mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 527b6fba1d
			
		
	
	527b6fba1d
	
	
	
		
			
			* llama : make model stateless and context stateful * llama : minor cleanup * llama : update internal API declaration * Apply suggestions from code review fix style Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Missing model memory release * Fix style * Add deprecated warning for public API function llama_init_from_file * Update public API use cases: move away from deprecated llama_init_from_file * Deprecate public API function llama_apply_lora_from_file --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			171 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include "build-info.h"
 | |
| 
 | |
| #include <vector>
 | |
| #include <cstdio>
 | |
| #include <chrono>
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
|     params.seed = 42;
 | |
|     params.n_threads = 4;
 | |
|     params.repeat_last_n = 64;
 | |
|     params.prompt = "The quick brown fox";
 | |
| 
 | |
|     if (gpt_params_parse(argc, argv, params) == false) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | |
| 
 | |
|     if (params.n_predict < 0) {
 | |
|         params.n_predict = 16;
 | |
|     }
 | |
| 
 | |
|     auto lparams = llama_context_default_params();
 | |
| 
 | |
|     lparams.n_ctx     = params.n_ctx;
 | |
|     lparams.seed      = params.seed;
 | |
|     lparams.f16_kv    = params.memory_f16;
 | |
|     lparams.use_mmap  = params.use_mmap;
 | |
|     lparams.use_mlock = params.use_mlock;
 | |
| 
 | |
|     auto n_past = 0;
 | |
|     auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
 | |
| 
 | |
|     // init
 | |
|     auto model = llama_load_model_from_file(params.model.c_str(), lparams);
 | |
|     if (model == nullptr) {
 | |
|         return 1;
 | |
|     }
 | |
|     auto ctx = llama_new_context_with_model(model, lparams);
 | |
|     if (ctx == nullptr) {
 | |
|         llama_free_model(model);
 | |
|         return 1;
 | |
|     }
 | |
|     auto tokens = std::vector<llama_token>(params.n_ctx);
 | |
|     auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true);
 | |
| 
 | |
|     if (n_prompt_tokens < 1) {
 | |
|         fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
 | |
|         llama_free(ctx);
 | |
|         llama_free_model(model);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // evaluate prompt
 | |
|     llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads);
 | |
| 
 | |
|     last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
 | |
|     n_past += n_prompt_tokens;
 | |
| 
 | |
|     const size_t state_size = llama_get_state_size(ctx);
 | |
|     uint8_t * state_mem = new uint8_t[state_size];
 | |
| 
 | |
|     // Save state (rng, logits, embedding and kv_cache) to file
 | |
|     {
 | |
|         FILE *fp_write = fopen("dump_state.bin", "wb");
 | |
|         llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
 | |
|         fwrite(state_mem, 1, state_size, fp_write);
 | |
|         fclose(fp_write);
 | |
|     }
 | |
| 
 | |
|     // save state (last tokens)
 | |
|     const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
 | |
|     const auto n_past_saved = n_past;
 | |
| 
 | |
|     // first run
 | |
|     printf("\n%s", params.prompt.c_str());
 | |
| 
 | |
|     for (auto i = 0; i < params.n_predict; i++) {
 | |
|         auto logits = llama_get_logits(ctx);
 | |
|         auto n_vocab = llama_n_vocab(ctx);
 | |
|         std::vector<llama_token_data> candidates;
 | |
|         candidates.reserve(n_vocab);
 | |
|         for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|             candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | |
|         }
 | |
|         llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
|         auto next_token = llama_sample_token(ctx, &candidates_p);
 | |
|         auto next_token_str = llama_token_to_str(ctx, next_token);
 | |
|         last_n_tokens_data.push_back(next_token);
 | |
| 
 | |
|         printf("%s", next_token_str);
 | |
|         if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
 | |
|             fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
 | |
|             llama_free(ctx);
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
|         n_past += 1;
 | |
|     }
 | |
| 
 | |
|     printf("\n\n");
 | |
| 
 | |
|     // free old context
 | |
|     llama_free(ctx);
 | |
| 
 | |
|     // make new context
 | |
|     auto ctx2 = llama_new_context_with_model(model, lparams);
 | |
| 
 | |
|     // Load state (rng, logits, embedding and kv_cache) from file
 | |
|     {
 | |
|         FILE *fp_read = fopen("dump_state.bin", "rb");
 | |
|         if (state_size != llama_get_state_size(ctx2)) {
 | |
|             fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
 | |
|             llama_free(ctx2);
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         const size_t ret = fread(state_mem, 1, state_size, fp_read);
 | |
|         if (ret != state_size) {
 | |
|             fprintf(stderr, "\n%s : failed to read state\n", __func__);
 | |
|             llama_free(ctx2);
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         llama_set_state_data(ctx2, state_mem);  // could also read directly from memory mapped file
 | |
|         fclose(fp_read);
 | |
|     }
 | |
| 
 | |
|     delete[] state_mem;
 | |
| 
 | |
|     // restore state (last tokens)
 | |
|     last_n_tokens_data = last_n_tokens_data_saved;
 | |
|     n_past = n_past_saved;
 | |
| 
 | |
|     // second run
 | |
|     for (auto i = 0; i < params.n_predict; i++) {
 | |
|         auto logits = llama_get_logits(ctx2);
 | |
|         auto n_vocab = llama_n_vocab(ctx2);
 | |
|         std::vector<llama_token_data> candidates;
 | |
|         candidates.reserve(n_vocab);
 | |
|         for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|             candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | |
|         }
 | |
|         llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
|         auto next_token = llama_sample_token(ctx2, &candidates_p);
 | |
|         auto next_token_str = llama_token_to_str(ctx2, next_token);
 | |
|         last_n_tokens_data.push_back(next_token);
 | |
| 
 | |
|         printf("%s", next_token_str);
 | |
|         if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
 | |
|             fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
 | |
|             llama_free(ctx2);
 | |
|             llama_free_model(model);
 | |
|             return 1;
 | |
|         }
 | |
|         n_past += 1;
 | |
|     }
 | |
| 
 | |
|     printf("\n\n");
 | |
| 
 | |
|     llama_free(ctx2);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     return 0;
 | |
| }
 |