Files
llama.cpp/ggml/src/ggml-webgpu/wgsl-shaders/mul_mat_vec.tmpl.wgsl
Reese Levine 647b960bd8 ggml webgpu: faster matrix multiplication/matrix-vector multiplication (#17031)
* Faster tensors (#8)

Add fast matrix and matrix/vector multiplication.

* Use map for shader replacements instead of pair of strings
2025-11-07 19:27:20 -08:00

268 lines
8.1 KiB
WebGPU Shading Language

#define(VARIANTS)
[
{
"SHADER_SUFFIX": "f32_f32_vec",
"REPLS": {
"SRC0_TYPE" : "vec4<f32>",
"SRC1_TYPE" : "vec4<f32>",
"DST_TYPE": "vec4<f32>",
"VEC_SIZE" : 4,
},
"DECLS": ["VEC", "MUL_ACC_FLOAT"]
},
{
"SHADER_SUFFIX": "f32_f32",
"REPLS": {
"SRC0_TYPE" : "f32",
"SRC1_TYPE" : "f32",
"DST_TYPE": "f32",
"VEC_SIZE" : 1,
},
"DECLS": ["SCALAR", "MUL_ACC_FLOAT"]
},
{
"SHADER_SUFFIX": "f16_f32_vec",
"REPLS": {
"SRC0_TYPE" : "vec4<f16>",
"SRC1_TYPE" : "vec4<f32>",
"DST_TYPE": "vec4<f32>",
"VEC_SIZE" : 4,
},
"DECLS": ["VEC", "MUL_ACC_FLOAT"]
},
{
"SHADER_SUFFIX": "f16_f32",
"REPLS": {
"SRC0_TYPE" : "f16",
"SRC1_TYPE" : "f32",
"DST_TYPE": "f32",
"VEC_SIZE" : 1,
},
"DECLS": ["SCALAR", "MUL_ACC_FLOAT"]
},
{
"SHADER_SUFFIX": "f16_f16_vec",
"REPLS": {
"SRC0_TYPE" : "vec4<f16>",
"SRC1_TYPE" : "vec4<f16>",
"DST_TYPE": "vec4<f32>",
"VEC_SIZE" : 4,
},
"DECLS": ["VEC", "MUL_ACC_FLOAT"]
},
{
"SHADER_SUFFIX": "f16_f16",
"REPLS": {
"SRC0_TYPE" : "f16",
"SRC1_TYPE" : "f16",
"DST_TYPE": "f32",
"VEC_SIZE" : 1,
},
"DECLS": ["SCALAR", "MUL_ACC_FLOAT"]
},
{
"SHADER_SUFFIX": "q4_0_f32",
"REPLS": {
"SRC0_TYPE" : "f16",
"SRC1_TYPE" : "f32",
"DST_TYPE": "f32",
"VEC_SIZE" : 1,
},
"DECLS": ["BYTE_HELPERS", "SCALAR", "MUL_ACC_Q4_0"]
}
]
#end(VARIANTS)
#define(DECLS)
#decl(VEC)
fn inner_dot(src0_val: {{SRC0_TYPE}}, src1_val: {{SRC1_TYPE}}) -> f32 {
return f32(dot({{SRC1_TYPE}}(src0_val), src1_val));
}
fn store_val(group_base: u32) -> vec4<f32> {
return vec4<f32>(partial_sums[group_base],
partial_sums[group_base + THREADS_PER_OUTPUT],
partial_sums[group_base + THREADS_PER_OUTPUT * 2],
partial_sums[group_base + THREADS_PER_OUTPUT * 3]);
}
#enddecl(VEC)
#decl(SCALAR)
fn inner_dot(src0_val: {{SRC0_TYPE}}, src1_val: {{SRC1_TYPE}}) -> f32 {
return f32(src0_val) * f32(src1_val);
}
fn store_val(group_base: u32) -> f32 {
return partial_sums[group_base];
}
#enddecl(SCALAR)
#decl(MUL_ACC_FLOAT)
fn mul_acc(tig:u32, tile_size: u32, idx_base: u32, k_outer: u32) -> f32 {
var local_sum = 0.0;
for (var i = tig * {{VEC_SIZE}}; i < tile_size; i += THREADS_PER_OUTPUT * {{VEC_SIZE}}) {
let a = src0[(idx_base + k_outer + i) / {{VEC_SIZE}}];
let b = shared_vector[i / {{VEC_SIZE}}];
local_sum += inner_dot(a, b);
}
return local_sum;
}
#enddecl(MUL_ACC_FLOAT)
#decl(MUL_ACC_Q4_0)
const BLOCK_SIZE = 32;
const NQ = 16u; // number of weights per thread
const F16_PER_BLOCK = 9u; // 1 scale + 8x4 packed weights
const WEIGHTS_PER_F16 = 4u; // 4 weights per f16
const F16_PER_THREAD = NQ / WEIGHTS_PER_F16;
fn mul_acc(tig:u32, tile_size: u32, idx_base: u32, k_outer: u32) -> f32 {
var local_sum = 0.0;
for (var i = tig * NQ; i < tile_size; i += THREADS_PER_OUTPUT * NQ) {
let blck_idx = i / BLOCK_SIZE;
let block_offset = (i % BLOCK_SIZE) / WEIGHTS_PER_F16;
let scale_idx = (idx_base + k_outer / BLOCK_SIZE + blck_idx) * F16_PER_BLOCK;
// each f16 contains offsets [block_offset, block_offset + 1] and [block_offset + 16, block_offset + 17]
let shmem_idx = blck_idx * BLOCK_SIZE + block_offset * 2u;
let d = f32(src0[scale_idx]);
for (var j = 0u; j < F16_PER_THREAD; j += 2) {
let q_0 = src0[scale_idx + 1 + block_offset + j];
let q_1 = src0[scale_idx + 1 + block_offset + j + 1];
let q_packed = bitcast<u32>(vec2(q_0, q_1));
for (var k: u32 = 0; k < 4; k++) {
let q_byte = get_byte(q_packed, k);
let q_hi = (f32((q_byte >> 4) & 0xF) - 8.0) * d;
let q_lo = (f32(q_byte & 0xF) - 8.0) * d;
local_sum += q_lo * shared_vector[shmem_idx + j * 2 + k];
local_sum += q_hi * shared_vector[shmem_idx + j * 2 + k + 16];
}
}
}
return local_sum;
}
#enddecl(MUL_ACC_Q4_0)
#end(DECLS)
#define(SHADER)
enable f16;
DECLS
struct MulMatParams {
offset_src0: u32,
offset_src1: u32,
offset_dst: u32,
m: u32,
n: u32,
k: u32,
stride_01: u32,
stride_11: u32,
stride_02: u32,
stride_12: u32,
stride_03: u32,
stride_13: u32,
bs02: u32,
bs03: u32,
broadcast2: u32,
broadcast3: u32
};
@group(0) @binding(0) var<storage, read_write> src0: array<{{SRC0_TYPE}}>; // Matrix (M x K)
@group(0) @binding(1) var<storage, read_write> src1: array<{{SRC1_TYPE}}>; // Vector (K x 1, transposed)
@group(0) @binding(2) var<storage, read_write> dst: array<{{DST_TYPE}}>; // Result vector (transposed)
@group(0) @binding(3) var<uniform> params: MulMatParams;
override WORKGROUP_SIZE: u32;
override TILE_K: u32;
override OUTPUTS_PER_WG: u32;
override THREADS_PER_OUTPUT = WORKGROUP_SIZE / OUTPUTS_PER_WG;
// Shared memory for collaborative loading and reduction
var<workgroup> shared_vector: array<{{SRC1_TYPE}}, TILE_K/{{VEC_SIZE}}>; // Cache vector tile
var<workgroup> partial_sums: array<f32, WORKGROUP_SIZE>; // For reduction
@compute @workgroup_size(WORKGROUP_SIZE)
fn main(
@builtin(local_invocation_id) local_id: vec3<u32>,
@builtin(workgroup_id) wg_id: vec3<u32>,
@builtin(num_workgroups) num_wg: vec3<u32>) {
let thread_id = local_id.x;
// Handle batch dimensions
let total_batches = params.bs02 * params.broadcast2 * params.bs03 * params.broadcast3;
let wg_linear = wg_id.y * num_wg.x + wg_id.x;
let output_groups = (params.m + OUTPUTS_PER_WG - 1u) / OUTPUTS_PER_WG;
let batch_idx = wg_linear / output_groups;
if (batch_idx >= total_batches) {
return;
}
// Which of the outputs does this thread belong to?
let thread_group = thread_id / THREADS_PER_OUTPUT;
let thread_in_group = thread_id % THREADS_PER_OUTPUT;
// Each workgroup computes OUTPUTS_PER_WG consecutive outputs
let output_row = (wg_linear % output_groups) * OUTPUTS_PER_WG + thread_group;
let dst2_stride = params.m * params.n;
let dst2_idx = batch_idx % (params.bs02 * params.broadcast2);
let dst3_stride = dst2_stride * params.bs02 * params.broadcast2;
let dst3_idx = batch_idx / (params.bs02 * params.broadcast2);
let src03_idx = dst3_idx / params.broadcast3;
let src13_idx = dst3_idx;
let src02_idx = dst2_idx / params.broadcast2;
let src12_idx = dst2_idx;
let src0_idx_base = params.offset_src0 + src03_idx * params.stride_03 + src02_idx * params.stride_02 + output_row * params.stride_01;
let src1_idx_base = params.offset_src1 + src13_idx * params.stride_13 + src12_idx * params.stride_12;
let dst_idx = params.offset_dst + dst3_idx * dst3_stride + dst2_idx * dst2_stride + output_row;
var local_sum = 0.0;
// Each thread processes multiple K elements and accumulates
for (var k_tile = 0u; k_tile < params.k; k_tile += TILE_K) {
let tile_size = min(TILE_K, params.k - k_tile);
// Cooperatively load vector tile into shared memory (all threads)
for (var i = thread_id * {{VEC_SIZE}}; i < tile_size; i += WORKGROUP_SIZE * {{VEC_SIZE}}) {
shared_vector[i / {{VEC_SIZE}}] = src1[(src1_idx_base + k_tile + i) / {{VEC_SIZE}}];
}
workgroupBarrier();
if (output_row < params.m) {
local_sum += mul_acc(thread_in_group, tile_size, src0_idx_base, k_tile);
}
workgroupBarrier();
}
// Store partial sums and reduce within each partition
partial_sums[thread_id] = local_sum;
workgroupBarrier();
let group_base = thread_group * THREADS_PER_OUTPUT;
let thread_base = group_base + thread_in_group;
var offset = THREADS_PER_OUTPUT / 2;
while (offset > 0) {
if (thread_in_group < offset) {
partial_sums[thread_base] += partial_sums[thread_base + offset];
}
offset = offset / 2;
workgroupBarrier();
}
// Store back to global memory
if (output_row < params.m && thread_group % {{VEC_SIZE}} == 0 && thread_in_group == 0) {
dst[dst_idx / {{VEC_SIZE}}] = store_val(group_base);
}
}
#end(SHADER)