mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			50 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include "concat.cuh"
 | |
| 
 | |
| static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
 | |
|     int nidx = threadIdx.x + blockIdx.x * blockDim.x;
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
|     // operation
 | |
|     int offset_dst =
 | |
|         nidx +
 | |
|         blockIdx.y * ne0 +
 | |
|         blockIdx.z * ne0 * gridDim.y;
 | |
|     if (blockIdx.z < ne02) { // src0
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             blockIdx.y * ne0 +
 | |
|             blockIdx.z * ne0 * gridDim.y;
 | |
|         dst[offset_dst] = x[offset_src];
 | |
|     } else {
 | |
|         int offset_src =
 | |
|             nidx +
 | |
|             blockIdx.y * ne0 +
 | |
|             (blockIdx.z - ne02) * ne0 *  gridDim.y;
 | |
|         dst[offset_dst] = y[offset_src];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
 | |
|     int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
 | |
|     dim3 gridDim(num_blocks, ne1, ne2);
 | |
|     concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
 | |
| }
 | |
| 
 | |
| void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
 | |
|     const ggml_tensor * src0 = dst->src[0];
 | |
|     const ggml_tensor * src1 = dst->src[1];
 | |
|     const float * src0_d = (const float *)src0->data;
 | |
|     const float * src1_d = (const float *)src1->data;
 | |
|     float * dst_d = (float *)dst->data;
 | |
|     cudaStream_t stream = ctx.stream();
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     for (int i3 = 0; i3 < dst->ne[3]; i3++) {
 | |
|         concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream);
 | |
|     }
 | |
| }
 | 
