0F0F0F0F;
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + 0] = qs0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + kbx*(2*QI5_1) + kqsx + 0] = qs0;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
constexpr int blocks_per_tile_x_row = MMQ_TILE_NE_K / QI5_1;
constexpr int rows_per_warp = warp_size / blocks_per_tile_x_row;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * rows_per_warp) {
int i = i0 + threadIdx.y * rows_per_warp + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbxd;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm;
#else
x_dm[i*(MMQ_TILE_NE_K/QI5_1) + i/QI5_1 + kbxd] = bxi->dm;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_tile + 2*MMQ_TILE_NE_K);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
// MMQ_ITER_K / (4 * QR8_0) == 64 required. but NV has only 32 threads per warp
constexpr int threads_per_row = 32;
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
const int kbx = txi / QI8_0;
const int kqsx = txi % QI8_0;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbx;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 0 + txi] = get_int_b2(bxi[0].qs, kqsx);
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + MMQ_TILE_NE_K + txi] = get_int_b2(bxi[MMQ_TILE_NE_K/QI8_0].qs, kqsx);
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 0 + txi] = get_int_b2(bxi[0].qs, kqsx);
x_qs[i*(2*MMQ_TILE_NE_K + 1) + MMQ_TILE_NE_K + txi] = get_int_b2(bxi[MMQ_TILE_NE_K/QI8_0].qs, kqsx);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
constexpr int blocks_per_tile_x_row = 2*MMQ_TILE_NE_K / QI8_0;
constexpr int rows_per_warp = warp_size / blocks_per_tile_x_row;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * rows_per_warp) {
int i = i0 + threadIdx.y * rows_per_warp + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbxd;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d;
#else
x_df[i*(2*MMQ_TILE_NE_K/QI8_0) + i/(QI8_0/2) + kbxd] = bxi->d;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q8_0_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
// #pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += VDR_Q8_0_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ>
(&x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k0 % MMQ_TILE_NE_K],
x_df[i*(2*MMQ_TILE_NE_K/QI8_0) + i/(QI8_0/2) + k0/QI8_0], y_df[j*MMQ_TILE_Y_K + (k0/QI8_1) % (MMQ_TILE_NE_K/QI8_1)]);
}
}
}
}
template <int mmq_x, int mmq_y, mmq_q8_1_ds_layout ds_layout>
static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
#if defined(AMD_MFMA_AVAILABLE)
typedef tile<16, 8, int> tile_A;
typedef tile<16, 8, int> tile_B;
typedef tile<16, 16, int> tile_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + 2*MMQ_TILE_NE_K;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
const half2 * y_ds = (const half2 *) y;
const int i0 = (threadIdx.y / ntx) * rows_per_warp;
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_0) {
const int k0 = k00 + k01;
tile_A A[ntx];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
load_generic(A[n], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q8_0 + k0, MMQ_MMA_TILE_X_K_Q8_0);
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
tile_B B;
load_generic(B, y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K);
float dB;
const int j = j0 + tile_C::get_j(0);
if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D4) {
dB = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
} else {
dB = __low2float(y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C C;
mma(C, A[n], B);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
const int i = i0 + n*tile_A::I + tile_C::get_i(l);
const float dA = x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + k0/QI8_0];
sum[(j0/tile_C::J + n)*tile_C::ne + l] += C.x[l]*dA*dB;
}
}
}
}
#else
typedef tile<16, 8, int> tile_A;
typedef tile< 8, 8, int> tile_B;
typedef tile<16, 8, int> tile_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + 2*MMQ_TILE_NE_K;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
const half2 * y_ds = (const half2 *) y;
tile_A A[ntx][MMQ_TILE_NE_K/QI8_0];
float dA[ntx][tile_C::ne/2][MMQ_TILE_NE_K/QI8_0];
const int i0 = (threadIdx.y/ntx)*rows_per_warp;
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_0) {
const int k0 = k00 + k01;
load_ldmatrix(A[n][k01/QI8_0], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q8_0 + k0, MMQ_MMA_TILE_X_K_Q8_0);
}
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int i = i0 + n*tile_A::I + tile_C::get_i(2*l);
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_0) {
const int k0 = k00 + k01;
dA[n][l][k01/QI8_0] = x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + k0/QI8_0];
}
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_0) {
tile_B B;
float dB[tile_C::ne/2];
load_generic(B, y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); // faster than load_ldmatrix
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int j = j0 + tile_C::get_j(l);
if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D4) {
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
} else {
dB[l] = __low2float(y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C C;
mma(C, A[n][k01/QI8_0], B);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
sum[(j0/tile_C::J + n)*tile_C::ne + l] += C.x[l]*dA[n][l/2][k01/QI8_0]*dB[l%2];
}
}
}
}
#endif // defined(AMD_MFMA_AVAILABLE)
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q8_1_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += VDR_Q8_0_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
(&x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01],
x_dm[i*(MMQ_TILE_NE_K/QI5_1) + i/QI5_1 + k0/QI8_1], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q8_1_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
#if defined(AMD_MFMA_AVAILABLE)
typedef tile<16, 8, int> tile_A;
typedef tile<16, 8, int> tile_B;
typedef tile<16, 16, int> tile_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + 2*MMQ_TILE_NE_K;
const int * y_qs = (const int *) y + 4;
const half2 * y_dm = (const half2 *) y;
const int i0 = (threadIdx.y / ntx) * rows_per_warp;
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_1) {
const int k0 = k00 + k01;
tile_A A[ntx];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
load_generic(A[n], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q8_1 + k0, MMQ_MMA_TILE_X_K_Q8_1);
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
tile_B B;
load_generic(B, y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K);
const int j = j0 + tile_C::get_j(0);
const float2 dsB = __half22float2(y_dm[j*MMQ_TILE_Y_K + k01/QI8_1]);
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C C;
mma(C, A[n], B);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
const int i = i0 + n*tile_A::I + tile_C::get_i(l);
float2 dmA = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + k0/QI8_1]);
sum[(j0/tile_C::J + n)*tile_C::ne + l] += dmA.x*dsB.x*C.x[l];
sum[(j0/tile_C::J + n)*tile_C::ne + l] += dmA.y*dsB.y;
}
}
}
}
#else
typedef tile<16, 8, int> tile_A;
typedef tile< 8, 8, int> tile_B;
typedef tile<16, 8, int> tile_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + 2*MMQ_TILE_NE_K;
const int * y_qs = (const int *) y + 4;
const half2 * y_dm = (const half2 *) y;
tile_A A[ntx][MMQ_TILE_NE_K/QI8_1];
float2 dmA[ntx][tile_C::ne/2][MMQ_TILE_NE_K/QI8_1];
const int i0 = (threadIdx.y/ntx)*rows_per_warp;
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_1) {
const int k0 = k00 + k01;
load_ldmatrix(A[n][k01/QI8_1], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q8_1 + k0, MMQ_MMA_TILE_X_K_Q8_1);
}
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int i = i0 + n*tile_A::I + tile_C::get_i(2*l);
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_1) {
const int k0 = k00 + k01;
dmA[n][l][k01/QI8_1] = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + k0/QI8_1]);
}
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_1) {
tile_B B;
float2 dsB[tile_C::ne/2];
load_generic(B, y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); // faster than load_ldmatrix
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int j = j0 + tile_C::get_j(l);
dsB[l] = __half22float2(y_dm[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C C;
mma(C, A[n][k01/QI8_1], B);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
sum[(j0/tile_C::J + n)*tile_C::ne + l] += dmA[n][l/2][k01/QI8_1].x*dsB[l%2].x*C.x[l];
sum[(j0/tile_C::J + n)*tile_C::ne + l] += dmA[n][l/2][k01/QI8_1].y*dsB[l%2].y;
}
}
}
}
#endif // defined(AMD_MFMA_AVAILABLE)
}
// Used for Q3_K, IQ2_S, and IQ2_XS
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16;
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
// #pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_0) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q8_0_16_q8_1_impl<QI8_0>(
&x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0],
&y_qs[j*MMQ_TILE_Y_K + k01],
&x_df[i*(2*MMQ_TILE_NE_K*2/QI8_0) + i/(QI8_0/4) + k0/(QI8_0/2)],
y_df[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
// Used for Q3_K, IQ2_S, and IQ2_XS:
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
#if defined(AMD_MFMA_AVAILABLE)
typedef tile<16, 8, int> tile_A;
typedef tile<16, 8, int> tile_B;
typedef tile<16, 16, int> tile_C;
typedef tile<64, 2, int> tile_load;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + MMQ_TILE_NE_K*2;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
const int i0 = (threadIdx.y / ntx) * rows_per_warp;
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += 4) {
const int k0 = k00 + k01;
tile_A A[ntx];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
load_generic(((tile_load *) A)[n], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q3_K + k0, MMQ_MMA_TILE_X_K_Q3_K);
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
tile_B B[1];
load_generic(((tile_load *) B)[0], y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K);
const int j = j0 + tile_C::get_j(0);
const float dB = y_df[j*MMQ_TILE_Y_K + k01/QI8_1] / 2;
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C C;
mma(C, A[n], B[0]);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
const int i = i0 + n*tile_C::I + tile_C::get_i(l);
sum[(j0/tile_C::J + n)*tile_C::ne + l] += C.x[l] * x_df[i*MMQ_MMA_TILE_X_K_Q3_K + k0/4] * dB;
}
}
}
}
#elif defined(NEW_MMA_AVAILABLE)
typedef tile<16, 4, int> tile_A;
typedef tile<16, 8, int> tile_A_8;
typedef tile< 8, 4, int> tile_B;
typedef tile<16, 8, int> tile_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + MMQ_TILE_NE_K*2;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
const int i0 = (threadIdx.y / ntx) * (ntx*tile_A::I);
tile_A A[ntx][8];
float dA[ntx][tile_C::ne/2][8];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += 8) {
const int k0 = k00 + k01;
load_ldmatrix(((tile_A_8 *) A[n])[k01/8], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q3_K + k0, MMQ_MMA_TILE_X_K_Q3_K);
}
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int i = i0 + n*tile_C::I + tile_C::get_i(2*l);
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += 4) {
const int k0 = k00 + k01;
dA[n][l][k01/4] = x_df[i*MMQ_MMA_TILE_X_K_Q3_K + k0/4];
}
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) {
tile_B B[2];
float dB[tile_C::ne/2];
// Here load_generic is faster than load_ldmatrix.
load_generic(B[0], y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
load_generic(B[1], y_qs + j0*MMQ_TILE_Y_K + (k01 + tile_B::J), MMQ_TILE_Y_K);
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int j = j0 + tile_C::get_j(l);
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C C[2];
mma(C[0], A[n][k01/4 + 0], B[0]);
mma(C[1], A[n][k01/4 + 1], B[1]);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
sum[(j0/tile_C::J + n)*tile_C::ne + l] += dB[l%2]*(C[0].x[l]*dA[n][l/2][k01/4 + 0] + C[1].x[l]*dA[n][l/2][k01/4 + 1]);
}
}
}
}
#else
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); GGML_UNUSED(k00);
NO_DEVICE_CODE;
#endif // AMD_MFMA_AVAILABLE
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + 2*MMQ_TILE_NE_K);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR2_K);
constexpr int nrows = ggml_cuda_get_physical_warp_size() / threads_per_row;
const int kqsx = threadIdx.x % threads_per_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + threadIdx.y*nrows + threadIdx.x/threads_per_row;
if (need_check) {
i = min(i, i_max);
}
const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride;
const int x_ql_0 = get_int_b2(bxi->qs, kqsx);
#pragma unroll
for (int l = 0; l < QR2_K; ++l) {
const int k = (kqsx/8)*32 + l*8 + kqsx % 8;
const int x_qs_k = (x_ql_0 >> (2*l)) & 0x03030303;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q2_K + k] = x_qs_k;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + k] = x_qs_k;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
const int sc_m = bxi->scales[kqsx];
#ifdef FAST_FP16_AVAILABLE
const half2 x_dm_ik = __hmul2(bxi->dm, make_half2(sc_m & 0x0F, sc_m >> 4));
#else
const float2 bxi_dmf = __half22float2(bxi->dm);
const half2 x_dm_ik = make_half2(bxi_dmf.x*(sc_m & 0x0F), bxi_dmf.y*(sc_m >> 4));
#endif // FAST_FP16_AVAILABLE
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + kqsx] = x_dm_ik;
#else
x_dm[i*(MMQ_TILE_NE_K + 1) + kqsx] = x_dm_ik;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q2_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
float2 y_df[mmq_x/nwarps];
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
y_df[j0/nwarps] = __half22float2(y_ds[j*MMQ_TILE_Y_K]);
}
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K/2; k01 += QR2_K*VDR_Q2_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
constexpr int ns = 2;
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q2_K_q8_1_impl_mmq<ns>(
&x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01],
&x_dm[i*(MMQ_TILE_NE_K + 1) + k0/4], k01 < MMQ_TILE_NE_K/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y,
&y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
}
}
}
// Some compilers fail to unroll the loop over k01 if there is a conditional statement for ns in the inner loop.
// As a workaround 2 separate loops are used instead.
#pragma unroll
for (int k01 = MMQ_TILE_NE_K/2; k01 < MMQ_TILE_NE_K; k01 += QR2_K*VDR_Q2_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
constexpr int ns = 1;
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q2_K_q8_1_impl_mmq<ns>(
&x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01],
&x_dm[i*(MMQ_TILE_NE_K + 1) + k0/4], k01 < MMQ_TILE_NE_K/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y,
&y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
}
}
}
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
#if defined(AMD_MFMA_AVAILABLE)
typedef tile<16, 8, int> tile_A;
typedef tile<16, 8, int> tile_B;
typedef tile<16, 16, int> tile_C;
typedef tile<64, 2, int> tile_load;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + MMQ_TILE_NE_K*2;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
const int i0 = (threadIdx.y / ntx) * rows_per_warp;
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += 4) {
const int k0 = k00 + k01;
tile_A A[ntx];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
load_generic(((tile_load *) A)[n], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q2_K + k0, MMQ_MMA_TILE_X_K_Q2_K);
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
tile_B B[1];
load_generic(((tile_load *) B)[0], y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K);
const int j = j0 + tile_C::get_j(0);
const float dB = (k01 < MMQ_TILE_NE_K/2) ? __half22float2(y_ds[j*MMQ_TILE_Y_K]).x/2 : __half22float2(y_ds[j*MMQ_TILE_Y_K]).y/2;
const float sB = (k01 >= MMQ_TILE_NE_K * 3/4) ? 0
: (((k01/4)%2) ? __half22float2(y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]).y
: __half22float2(y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]).x);
tile_C Cm;
if (k01 >= MMQ_TILE_NE_K * 3/4) {
tile_A A1;
A1.x[0] = 0x01010101;
A1.x[1] = 0x01010101;
mma(Cm, A1, B[0]);
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C Cd;
mma(Cd, A[n], B[0]);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
const int i = i0 + n*tile_C::I + tile_C::get_i(l);
const float2 dm = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + k0/4]);
float tmp = Cd.x[l]*dm.x;
if (k01 >= MMQ_TILE_NE_K * 3/4) {
tmp -= Cm.x[l]*dm.y;
}
sum[(j0/tile_C::J + n)*tile_C::ne + l] += tmp*dB;
sum[(j0/tile_C::J + n)*tile_C::ne + l] -= dm.y*sB;
}
}
}
}
#elif defined(NEW_MMA_AVAILABLE)
typedef tile<16, 4, int> tile_A;
typedef tile<16, 8, int> tile_A_8;
typedef tile< 8, 4, int> tile_B;
typedef tile<16, 8, int> tile_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + MMQ_TILE_NE_K*2;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
const int i0 = (threadIdx.y / ntx) * (ntx*tile_A::I);
tile_A A[ntx][8];
float dA[ntx][tile_C::ne/2][8];
float mA[ntx][tile_C::ne/2][8];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_1) {
const int k0 = k00 + k01;
load_ldmatrix(((tile_A_8 *) A[n])[k01/QI8_1], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q2_K + k0, MMQ_MMA_TILE_X_K_Q2_K);
}
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int i = i0 + n*tile_C::I + tile_C::get_i(2*l);
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_1/2) {
const int k0 = k00 + k01;
const float2 dm = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + k0/(QI8_1/2)]);
dA[n][l][k01/(QI8_1/2)] = dm.x;
mA[n][l][k01/(QI8_1/2)] = dm.y;
}
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
float2 dB[tile_C::ne/2];
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int j = j0 + tile_C::get_j(l);
dB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K]);
}
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QI8_1) {
tile_B B[2];
// Here load_generic is faster than load_ldmatrix.
load_generic(B[0], y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
load_generic(B[1], y_qs + j0*MMQ_TILE_Y_K + (k01 + tile_B::J), MMQ_TILE_Y_K);
tile_C Cm[2];
if (k01 >= MMQ_TILE_NE_K * 3/4) {
tile_A A1;
A1.x[0] = 0x01010101;
A1.x[1] = 0x01010101;
mma(Cm[0], A1, B[0]);
mma(Cm[1], A1, B[1]);
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C Cd[2];
mma(Cd[0], A[n][k01/4 + 0], B[0]);
mma(Cd[1], A[n][k01/4 + 1], B[1]);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
float tmp = Cd[0].x[l]*dA[n][l/2][k01/4 + 0] + Cd[1].x[l]*dA[n][l/2][k01/4 + 1];
if (k01 >= MMQ_TILE_NE_K * 3/4) {
tmp -= Cm[0].x[l]*mA[n][l/2][k01/4 + 0] + Cm[1].x[l]*mA[n][l/2][k01/4 + 1];
}
sum[(j0/tile_C::J + n)*tile_C::ne + l] += tmp*(k01 < MMQ_TILE_NE_K/2 ? dB[l%2].x : dB[l%2].y);
}
}
}
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K * 3/4; k01 += QI8_1) {
float2 sB[tile_C::ne/2];
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int j = j0 + tile_C::get_j(l);
sB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
sum[(j0/tile_C::J + n)*tile_C::ne + l] -= mA[n][l/2][k01/4 + 0]*sB[l%2].x;
sum[(j0/tile_C::J + n)*tile_C::ne + l] -= mA[n][l/2][k01/4 + 1]*sB[l%2].y;
}
}
}
}
#else
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); GGML_UNUSED(k00);
NO_DEVICE_CODE;
#endif // AMD_MFMA_AVAILABLE
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
int * x_sc = (int *) (x_df + txs.dm);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR3_K);
constexpr int nrows = warp_size / threads_per_row;
const int kqsx = threadIdx.x % threads_per_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + threadIdx.y*nrows + threadIdx.x/threads_per_row;
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride;
const int x_ql_0 = get_int_b2(bxi->qs, kqsx);
const int x_qh_0 = get_int_b2(bxi->hmask, kqsx % (QI3_K/2)) >> (4 * (kqsx / (QI3_K/2)));
#pragma unroll
for (int l = 0; l < QR3_K; ++l) {
const int k = (kqsx/8)*32 + l*8 + kqsx % 8;
const int x_ql_k = (x_ql_0 >> (2*l)) & 0x03030303;
const int x_qh_k = ((x_qh_0 >> l) << 2) & 0x04040404;
const int x_qs_k = __vsubss4(x_ql_k | x_qh_k, 0x04040404);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + k] = x_qs_k;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + k] = x_qs_k;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
constexpr int rows_per_warp = warp_size / 4;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*rows_per_warp) {
int i = i0 + threadIdx.y*rows_per_warp + threadIdx.x/4;
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride;
const int ksc = threadIdx.x % 4;
const int ksc_low = ksc % (QI3_K/8);
const int shift_low = 4 * (ksc / (QI3_K/8));
const int sc_low = (get_int_b2(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
const int ksc_high = QI3_K/8;
const int shift_high = 2 * ksc;
const int sc_high = ((get_int_b2(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
const int8_t * sc8 = (const int8_t *) &sc;
const float d = bxi->d;
#pragma unroll
for (int l = 0; l < int(sizeof(int)); ++l) {
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + sizeof(int)*ksc + l] = d*sc8[l];
}
#else
x_sc[i*(MMQ_TILE_NE_K/8) + i/8 + ksc] = sc;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
#if !(defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE))
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*warp_size) {
int i = (i0 + threadIdx.y*warp_size + threadIdx.x) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride;
x_df[i] = bxi->d;
}
#endif // !(defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE))
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q3_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * x_sc = (const int *) x_df + txs.dm;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
// #pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const int8_t * scales = ((const int8_t *) (x_sc + i*(MMQ_TILE_NE_K/8) + i/8)) + k0/4;
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q3_K_q8_1_impl_mmq(
&x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], scales,
x_df[i], y_df[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
static __device__ __forceinline__ int unpack_scales_q45_K(const int * scales, const int ksc) {
// scale arrangement after the following two lines:
// - ksc == 0: sc0, sc1, sc2, sc3
// - ksc == 1: sc4, sc5, sc6, sc7
// - ksc == 2: m0, m1, m2, m3
// - ksc == 3: m4, m5, m6, m7
return ((scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F) | // lower 4 bits
((scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030); // upper 2 bits
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + 2*MMQ_TILE_NE_K);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
int * x_sc = (int *) (x_dm + txs.dm);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR4_K);
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride;
const int qs0 = get_int_b4(bxi->qs, txi);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(txi/8) + txi % 8 + 0] = (qs0 >> 0) & 0x0F0F0F0F;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(txi/8) + txi % 8 + 8] = (qs0 >> 4) & 0x0F0F0F0F;
#else
x_qs[i*(MMQ_TILE_NE_K + 1) + txi] = qs0;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int rows_per_warp = warp_size / 2;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*rows_per_warp) {
#if defined(AMD_MFMA_AVAILABLE)
// Need if on AMD instead of % because warp_size == 64
// This causes double work and throughput loss (MI300X)
// H100 loses about 100 t/s with 'if' condition over '%'
int i = i0 + threadIdx.y*rows_per_warp + threadIdx.x/2;
if (i < mmq_y) {
#else
int i = (i0 + threadIdx.y*rows_per_warp + threadIdx.x/2) % mmq_y;
{
#endif // defined(AMD_MFMA_AVAILABLE)
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride;
const int * scales = (const int *) bxi->scales;
const int ksc = threadIdx.x % 2;
const int sc32 = unpack_scales_q45_K(scales, ksc + 0);
const int m32 = unpack_scales_q45_K(scales, ksc + 2);
const uint8_t * sc8 = (const uint8_t *) &sc32;
const uint8_t * m8 = (const uint8_t *) &m32;
const half2 dm = bxi->dm * make_half2(1.0f, -1.0f);
#pragma unroll
for (int l = 0; l < sizeof(int); ++l) {
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]);
}
}
}
#else
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*warp_size) {
int i = (i0 + threadIdx.y*warp_size + threadIdx.x) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride;
x_dm[i] = bxi->dm;
}
constexpr int rows_per_warp = warp_size / 4;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*rows_per_warp) {
int i = (i0 + threadIdx.y*rows_per_warp + threadIdx.x/(MMQ_TILE_NE_K/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + (threadIdx.x % (MMQ_TILE_NE_K/8)) / (QI4_K/8);
const int * scales = (const int *) bxi->scales;
const int ksc = threadIdx.x % (MMQ_TILE_NE_K/8);
const int scales8 = unpack_scales_q45_K(scales, ksc);
x_sc[i*(MMQ_TILE_NE_K/8) + i/8 + ksc] = scales8;
}
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q4_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * x_sc = (const int *) x_dm + txs.dm;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QR4_K*VDR_Q4_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const uint8_t * sc = (const uint8_t *) &x_sc[i * (MMQ_TILE_NE_K/8) + i/8 + k0/32] + 2*(k01/16);
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q4_K_q8_1_impl_mmq(
&x_qs[i*(MMQ_TILE_NE_K + 1) + k0/2], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8,
x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_dm = (half2 *) (x_qs + txs.qs);
int * x_sc = (int *) (x_dm + txs.dm);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR5_K);
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
const int ky = QR5_K*txi;
const int ql = get_int_b4(bxi->qs, txi);
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
const int qh = get_int_b4(bxi->qh, txi % (QI5_K/4));
const int qh0 = ((qh >> (2 * (txi / (QI5_K/4)) + 0)) << 4) & 0x10101010;
const int qh1 = ((qh >> (2 * (txi / (QI5_K/4)) + 1)) << 4) & 0x10101010;
const int kq0 = ky - ky % (QI5_K/2) + txi % (QI5_K/4) + 0;
const int kq1 = ky - ky % (QI5_K/2) + txi % (QI5_K/4) + QI5_K/4;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq0] = ql0 | qh0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq1] = ql1 | qh1;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + kq0] = ql0 | qh0;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + kq1] = ql1 | qh1;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int rows_per_warp = warp_size / 2;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*rows_per_warp) {
#if defined(AMD_MFMA_AVAILABLE)
// Need if on AMD instead of % because warp_size == 64
// This causes double work and throughput loss (MI300X)
// H100 loses about 100 t/s with 'if' condition over '%'
int i = i0 + threadIdx.y*rows_per_warp + threadIdx.x/2;
if (i < mmq_y) {
#else
int i = (i0 + threadIdx.y*rows_per_warp + threadIdx.x/2) % mmq_y;
{
#endif // defined(AMD_MFMA_AVAILABLE)
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
const int * scales = (const int *) bxi->scales;
const int ksc = threadIdx.x % 2;
const int sc32 = unpack_scales_q45_K(scales, ksc + 0);
const int m32 = unpack_scales_q45_K(scales, ksc + 2);
const uint8_t * sc8 = (const uint8_t *) &sc32;
const uint8_t * m8 = (const uint8_t *) &m32;
const half2 dm = bxi->dm * make_half2(1.0f, -1.0f);
#pragma unroll
for (int l = 0; l < int(sizeof(int)); ++l) {
x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]);
}
}
}
#else
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*warp_size) {
int i = (i0 + threadIdx.y*warp_size + threadIdx.x) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
x_dm[i] = bxi->dm;
}
constexpr int rows_per_warp = warp_size / 4;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*rows_per_warp) {
int i = (i0 + threadIdx.y*rows_per_warp + threadIdx.x/(MMQ_TILE_NE_K/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
const int * scales = (const int *) bxi->scales;
const int ksc = threadIdx.x % (MMQ_TILE_NE_K/8);
const int scales8 = unpack_scales_q45_K(scales, ksc);
x_sc[i*(MMQ_TILE_NE_K/8) + i/8 + ksc] = scales8;
}
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q5_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y);
const int * x_qs = (const int *) x;
const half2 * x_dm = (const half2 *) x_qs + txs.qs;
const int * x_sc = (const int *) x_dm + txs.dm;
const int * y_qs = (const int *) y + 4;
const half2 * y_ds = (const half2 *) y;
// #pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QR5_K*VDR_Q5_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (MMQ_TILE_NE_K/8) + i/8 + k00/32]) + 2*(k01/16);
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q5_K_q8_1_impl_mmq(
&x_qs[i*(QR5_K*MMQ_TILE_NE_K + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8,
x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
int * x_sc = (int *) (x_df + MMQ_TILE_NE_K/QI6_K);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
int * x_sc = (int *) (x_df + txs.dm);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR6_K);
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride;
const int ql = get_int_b2(bxi->ql, txi);
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
const int qh = get_int_b2(bxi->qh, (QI6_K/4) * (txi / (QI6_K/2)) + txi % (QI6_K/4));
const int qh0 = ((qh >> ((txi & 0x08) >> 2)) << 4) & 0x30303030;
const int qh1 = (qh >> ((txi & 0x08) >> 2)) & 0x30303030;
const int kq0 = 2*txi - txi % (QI6_K/2) + 0;
const int kq1 = 2*txi - txi % (QI6_K/2) + QI6_K/2;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
x_qs[i*(2*MMQ_TILE_NE_K + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*warp_size) {
int i = (i0 + threadIdx.y*warp_size + threadIdx.x) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q6_K] = bxi->d;
#else
x_df[i*(MMQ_TILE_NE_K/QI6_K) + i/QI6_K] = bxi->d;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
constexpr int rows_per_warp = warp_size / 4;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps*rows_per_warp) {
int i = (i0 + threadIdx.y*rows_per_warp + threadIdx.x/(MMQ_TILE_NE_K/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + (threadIdx.x % (MMQ_TILE_NE_K/8)) / 4;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + threadIdx.x%4] = get_int_b2(bxi->scales, threadIdx.x % (MMQ_TILE_NE_K/8));
#else
x_sc[i*(MMQ_TILE_NE_K/8) + i/8 + threadIdx.x%(MMQ_TILE_NE_K/8)] = get_int_b2(bxi->scales, threadIdx.x%(QI6_K/8));
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q6_K_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + txs.qs;
const int * x_sc = (const int *) x_df + txs.dm;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
// #pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += QR6_K*VDR_Q6_K_Q8_1_MMQ) {
const int k0 = k00 + k01;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
const int8_t * sc = ((const int8_t *) &x_sc[i * (MMQ_TILE_NE_K/8) + i/8 + k0/16]);
sum[j0/nwarps*mmq_y/warp_size + i0/warp_size] += vec_dot_q6_K_q8_1_impl_mmq(
&x_qs[i*(QR6_K*MMQ_TILE_NE_K + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc,
x_df[i*(MMQ_TILE_NE_K/QI6_K) + i/QI6_K], &y_df[j*MMQ_TILE_Y_K + k01/QI8_1]);
}
}
}
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
#if defined(AMD_MFMA_AVAILABLE)
typedef tile<16, 8, int> tile_A;
typedef tile<16, 8, int> tile_B;
typedef tile<16, 16, int> tile_C;
typedef tile<64, 2, int> tile_load;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + MMQ_TILE_NE_K*2;
const int * x_sc = (const int *) x_df + MMQ_TILE_NE_K/QI6_K;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
const int i0 = (threadIdx.y / ntx) * rows_per_warp;
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += 4) {
const int k0 = k00 + k01;
tile_A A[ntx];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
load_generic(((tile_load *) A)[n], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q6_K + k0, MMQ_MMA_TILE_X_K_Q6_K);
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
tile_B B[1];
load_generic(((tile_load *) B)[0], y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K);
const int j = j0 + tile_C::get_j(0);
const float dB = y_df[j*MMQ_TILE_Y_K + k01/QI8_1] / 2;
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C C;
mma(C, A[n], B[0]);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
const int i = i0 + n*tile_C::I + tile_C::get_i(l);
const int8_t * sc = (const int8_t *) (x_sc + i*MMQ_MMA_TILE_X_K_Q6_K + k00/16);
sum[(j0/tile_C::J + n)*tile_C::ne + l] += C.x[l] * sc[k01/4] * x_df[i*MMQ_MMA_TILE_X_K_Q6_K] * dB;
}
}
}
}
#elif defined(NEW_MMA_AVAILABLE)
typedef tile<16, 4, int> tile_A;
typedef tile< 8, 4, int> tile_B;
typedef tile<16, 8, int> tile_C;
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int rows_per_warp = 2 * granularity;
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
y += (threadIdx.y % ntx) * (tile_C::J*MMQ_TILE_Y_K);
const int * x_qs = (const int *) x;
const float * x_df = (const float *) x_qs + MMQ_TILE_NE_K*2;
const int * x_sc = (const int *) x_df + MMQ_TILE_NE_K/QI6_K;
const int * y_qs = (const int *) y + 4;
const float * y_df = (const float *) y;
const int i0 = (threadIdx.y / ntx) * (ntx*tile_A::I);
tile_A A[ntx][8];
int scA[ntx][tile_C::ne/2][8];
float dA[ntx][tile_C::ne/2];
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += 8) {
const int k0 = k00 + k01;
load_ldmatrix(A[n][k01/4 + 0], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + 0), MMQ_MMA_TILE_X_K_Q6_K);
load_ldmatrix(A[n][k01/4 + 1], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + tile_A::J), MMQ_MMA_TILE_X_K_Q6_K);
}
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += 16) {
const int k0 = k00 + k01;
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int i = i0 + n*tile_C::I + tile_C::get_i(2*l);
const int sc_packed = x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + k0/16];
const int8_t * sc = (const int8_t *) &sc_packed;
#pragma unroll
for (int ksc = 0; ksc < sizeof(int); ++ksc) {
scA[n][l][k01/4 + ksc] = sc[ksc];
}
}
}
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int i = i0 + n*tile_C::I + tile_C::get_i(2*l);
dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q6_K];
}
}
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
float tmp[ntx][tile_C::ne] = {{0.0f}};
#pragma unroll
for (int k01 = 0; k01 < MMQ_TILE_NE_K; k01 += 8) {
tile_B B[2];
float dB[tile_C::ne/2];
// Here load_generic is faster than load_ldmatrix.
load_generic(B[0], y_qs + j0*MMQ_TILE_Y_K + 0 + k01, MMQ_TILE_Y_K);
load_generic(B[1], y_qs + j0*MMQ_TILE_Y_K + tile_B::J + k01, MMQ_TILE_Y_K);
#pragma unroll
for (int l = 0; l < tile_C::ne/2; ++l) {
const int j = j0 + tile_C::get_j(l);
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
tile_C C[2];
mma(C[0], A[n][k01/4 + 0], B[0]);
mma(C[1], A[n][k01/4 + 1], B[1]);
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
tmp[n][l] += (C[0].x[l]*scA[n][l/2][k01/4 + 0] + C[1].x[l]*scA[n][l/2][k01/4 + 1])*dB[l%2];
}
}
}
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
sum[(j0/tile_C::J + n)*tile_C::ne + l] += tmp[n][l]*dA[n][l/2];
}
}
}
#else
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); GGML_UNUSED(k00);
NO_DEVICE_CODE;
#endif // AMD_MFMA_AVAILABLE
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_iq4_nl(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_NL, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR4_NL);
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
const int kbx = txi / QI4_NL;
const int kqsx = txi % QI4_NL;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbx;
const int aux_q4 = get_int_b2(bxi->qs, kqsx);
const int2 v = get_int_from_table_16(aux_q4);
const int k0 = kbx * (2 * QI4_NL) + kqsx;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + QI4_NL] = v.y;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0 + 0] = v.x;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0 + QI4_NL] = v.y;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
constexpr int blocks_per_tile_x_row = MMQ_TILE_NE_K / QI4_NL;
constexpr int rows_per_warp = warp_size / blocks_per_tile_x_row;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * rows_per_warp) {
int i = i0 + threadIdx.y * rows_per_warp + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbxd;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = __half2float(bxi->d);
#else
x_df[i*(MMQ_TILE_NE_K/QI4_NL) + i/QI4_NL + kbxd] = __half2float(bxi->d);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_xxs(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_XXS, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = (MMQ_ITER_K / (4 * QR2_XXS)) / 2;
constexpr int nrows = warp_size / threads_per_row;
const int kqsx = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * nrows) {
int i = i0 + threadIdx.y*nrows + threadIdx.x/threads_per_row;
if (need_check) {
i = min(i, i_max);
}
const block_iq2_xxs * bxi = (const block_iq2_xxs *) x + kbx0 + i*stride;
const int q2 = get_int_b2(bxi->qs, 2*kqsx+0);
const uint8_t * aux8 = (const uint8_t *) &q2;
const uint32_t aux32 = get_int_b2(bxi->qs, 2*kqsx+1);
#pragma unroll
for (int l = 0; l < QR2_XXS; ++l) {
const int * grid_pos = (const int *) (iq2xxs_grid + aux8[l]);
const int signs_packed = ksigns_iq2xs[(aux32 >> (7*l)) & 0x7F];
const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000);
const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0);
const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000);
const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid1;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l + 0)] = grid0;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l + 1)] = grid1;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
const int ls = aux32 >> 28;
const float d = bxi->d;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/4;
#else
x_df[i*(MMQ_TILE_NE_K/4) + i/4 + kqsx] = (ls*d + d/2)/4;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_xs(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16;
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = (MMQ_ITER_K / (4 * QR2_XS)) / 2;
constexpr int nrows = warp_size / threads_per_row;
const int kqsx = threadIdx.x % threads_per_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * nrows) {
int i = i0 + threadIdx.y*nrows + threadIdx.x/threads_per_row;
if (need_check) {
i = min(i, i_max);
}
const block_iq2_xs * bxi = (const block_iq2_xs *) x + kbx0 + i*stride;
const int2 q2_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1));
const uint16_t * q2 = (const uint16_t *) &q2_packed;
#pragma unroll
for (int l = 0; l < QR2_XS; ++l) {
const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l] & 0x000001FF));
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]);
const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l + 1)] = grid_h;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
const int ls = bxi->scales[kqsx];
const float d = bxi->d;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
#else
x_df[i*(2*MMQ_TILE_NE_K*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
x_df[i*(2*MMQ_TILE_NE_K*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_s(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_S, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = (MMQ_ITER_K / (4 * QR2_S)) / 2;
constexpr int nrows = warp_size / threads_per_row;
const int kqsx = threadIdx.x % threads_per_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * nrows) {
int i = i0 + threadIdx.y*nrows + threadIdx.x/threads_per_row;
if (need_check) {
i = min(i, i_max);
}
const block_iq2_s * bxi = (const block_iq2_s *) x + kbx0 + i*stride;
const int qs_packed = get_int_b2(bxi->qs, kqsx);
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bxi->qh[kqsx];
const int signs_packed_32 = get_int_b2(bxi->qs, QK_K/32 + kqsx);
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
#pragma unroll
for (int l = 0; l < QR2_S; ++l) {
const int * grid_pos = (const int *)(iq2s_grid + (qs[l] | ((qh << (8-2*l)) & 0x300)));
const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000);
const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000);
const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0);
const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l + 1)] = grid_h;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
const int ls = bxi->scales[kqsx];
const float d = bxi->d;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
#else
x_df[i*(2*MMQ_TILE_NE_K*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
x_df[i*(2*MMQ_TILE_NE_K*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_iq3_xxs(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_XXS, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = (MMQ_ITER_K / (4 * QR3_XXS)) / 2;
constexpr int nrows = warp_size / threads_per_row;
const int kqsx = threadIdx.x % threads_per_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * nrows) {
int i = i0 + threadIdx.y*nrows + threadIdx.x/threads_per_row;
if (need_check) {
i = min(i, i_max);
}
const block_iq3_xxs * bxi = (const block_iq3_xxs *) x + kbx0 + i*stride;
const int2 q3_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1));
const uint8_t * q3 = (const uint8_t *) &q3_packed;
const uint32_t aux32 = get_int_b2(bxi->qs, QK_K/16 + kqsx);
#pragma unroll
for (int l = 0; l < QR3_XXS; ++l) {
const int2 grid_pos = make_int2(iq3xxs_grid[q3[2*l+0]], iq3xxs_grid[q3[2*l+1]]);
const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l)) & 0x7F));
const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]);
const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid_h;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l + 0)] = grid_l;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l + 1)] = grid_h;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
const int ls = aux32 >> 28;
const float d = bxi->d;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/2;
#else
x_df[i*(MMQ_TILE_NE_K/4) + i/4 + kqsx] = (ls*d + d/2)/2;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_iq3_s(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = (MMQ_ITER_K / (4 * QR3_S)) / 2;
constexpr int nrows = warp_size / threads_per_row;
const int kqsx = threadIdx.x % threads_per_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * nrows) {
int i = i0 + threadIdx.y*nrows + threadIdx.x/threads_per_row;
if (need_check) {
i = min(i, i_max);
}
const block_iq3_s * bxi = (const block_iq3_s *) x + kbx0 + i*stride;
const int2 qs_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1));
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bxi->qh[kqsx];
const int signs_packed_32 = get_int_b2(bxi->signs, kqsx);
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
#pragma unroll
for (int l = 0; l < QR3_S; ++l) {
const int2 grid_pos = make_int2(
iq3s_grid[qs[2*l+0] | ((qh << (8 - 2*l)) & 0x100)],
iq3s_grid[qs[2*l+1] | ((qh << (7 - 2*l)) & 0x100)]);
const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000);
const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000);
const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0);
const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+0)] = grid_l;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+1)] = grid_h;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l+0)] = grid_l;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l+1)] = grid_h;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
const int ls = 1 + 2*((bxi->scales[kqsx/2] >> (((2*kqsx) << 1) & 0x04)) & 0x0F);
const float d = bxi->d;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = ls*d;
#else
x_df[i*(MMQ_TILE_NE_K/4) + i/4 + kqsx] = ls*d;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_iq1_s(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
half2 * x_ds = (half2 *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y);
int * x_qs = (int *) x_tile;
half2 * x_ds = (half2 *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR1_S);
constexpr int nrows = warp_size / threads_per_row;
const int kqsx = threadIdx.x % threads_per_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * nrows) {
int i = i0 + threadIdx.y*nrows + threadIdx.x/threads_per_row;
if (need_check) {
i = min(i, i_max);
}
const block_iq1_s * bxi = (const block_iq1_s *) x + kbx0 + i*stride;
const int qs_packed = get_int_b2(bxi->qs, kqsx);
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bxi->qh[kqsx];
#pragma unroll
for (int l = 0; l < QR1_S/2; ++l) {
const int grid = iq1s_grid_gpu[qs[l] | (((qh >> (3*l)) & 0x07) << 8)];
const int grid0 = (grid >> 0) & 0x0F0F0F0F;
const int grid1 = (grid >> 4) & 0x0F0F0F0F;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+0)] = grid0;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+1)] = grid1;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l+0)] = grid0;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + 8*kqsx + (2*l+1)] = grid1;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
const float d1q = __half2float(bxi->d) * (((qh >> 11) & 0x0E) + 1);
const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_ds[i*MMQ_MMA_TILE_X_K_Q8_1 + kqsx] = make_half2(d1q, d1q*delta);
#else
x_ds[i*(MMQ_TILE_NE_K/4) + i/4 + kqsx] = make_half2(d1q, d1q*delta);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_iq4_xs(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_XS, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR4_XS);
constexpr int nrows = warp_size / threads_per_row;
const int kqsx = threadIdx.x % threads_per_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride;
const int aux_q4 = get_int_b4(bxi->qs, kqsx);
const int2 v = get_int_from_table_16(aux_q4);
const int k0 = 8 * (kqsx / 4) + kqsx % 4;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 4] = v.y;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0 + 0] = v.x;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0 + 4] = v.y;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
constexpr int rows_per_warp = warp_size / 8;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * rows_per_warp) {
int i = i0 + threadIdx.y * rows_per_warp + threadIdx.x / (MMQ_TILE_NE_K/4);
if (need_check) {
i = min(i, i_max);
}
const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride;
const float d = __half2float(bxi->d);
const int ls = ((bxi->scales_l[(threadIdx.x % 8)/2] >> (4*(threadIdx.x % 2))) & 0x0F)
| (((bxi->scales_h >> (2*(threadIdx.x % 8))) & 0x03) << 4);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + threadIdx.x % 8] = d * (ls - 32);
#else
x_df[i*(MMQ_TILE_NE_K/4) + i/4 + threadIdx.x % 8] = d * (ls - 32);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template<int mmq_x, int mmq_y, bool need_check>
static __device__ __forceinline__ void mmq_write_back_dp4a(
const float * __restrict__ sum, const int32_t * __restrict__ ids_dst, float * __restrict__ dst,
const int stride, const int i_max, const int j_max) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j > j_max) {
return;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (need_check && i > i_max) {
continue;
}
dst[ids_dst[j]*stride + i] = sum[(j0/nwarps) * (mmq_y/warp_size) + i0/warp_size];
}
}
}
template<ggml_type type, int mmq_x, int mmq_y, bool need_check>
static __device__ __forceinline__ void mmq_write_back_mma(
const float * __restrict__ sum, const int * __restrict__ ids_dst, float * __restrict__ dst,
const int stride, const int i_max, const int j_max) {
constexpr int granularity = mmq_get_granularity_device(mmq_x);
constexpr int nwarps = mmq_get_nwarps_device();
#if defined(AMD_MFMA_AVAILABLE)
constexpr int tileC_IJ = mmq_get_granularity_device(0);
typedef tile<tileC_IJ, tileC_IJ, int> tile_C;
constexpr int rows_per_warp = granularity;
#else
typedef tile<16, 8, int> tile_C;
constexpr int rows_per_warp = 2 * granularity;
#endif
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
const int i0 = (threadIdx.y / ntx) * (ntx*tile_C::I);
#if defined(NEW_MMA_AVAILABLE) || defined(AMD_MFMA_AVAILABLE)
static_assert(nwarps*tile_C::I == mmq_y, "nwarps*tile_C::I != mmq_y");
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
#pragma unroll
for (int n = 0; n < ntx; ++n) {
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
const int j = j0 + (threadIdx.y % ntx) * tile_C::J + tile_C::get_j(l);
if (j > j_max) {
continue;
}
const int i = i0 + n*tile_C::I + tile_C::get_i(l);
if (need_check && i > i_max) {
continue;
}
dst[ids_dst[j]*stride + i] = sum[(j0/tile_C::J + n)*tile_C::ne + l];
}
}
}
}
// -------------------------------------------------------------------------------------------------------------------------------------
template <int mmq_x, int mmq_y, bool need_check, ggml_type type>
struct mmq_type_traits;
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q4_0> {
static constexpr int vdr = VDR_Q4_0_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_0<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, MMQ_Q8_1_DS_LAYOUT_DS4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q4_1> {
static constexpr int vdr = VDR_Q4_1_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_1<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_1_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q5_0> {
static constexpr int vdr = VDR_Q5_0_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_0<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q5_1> {
static constexpr int vdr = VDR_Q5_1_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_1<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q8_0> {
static constexpr int vdr = VDR_Q8_0_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q8_0<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q2_K> {
static constexpr int vdr = VDR_Q2_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q2_K<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q2_K_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q2_K_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q3_K> {
static constexpr int vdr = VDR_Q3_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q3_K<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q3_K_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q4_K> {
static constexpr int vdr = VDR_Q4_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_K<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_K_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q5_K> {
static constexpr int vdr = VDR_Q5_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_K<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q5_K_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q6_K> {
static constexpr int vdr = VDR_Q6_K_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_q6_K<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q6_K_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q6_K_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_IQ2_XXS> {
static constexpr int vdr = VDR_IQ2_XXS_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xxs<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_IQ2_XS> {
static constexpr int vdr = VDR_IQ2_XS_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xs<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_IQ2_S> {
static constexpr int vdr = VDR_IQ2_S_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_s<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_IQ3_XXS> {
static constexpr int vdr = VDR_IQ3_XXS_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_xxs<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_IQ3_S> {
static constexpr int vdr = VDR_IQ3_S_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_s<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_IQ1_S> {
static constexpr int vdr = VDR_IQ1_S_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq1_s<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_IQ4_NL> {
static constexpr int vdr = VDR_IQ4_NL_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_nl<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_IQ4_XS> {
static constexpr int vdr = VDR_IQ4_XS_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_xs<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <ggml_type type, int mmq_x, bool need_check, bool fixup>
static __device__ __forceinline__ void mul_mat_q_process_tile(
const char * __restrict__ x, const int offset_x, const int * __restrict__ y,
const int * __restrict__ ids_dst, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int stride_row_x, const int ncols_y, const int stride_col_dst,
const int tile_x_max_i, const int tile_y_max_j, const int kb0_start, const int kb0_stop) {
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int mmq_y = get_mmq_y_device();
constexpr load_tiles_mmq_t load_tiles = mmq_type_traits<mmq_x, mmq_y, need_check, type>::load_tiles;
extern __shared__ int data_mul_mat_q[];
int * tile_y = data_mul_mat_q + mmq_x;
int * tile_x = tile_y + GGML_PAD(mmq_x*MMQ_TILE_Y_K, nwarps*warp_size);
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr vec_dot_mmq_t vec_dot = mmq_type_traits<mmq_x, mmq_y, need_check, type>::vec_dot_mma;
constexpr mmq_write_back_t write_back = mmq_write_back_mma<type, mmq_x, mmq_y, need_check>;
#else
constexpr vec_dot_mmq_t vec_dot = mmq_type_traits<mmq_x, mmq_y, need_check, type>::vec_dot_dp4a;
constexpr mmq_write_back_t write_back = mmq_write_back_dp4a<mmq_x, mmq_y, need_check>;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
float sum[mmq_x*mmq_y / (nwarps*warp_size)] = {0.0f};
for (int kb0 = kb0_start; kb0 < kb0_stop; kb0 += blocks_per_iter) {
load_tiles(x, tile_x, offset_x + kb0, tile_x_max_i, stride_row_x);
{
const int * by0 = y + ncols_y*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 0*sizeof(block_q8_1_mmq)/sizeof(int));
#pragma unroll
for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*warp_size) {
int l = l0 + threadIdx.y*warp_size + threadIdx.x;
tile_y[l] = by0[l];
}
}
__syncthreads();
vec_dot(tile_x, tile_y, sum, 0);
__syncthreads();
{
const int * by0 = y + ncols_y*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 1*sizeof(block_q8_1_mmq)/sizeof(int));
#pragma unroll
for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*warp_size) {
int l = l0 + threadIdx.y*warp_size + threadIdx.x;
tile_y[l] = by0[l];
}
}
__syncthreads();
vec_dot(tile_x, tile_y, sum, MMQ_TILE_NE_K);
__syncthreads();
}
if (fixup) {
write_back(sum, ids_dst, tmp_fixup + blockIdx.x*(mmq_x*mmq_y), mmq_y, mmq_y, mmq_x);
} else {
write_back(sum, ids_dst, dst, stride_col_dst, tile_x_max_i, tile_y_max_j);
}
}
// The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
template <ggml_type type, int mmq_x, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(ggml_cuda_get_physical_warp_size()*mmq_get_nwarps_device(), 2)
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#else
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
__launch_bounds__(ggml_cuda_get_physical_warp_size()*mmq_get_nwarps_device(), 1)
#else
__launch_bounds__(ggml_cuda_get_physical_warp_size()*mmq_get_nwarps_device(), 2)
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
static __global__ void mul_mat_q(
const char * __restrict__ x, const int * __restrict__ y, const int32_t * __restrict__ ids_dst,
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_row_x, const int ncols_y, const int stride_col_dst,
const int channel_ratio, const int nchannels_y, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
// Skip unused template specializations for faster compilation:
if (mmq_x > get_mmq_x_max_device() || mmq_x % mmq_get_granularity_device(mmq_x) != 0) {
NO_DEVICE_CODE;
return;
}
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int mmq_y = get_mmq_y_device();
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; // Number of tiles x
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
// Initialize the ids for writing back data with just the index.
// For regular matrix multiplications this is never changed.
// For MoE the correct indices are loaded from ids_dst.
extern __shared__ int ids_dst_shared[]; // Stored at beginning of shared memory.
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*warp_size) {
const int j = j0 + threadIdx.y*warp_size + threadIdx.x;
if (j0 + nwarps*warp_size > mmq_x && j >= mmq_x) {
break;
}
ids_dst_shared[j] = j;
}
__syncthreads();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
{
const int wt = blockIdx.z / nchannels_y;
const int zt = blockIdx.z - wt*nchannels_y;
const int jt = blockIdx.y;
const int it = blockIdx.x;
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
if (ids_dst) {
col_low = expert_bounds[zt + 0];
col_high = expert_bounds[zt + 1];
col_diff = col_high - col_low;
offset_y = 0;
offset_dst = 0;
if (jt*mmq_x >= col_diff) {
return;
}
// __syncthreads(); // There is no previous tile that could cause a race condition.
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*warp_size) {
const int j = j0 + threadIdx.y*warp_size + threadIdx.x;
if (j0 + nwarps*warp_size > mmq_x && j >= mmq_x) {
break;
}
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
offset_dst += it*mmq_y;
const int tile_x_max_i = nrows_x - it*mmq_y - 1;
const int tile_y_max_j = col_diff - jt*mmq_x - 1;
const int offset_x = (wt/sample_ratio)*stride_sample_x + (zt/channel_ratio)*stride_channel_x + it*mmq_y*stride_row_x;
constexpr bool fixup = false;
mul_mat_q_process_tile<type, mmq_x, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, 0, ncols_x/qk);
return;
}
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
const int64_t blocks_per_ne00 = ncols_x / qk;
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
// kbc == k block continuous, current index in continuous ijk space.
int64_t kbc = (int64_t) blockIdx.x *nsamples_y*nchannels_y*ntx*nty*blocks_per_ne00 / gridDim.x;
int64_t kbc_stop = (int64_t)(blockIdx.x + 1)*nsamples_y*nchannels_y*ntx*nty*blocks_per_ne00 / gridDim.x;
kbc -= (kbc % blocks_per_ne00) % blocks_per_iter;
kbc_stop -= (kbc_stop % blocks_per_ne00) % blocks_per_iter;
// kb0 == k index when doing the matrix multiplication for an output tile.
int kb0_start = kbc % blocks_per_ne00;
int kb0_stop = min(blocks_per_ne00, kb0_start + kbc_stop - kbc);
while (kbc < kbc_stop && kb0_stop == blocks_per_ne00) {
int tmp = kbc;
const int it = tmp / (nsamples_y*nchannels_y*ntx*blocks_per_ne00);
tmp -= it * (nsamples_y*nchannels_y*ntx*blocks_per_ne00);
const int wt = tmp / (nchannels_y*ntx*blocks_per_ne00);
tmp -= wt * (nchannels_y*ntx*blocks_per_ne00);
const int zt = tmp / (ntx*blocks_per_ne00);
tmp -= zt * (ntx*blocks_per_ne00);
const int jt = tmp / blocks_per_ne00;
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
if (ids_dst) {
col_low = expert_bounds[zt + 0];
col_high = expert_bounds[zt + 1];
col_diff = col_high - col_low;
offset_y = 0;
offset_dst = 0;
if (jt*mmq_x >= col_diff) {
kbc += blocks_per_ne00;
kbc -= kbc % blocks_per_ne00;
kb0_start = 0;
kb0_stop = min(blocks_per_ne00, kbc_stop - kbc);
continue;
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*warp_size) {
const int j = j0 + threadIdx.y*warp_size + threadIdx.x;
if (j0 + nwarps*warp_size > mmq_x && j >= mmq_x) {
break;
}
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
offset_dst += it*mmq_y;
const int tile_x_max_i = nrows_x - it*mmq_y - 1;
const int tile_y_max_j = col_diff - jt*mmq_x - 1;
const int offset_x = (wt/sample_ratio)*stride_sample_x + (zt/channel_ratio)*stride_channel_x + it*mmq_y*stride_row_x;
constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
mul_mat_q_process_tile<type, mmq_x, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
kbc += blocks_per_ne00;
kbc -= kbc % blocks_per_ne00;
kb0_start = 0;
kb0_stop = min(blocks_per_ne00, kbc_stop - kbc);
}
if (kbc >= kbc_stop) {
return;
}
int tmp = kbc;
const int it = tmp / (nsamples_y*nchannels_y*ntx*blocks_per_ne00);
tmp -= it * (nsamples_y*nchannels_y*ntx*blocks_per_ne00);
const int wt = tmp / (nchannels_y*ntx*blocks_per_ne00);
tmp -= wt * (nchannels_y*ntx*blocks_per_ne00);
const int zt = tmp / (ntx*blocks_per_ne00);
tmp -= zt * (ntx*blocks_per_ne00);
const int jt = tmp / blocks_per_ne00;
// Defaults for regular matrix multiplication:
int col_low = 0;
int col_high = ncols_dst;
int col_diff = ncols_dst;
int offset_y = wt*stride_sample_y + zt*stride_channel_y;
int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst;
if (ids_dst) {
col_low = expert_bounds[zt + 0];
col_high = expert_bounds[zt + 1];
col_diff = col_high - col_low;
offset_y = 0;
offset_dst = 0;
if (jt*mmq_x >= col_diff) {
return;
}
// The memory layout for the fixup buffer is always contiguous, therefore reset ids:
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps*warp_size) {
const int j = j0 + threadIdx.y*warp_size + threadIdx.x;
if (j0 + nwarps*warp_size > mmq_x && j >= mmq_x) {
break;
}
ids_dst_shared[j] = j;
}
__syncthreads();
}
offset_y += (col_low + jt*mmq_x)*(sizeof(block_q8_1_mmq)/sizeof(int));
offset_dst += it*mmq_y;
const int tile_x_max_i = nrows_x - it*mmq_y - 1;
const int tile_y_max_j = col_diff - jt*mmq_x - 1;
const int offset_x = (wt/sample_ratio)*stride_sample_x + (zt/channel_ratio)*stride_channel_x + it*mmq_y*stride_row_x;
constexpr bool fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
mul_mat_q_process_tile<type, mmq_x, need_check, fixup>
(x, offset_x, y + offset_y, ids_dst_shared, dst + offset_dst, tmp_fixup, stride_row_x, ncols_y, stride_col_dst,
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
}
template <ggml_type type, int mmq_x, bool need_check>
static __global__ void mul_mat_q_stream_k_fixup(
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst) {
constexpr int mmq_y = get_mmq_y_device();
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
const int64_t blocks_per_ne00 = ncols_x / qk;
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
float sum[mmq_x*mmq_y / (nwarps*warp_size)] = {0.0f};
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x;
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
const int bidx0 = blockIdx.x;
// kbc == k block continuous, current index in continuous ijk space.
int64_t kbc0 = (int64_t) bidx0 *nsamples_y*nchannels_y*ntx*nty*blocks_per_ne00 / gridDim.x;
int64_t kbc0_stop = (int64_t)(bidx0 + 1)*nsamples_y*nchannels_y*ntx*nty*blocks_per_ne00 / gridDim.x;
kbc0 -= (kbc0 % blocks_per_ne00) % blocks_per_iter;
kbc0_stop -= (kbc0_stop % blocks_per_ne00) % blocks_per_iter;
const bool did_not_have_any_data = kbc0 == kbc0_stop;
const bool wrote_beginning_of_tile = kbc0 % blocks_per_ne00 == 0;
const bool did_not_write_last = kbc0/blocks_per_ne00 == kbc0_stop/blocks_per_ne00 && kbc0_stop % blocks_per_ne00 != 0;
if (did_not_have_any_data || wrote_beginning_of_tile || did_not_write_last) {
return;
}
bool any_fixup = false;
// Iterate over previous blocks and sum up partial sums written to fixup buffer.
// All CUDA blocks that get here must have a previous block that needs a fixup.
int64_t bidx = bidx0 - 1;
int64_t kbc_stop = kbc0;
while(true) {
int64_t kbc = bidx*nsamples_y*nchannels_y*ntx*nty*blocks_per_ne00 / gridDim.x;
kbc -= (kbc % blocks_per_ne00) % blocks_per_iter;
if (kbc == kbc_stop) { // Did not have any data.
bidx--;
kbc_stop = kbc;
continue;
}
any_fixup = true;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
sum[(j0/nwarps) * (mmq_y/warp_size) + i0/warp_size] += tmp_last_tile[bidx*(mmq_x*mmq_y) + j*mmq_y + i];
}
}
// If this block started in a previous tile we are done and don't need to combine additional partial results.
if (kbc % blocks_per_ne00 == 0 || kbc/blocks_per_ne00 < kbc0/blocks_per_ne00) {
break;
}
bidx--;
kbc_stop = kbc;
}
if (!any_fixup) {
return;
}
int tmp = kbc0;
const int it = tmp / (nsamples_y*nchannels_y*ntx*blocks_per_ne00);
tmp -= it * (nsamples_y*nchannels_y*ntx*blocks_per_ne00);
const int wt = tmp / (nchannels_y*ntx*blocks_per_ne00);
tmp -= wt * (nchannels_y*ntx*blocks_per_ne00);
const int zt = tmp / (ntx*blocks_per_ne00);
tmp -= zt * (ntx*blocks_per_ne00);
const int jt = tmp / blocks_per_ne00;
if (!ids_dst) {
const int offset_dst = wt*stride_sample_dst + zt*stride_channel_dst + jt*mmq_x*stride_col_dst + it*mmq_y;
dst += offset_dst;
const int i_max = nrows_x - it*mmq_y - 1;
const int j_max = ncols_dst - jt*mmq_x - 1;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j > j_max) {
return;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (need_check && i > i_max) {
continue;
}
dst[j*stride_col_dst + i] += sum[(j0/nwarps) * (mmq_y/warp_size) + i0/warp_size];
}
}
return;
}
__shared__ int ids_dst_shared[mmq_x];
const int col_low = expert_bounds[zt + 0];
const int col_high = expert_bounds[zt + 1];
const int col_diff = col_high - col_low;
for (int j = threadIdx.y*warp_size + threadIdx.x; j < mmq_x; j += nwarps*warp_size) {
ids_dst_shared[j] = ids_dst[col_low + j];
}
__syncthreads();
const int offset_dst = it*mmq_y;
dst += offset_dst;
const int i_max = nrows_x - it*mmq_y - 1;
const int j_max = col_diff - jt*mmq_x - 1;
#pragma unroll
for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j > j_max) {
return;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (need_check && i > i_max) {
continue;
}
dst[ids_dst_shared[j]*stride_col_dst + i] += sum[(j0/nwarps) * (mmq_y/warp_size) + i0/warp_size];
}
}
}
struct mmq_args {
const char * x; ggml_type type_x; const int * y; const int32_t * ids_dst; const int32_t * expert_bounds; float * dst;
int64_t ncols_x; int64_t nrows_x; int64_t ncols_dst; int64_t stride_row_x; int64_t ncols_y; int64_t nrows_dst;
int64_t nchannels_x; int64_t nchannels_y; int64_t stride_channel_x; int64_t stride_channel_y; int64_t stride_channel_dst;
int64_t nsamples_x; int64_t nsamples_y; int64_t stride_sample_x; int64_t stride_sample_y; int64_t stride_sample_dst;
bool use_stream_k;
};
template<ggml_type type>
static size_t mmq_get_nbytes_shared(const int mmq_x, const int mmq_y, const int cc, const int warp_size, const int nwarps) {
const tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(type, mmq_y);
const int mmq_tile_x_k = mmq_get_mma_tile_x_k(type);
const size_t nbs_ids = mmq_x*sizeof(int);
const size_t nbs_x = (new_mma_available(cc) || amd_mfma_available(cc)) ? mmq_y*mmq_tile_x_k*sizeof(int) : txs.qs*sizeof(int) + txs.dm*sizeof(half2) + txs.sc*sizeof(int);
const size_t nbs_y = mmq_x*sizeof(block_q8_1_mmq);
return nbs_ids + nbs_x + GGML_PAD(nbs_y, nwarps*warp_size*sizeof(int));
}
template <ggml_type type, int mmq_x>
static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
const int nsm = ggml_cuda_info().devices[id].nsm;
const int warp_size = ggml_cuda_info().devices[id].warp_size;
const int nwarps = mmq_get_nwarps_host(cc);
const int mmq_y = get_mmq_y_host(cc);
const dim3 block_dims(warp_size, nwarps, 1);
const int nbytes_shared = mmq_get_nbytes_shared<type>(mmq_x, mmq_y, cc, warp_size, nwarps);
CUDA_SET_SHARED_MEMORY_LIMIT((mul_mat_q<type, mmq_x, false>), nbytes_shared);
CUDA_SET_SHARED_MEMORY_LIMIT((mul_mat_q<type, mmq_x, true>), nbytes_shared);
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x;
const int ntzw = args.nchannels_y * args.nsamples_y;
const dim3 block_nums_xy_tiling(nty, ntx, ntzw);
GGML_ASSERT(args.nchannels_y % args.nchannels_x == 0);
GGML_ASSERT(args.nsamples_y % args.nsamples_x == 0);
const int channel_ratio = args.nchannels_y / args.nchannels_x;
const int sample_ratio = args.nsamples_y / args.nsamples_x;
if (!args.use_stream_k) {
if (args.nrows_x % mmq_y == 0) {
constexpr bool need_check = false;
mul_mat_q<type, mmq_x, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
}
return;
}
const dim3 block_nums_stream_k(nsm, 1, 1);
const bool fixup_needed = ntx*nty*ntzw % nsm != 0;
ggml_cuda_pool & pool = ctx.pool(id);
ggml_cuda_pool_alloc<float> tmp_fixup(pool);
if (fixup_needed) {
tmp_fixup.alloc(block_nums_stream_k.x * mmq_x*mmq_y);
}
if (args.nrows_x % mmq_y == 0) {
constexpr bool need_check = false;
mul_mat_q<type, mmq_x, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
if (!fixup_needed) {
return;
}
mul_mat_q_stream_k_fixup<type, mmq_x, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
} else {
constexpr bool need_check = true;
mul_mat_q<type, mmq_x, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
if (!fixup_needed) {
return;
}
mul_mat_q_stream_k_fixup<type, mmq_x, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
}
}
template <ggml_type type>
void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
const int warp_size = ggml_cuda_info().devices[id].warp_size;
const int nwarps = mmq_get_nwarps_host(cc);
const int mmq_x_max = get_mmq_x_max_host(cc);
const int mmq_y = get_mmq_y_host(cc);
int mmq_x_best = 0;
int ntiles_x_best = INT_MAX;
for (int mmq_x = 8; mmq_x <= mmq_x_max && ntiles_x_best > 1; mmq_x += 8) {
const int granularity = mmq_get_granularity_host(mmq_x, cc);
if (mmq_x % granularity != 0 || mmq_get_nbytes_shared<type>(mmq_x, mmq_y, cc, warp_size, nwarps) > smpbo) {
continue;
}
const int ntiles_x = (args.ncols_y + mmq_x - 1) / mmq_x;
if (ntiles_x < ntiles_x_best) {
mmq_x_best = mmq_x;
ntiles_x_best = ntiles_x;
}
}
switch (mmq_x_best) {
case 8:
launch_mul_mat_q<type, 8>(ctx, args, stream);
break;
case 16:
launch_mul_mat_q<type, 16>(ctx, args, stream);
break;
case 24:
launch_mul_mat_q<type, 24>(ctx, args, stream);
break;
case 32:
launch_mul_mat_q<type, 32>(ctx, args, stream);
break;
case 40:
launch_mul_mat_q<type, 40>(ctx, args, stream);
break;
case 48:
launch_mul_mat_q<type, 48>(ctx, args, stream);
break;
case 56:
launch_mul_mat_q<type, 56>(ctx, args, stream);
break;
case 64:
launch_mul_mat_q<type, 64>(ctx, args, stream);
break;
case 72:
launch_mul_mat_q<type, 72>(ctx, args, stream);
break;
case 80:
launch_mul_mat_q<type, 80>(ctx, args, stream);
break;
case 88:
launch_mul_mat_q<type, 88>(ctx, args, stream);
break;
case 96:
launch_mul_mat_q<type, 96>(ctx, args, stream);
break;
case 104:
launch_mul_mat_q<type, 104>(ctx, args, stream);
break;
case 112:
launch_mul_mat_q<type, 112>(ctx, args, stream);
break;
case 120:
launch_mul_mat_q<type, 120>(ctx, args, stream);
break;
case 128:
launch_mul_mat_q<type, 128>(ctx, args, stream);
break;
default:
fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best);
GGML_ABORT("fatal error");
break;
}
}
#define DECL_MMQ_CASE(type) \
template void mul_mat_q_case<type>(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) \
extern DECL_MMQ_CASE(GGML_TYPE_Q4_0);
extern DECL_MMQ_CASE(GGML_TYPE_Q4_1);
extern DECL_MMQ_CASE(GGML_TYPE_Q5_0);
extern DECL_MMQ_CASE(GGML_TYPE_Q5_1);
extern DECL_MMQ_CASE(GGML_TYPE_Q8_0);
extern DECL_MMQ_CASE(GGML_TYPE_Q2_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q3_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q4_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q5_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q6_K);
extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XXS);
extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XS);
extern DECL_MMQ_CASE(GGML_TYPE_IQ2_S);
extern DECL_MMQ_CASE(GGML_TYPE_IQ3_XXS);
extern DECL_MMQ_CASE(GGML_TYPE_IQ3_S);
extern DECL_MMQ_CASE(GGML_TYPE_IQ1_S);
extern DECL_MMQ_CASE(GGML_TYPE_IQ4_NL);
extern DECL_MMQ_CASE(GGML_TYPE_IQ4_XS);
// -------------------------------------------------------------------------------------------------------------------------
void ggml_cuda_mul_mat_q(
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
void ggml_cuda_op_mul_mat_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream);
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11);