mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2102 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2102 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "ggml-backend-impl.h"
 | |
| #include "ggml-alloc.h"
 | |
| #include "ggml-impl.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <limits.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| 
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| 
 | |
| // backend buffer type
 | |
| 
 | |
| const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
 | |
|     return buft->iface.get_name(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     return buft->iface.alloc_buffer(buft, size);
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
 | |
|     return buft->iface.get_alignment(buft);
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
 | |
|     // get_max_size is optional, defaults to SIZE_MAX
 | |
|     if (buft->iface.get_max_size) {
 | |
|         return buft->iface.get_max_size(buft);
 | |
|     }
 | |
|     return SIZE_MAX;
 | |
| }
 | |
| 
 | |
| GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
 | |
|     // get_alloc_size is optional, defaults to ggml_nbytes
 | |
|     if (buft->iface.get_alloc_size) {
 | |
|         size_t size = buft->iface.get_alloc_size(buft, tensor);
 | |
|         assert(size >= ggml_nbytes(tensor));
 | |
|         return size;
 | |
|     }
 | |
|     return ggml_nbytes(tensor);
 | |
| }
 | |
| 
 | |
| bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
 | |
|     return buft->iface.supports_backend(buft, backend);
 | |
| }
 | |
| 
 | |
| bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
 | |
|     if (buft->iface.is_host) {
 | |
|         return buft->iface.is_host(buft);
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // backend buffer
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
 | |
|                ggml_backend_buffer_type_t      buft,
 | |
|         struct ggml_backend_buffer_i           iface,
 | |
|                ggml_backend_buffer_context_t   context,
 | |
|                size_t                          size) {
 | |
|     ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
 | |
| 
 | |
|     (*buffer) = (struct ggml_backend_buffer) {
 | |
|         /* .interface = */ iface,
 | |
|         /* .buft      = */ buft,
 | |
|         /* .context   = */ context,
 | |
|         /* .size      = */ size,
 | |
|         /* .usage     = */ GGML_BACKEND_BUFFER_USAGE_ANY
 | |
|     };
 | |
| 
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
 | |
|     return buffer->iface.get_name(buffer);
 | |
| }
 | |
| 
 | |
| void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
 | |
|     if (buffer == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (buffer->iface.free_buffer != NULL) {
 | |
|         buffer->iface.free_buffer(buffer);
 | |
|     }
 | |
|     free(buffer);
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
 | |
|     return buffer->size;
 | |
| }
 | |
| 
 | |
| void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
 | |
|     void * base = buffer->iface.get_base(buffer);
 | |
| 
 | |
|     GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
 | |
| 
 | |
|     return base;
 | |
| }
 | |
| 
 | |
| GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
 | |
|     // init_tensor is optional
 | |
|     if (buffer->iface.init_tensor) {
 | |
|         buffer->iface.init_tensor(buffer, tensor);
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
 | |
|     return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
 | |
|     return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
 | |
|     return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
 | |
| }
 | |
| 
 | |
| void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | |
|     buffer->iface.clear(buffer, value);
 | |
| }
 | |
| 
 | |
| bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
 | |
|     return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
 | |
| }
 | |
| 
 | |
| void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
 | |
|     buffer->usage = usage;
 | |
| 
 | |
|     // FIXME: add a generic callback to the buffer interface
 | |
|     if (ggml_backend_buffer_is_multi_buffer(buffer)) {
 | |
|         ggml_backend_multi_buffer_set_usage(buffer, usage);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
 | |
|     return buffer->buft;
 | |
| }
 | |
| 
 | |
| void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
 | |
|     if (buffer->iface.reset) {
 | |
|         buffer->iface.reset(buffer);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
 | |
|     ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
 | |
|     if (dst_buf->iface.cpy_tensor) {
 | |
|         return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // backend
 | |
| 
 | |
| ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
 | |
|     if (backend == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     return backend->guid;
 | |
| }
 | |
| 
 | |
| const char * ggml_backend_name(ggml_backend_t backend) {
 | |
|     if (backend == NULL) {
 | |
|         return "NULL";
 | |
|     }
 | |
|     return backend->iface.get_name(backend);
 | |
| }
 | |
| 
 | |
| void ggml_backend_free(ggml_backend_t backend) {
 | |
|     if (backend == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     backend->iface.free(backend);
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
 | |
|     return backend->iface.get_default_buffer_type(backend);
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
 | |
|     return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_get_alignment(ggml_backend_t backend) {
 | |
|     return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_get_max_size(ggml_backend_t backend) {
 | |
|     return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
 | |
| }
 | |
| 
 | |
| void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
 | |
|     GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
 | |
| 
 | |
|     if (backend->iface.set_tensor_async == NULL) {
 | |
|         ggml_backend_tensor_set(tensor, data, offset, size);
 | |
|     } else {
 | |
|         backend->iface.set_tensor_async(backend, tensor, data, offset, size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
 | |
|     GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
 | |
| 
 | |
|     if (backend->iface.get_tensor_async == NULL) {
 | |
|         ggml_backend_tensor_get(tensor, data, offset, size);
 | |
|     } else {
 | |
|         backend->iface.get_tensor_async(backend, tensor, data, offset, size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 | |
| 
 | |
|     GGML_ASSERT(buf != NULL && "tensor buffer not set");
 | |
|     GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
 | |
|     GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
 | |
| 
 | |
|     if (!size) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     buf->iface.set_tensor(buf, tensor, data, offset, size);
 | |
| }
 | |
| 
 | |
| GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
 | |
| 
 | |
|     GGML_ASSERT(buf != NULL && "tensor buffer not set");
 | |
|     GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
 | |
|     GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
 | |
| 
 | |
|     if (!size) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     buf->iface.get_tensor(buf, tensor, data, offset, size);
 | |
| }
 | |
| 
 | |
| void ggml_backend_synchronize(ggml_backend_t backend) {
 | |
|     if (backend->iface.synchronize == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     backend->iface.synchronize(backend);
 | |
| }
 | |
| 
 | |
| ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
 | |
|     GGML_ASSERT(backend->iface.graph_plan_create != NULL);
 | |
| 
 | |
|     return backend->iface.graph_plan_create(backend, cgraph);
 | |
| }
 | |
| 
 | |
| void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
 | |
|     GGML_ASSERT(backend->iface.graph_plan_free != NULL);
 | |
| 
 | |
|     backend->iface.graph_plan_free(backend, plan);
 | |
| }
 | |
| 
 | |
| enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
 | |
|     GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
 | |
| 
 | |
|     return backend->iface.graph_plan_compute(backend, plan);
 | |
| }
 | |
| 
 | |
| enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
 | |
|     enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
 | |
|     ggml_backend_synchronize(backend);
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
 | |
|     return backend->iface.graph_compute(backend, cgraph);
 | |
| }
 | |
| 
 | |
| bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
 | |
|     return backend->iface.supports_op(backend, op);
 | |
| }
 | |
| 
 | |
| bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
 | |
|     if (backend->iface.offload_op != NULL) {
 | |
|         return backend->iface.offload_op(backend, op);
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // backend copy
 | |
| 
 | |
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
 | |
|     if (a->type != b->type) {
 | |
|         return false;
 | |
|     }
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | |
|         if (a->ne[i] != b->ne[i]) {
 | |
|             return false;
 | |
|         }
 | |
|         if (a->nb[i] != b->nb[i]) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
 | |
| 
 | |
|     if (src == dst) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (ggml_backend_buffer_is_host(src->buffer)) {
 | |
|         ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
 | |
|     } else if (ggml_backend_buffer_is_host(dst->buffer)) {
 | |
|         ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
 | |
|     } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
 | |
| #ifndef NDEBUG
 | |
|         fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
 | |
| #endif
 | |
|         size_t nbytes = ggml_nbytes(src);
 | |
|         void * data = malloc(nbytes);
 | |
|         ggml_backend_tensor_get(src, data, 0, nbytes);
 | |
|         ggml_backend_tensor_set(dst, data, 0, nbytes);
 | |
|         free(data);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
 | |
| 
 | |
|     if (src == dst) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (backend_dst->iface.cpy_tensor_async != NULL) {
 | |
|         if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // an async copy would normally happen after all the queued operations on both backends are completed
 | |
|     // sync src, set_async dst
 | |
|     if (ggml_backend_buffer_is_host(src->buffer)) {
 | |
|         ggml_backend_synchronize(backend_src);
 | |
|         ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
 | |
|     } else {
 | |
|         ggml_backend_synchronize(backend_src);
 | |
|         ggml_backend_tensor_copy(src, dst);
 | |
|         ggml_backend_synchronize(backend_dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // events
 | |
| 
 | |
| ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
 | |
|     if (backend->iface.event_new == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
|     return backend->iface.event_new(backend);
 | |
| }
 | |
| 
 | |
| void ggml_backend_event_free(ggml_backend_event_t event) {
 | |
|     if (event == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     event->backend->iface.event_free(event);
 | |
| }
 | |
| 
 | |
| void ggml_backend_event_record(ggml_backend_event_t event) {
 | |
|     GGML_ASSERT(event->backend->iface.event_record != NULL);
 | |
| 
 | |
|     event->backend->iface.event_record(event);
 | |
| }
 | |
| 
 | |
| void ggml_backend_event_synchronize(ggml_backend_event_t event) {
 | |
|     GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
 | |
| 
 | |
|     event->backend->iface.event_synchronize(event);
 | |
| }
 | |
| 
 | |
| void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
 | |
|     GGML_ASSERT(backend->iface.event_wait != NULL);
 | |
| 
 | |
|     backend->iface.event_wait(backend, event);
 | |
| }
 | |
| 
 | |
| // backend registry
 | |
| 
 | |
| #define GGML_REG_MAX_BACKENDS 16
 | |
| 
 | |
| struct ggml_backend_reg {
 | |
|     char name[128];
 | |
|     ggml_backend_init_fn init_fn;
 | |
|     ggml_backend_buffer_type_t default_buffer_type;
 | |
|     void * user_data;
 | |
| };
 | |
| 
 | |
| static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
 | |
| static size_t ggml_backend_registry_count = 0;
 | |
| 
 | |
| GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
 | |
| 
 | |
| GGML_CALL static void ggml_backend_registry_init(void) {
 | |
|     static bool initialized = false;
 | |
| 
 | |
|     if (initialized) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     initialized = true;
 | |
| 
 | |
|     ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
 | |
| 
 | |
|     // add forward decls here to avoid including the backend headers
 | |
| #ifdef GGML_USE_CUDA
 | |
|     extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
 | |
|     ggml_backend_cuda_reg_devices();
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_SYCL
 | |
|     extern void ggml_backend_sycl_reg_devices(void);
 | |
|     ggml_backend_sycl_reg_devices();
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
|     extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
 | |
|     extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
 | |
|     ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_VULKAN
 | |
|     extern GGML_CALL int ggml_backend_vk_reg_devices(void);
 | |
|     ggml_backend_vk_reg_devices();
 | |
| #endif
 | |
| 
 | |
| #ifdef GGML_USE_KOMPUTE
 | |
|     extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
 | |
|     ggml_backend_kompute_reg_devices();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
 | |
|     GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
 | |
| 
 | |
|     size_t id = ggml_backend_registry_count;
 | |
| 
 | |
|     ggml_backend_registry[id] = (struct ggml_backend_reg) {
 | |
|         /* .name                = */ {0},
 | |
|         /* .fn                  = */ init_fn,
 | |
|         /* .default_buffer_type = */ default_buffer_type,
 | |
|         /* .user_data           = */ user_data,
 | |
|     };
 | |
| 
 | |
|     snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     fprintf(stderr, "%s: registered backend %s\n", __func__, name);
 | |
| #endif
 | |
| 
 | |
|     ggml_backend_registry_count++;
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_reg_get_count(void) {
 | |
|     ggml_backend_registry_init();
 | |
| 
 | |
|     return ggml_backend_registry_count;
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_reg_find_by_name(const char * name) {
 | |
|     ggml_backend_registry_init();
 | |
| 
 | |
|     for (size_t i = 0; i < ggml_backend_registry_count; i++) {
 | |
|         // TODO: case insensitive in a portable way
 | |
|         if (strcmp(ggml_backend_registry[i].name, name) == 0) {
 | |
|             return i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // not found
 | |
|     return SIZE_MAX;
 | |
| }
 | |
| 
 | |
| // init from backend:params string
 | |
| ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
 | |
|     ggml_backend_registry_init();
 | |
| 
 | |
|     const char * params = strchr(backend_str, ':');
 | |
|     char backend_name[128];
 | |
|     if (params == NULL) {
 | |
|         snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
 | |
|         params = "";
 | |
|     } else {
 | |
|         snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
 | |
|         params++;
 | |
|     }
 | |
| 
 | |
|     size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
 | |
| 
 | |
|     if (backend_i == SIZE_MAX) {
 | |
|         fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return ggml_backend_reg_init_backend(backend_i, params);
 | |
| }
 | |
| 
 | |
| const char * ggml_backend_reg_get_name(size_t i) {
 | |
|     ggml_backend_registry_init();
 | |
| 
 | |
|     GGML_ASSERT(i < ggml_backend_registry_count);
 | |
|     return ggml_backend_registry[i].name;
 | |
| }
 | |
| 
 | |
| ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
 | |
|     ggml_backend_registry_init();
 | |
| 
 | |
|     GGML_ASSERT(i < ggml_backend_registry_count);
 | |
|     return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
 | |
|     ggml_backend_registry_init();
 | |
| 
 | |
|     GGML_ASSERT(i < ggml_backend_registry_count);
 | |
|     return ggml_backend_registry[i].default_buffer_type;
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
 | |
|     ggml_backend_registry_init();
 | |
| 
 | |
|     GGML_ASSERT(i < ggml_backend_registry_count);
 | |
|     return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
 | |
| }
 | |
| 
 | |
| // backend CPU
 | |
| 
 | |
| static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
 | |
|     return "CPU";
 | |
| 
 | |
|     GGML_UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
 | |
|     uintptr_t data = (uintptr_t)buffer->context;
 | |
| 
 | |
|     // align the buffer
 | |
|     if (data % TENSOR_ALIGNMENT != 0) {
 | |
|         data = GGML_PAD(data, TENSOR_ALIGNMENT);
 | |
|     }
 | |
| 
 | |
|     return (void *)data;
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     free(buffer->context);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
 | |
|     memcpy((char *)tensor->data + offset, data, size);
 | |
| 
 | |
|     GGML_UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
 | |
|     memcpy(data, (const char *)tensor->data + offset, size);
 | |
| 
 | |
|     GGML_UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
 | |
|     if (ggml_backend_buffer_is_host(src->buffer)) {
 | |
|         memcpy(dst->data, src->data, ggml_nbytes(src));
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| 
 | |
|     GGML_UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | |
|     memset(buffer->context, value, buffer->size);
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
 | |
|     /* .get_name        = */ ggml_backend_cpu_buffer_name,
 | |
|     /* .free_buffer     = */ ggml_backend_cpu_buffer_free_buffer,
 | |
|     /* .get_base        = */ ggml_backend_cpu_buffer_get_base,
 | |
|     /* .init_tensor     = */ NULL, // no initialization required
 | |
|     /* .set_tensor      = */ ggml_backend_cpu_buffer_set_tensor,
 | |
|     /* .get_tensor      = */ ggml_backend_cpu_buffer_get_tensor,
 | |
|     /* .cpy_tensor      = */ ggml_backend_cpu_buffer_cpy_tensor,
 | |
|     /* .clear           = */ ggml_backend_cpu_buffer_clear,
 | |
|     /* .reset           = */ NULL,
 | |
| };
 | |
| 
 | |
| // for buffers from ptr, free is not called
 | |
| static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
 | |
|     /* .get_name        = */ ggml_backend_cpu_buffer_name,
 | |
|     /* .free_buffer     = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
 | |
|     /* .get_base        = */ ggml_backend_cpu_buffer_get_base,
 | |
|     /* .init_tensor     = */ NULL, // no initialization required
 | |
|     /* .set_tensor      = */ ggml_backend_cpu_buffer_set_tensor,
 | |
|     /* .get_tensor      = */ ggml_backend_cpu_buffer_get_tensor,
 | |
|     /* .cpy_tensor      = */ ggml_backend_cpu_buffer_cpy_tensor,
 | |
|     /* .clear           = */ ggml_backend_cpu_buffer_clear,
 | |
|     /* .reset           = */ NULL,
 | |
| };
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
 | |
|     return "CPU";
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     size += TENSOR_ALIGNMENT;   // malloc may return an address that is not aligned
 | |
|     void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
 | |
|     if (data == NULL) {
 | |
|         fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
 | |
| }
 | |
| 
 | |
| GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | |
|     return TENSOR_ALIGNMENT;
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
 | |
|     return ggml_backend_is_cpu(backend);
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
 | |
|     return true;
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
 | |
|     static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
 | |
|         /* .iface = */ {
 | |
|             /* .get_name         = */ ggml_backend_cpu_buffer_type_get_name,
 | |
|             /* .alloc_buffer     = */ ggml_backend_cpu_buffer_type_alloc_buffer,
 | |
|             /* .get_alignment    = */ ggml_backend_cpu_buffer_type_get_alignment,
 | |
|             /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
 | |
|             /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
 | |
|             /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
 | |
|             /* .is_host          = */ ggml_backend_cpu_buffer_type_is_host,
 | |
|         },
 | |
|         /* .context = */ NULL,
 | |
|     };
 | |
| 
 | |
|     return &ggml_backend_cpu_buffer_type;
 | |
| }
 | |
| 
 | |
| #ifdef GGML_USE_CPU_HBM
 | |
| 
 | |
| // buffer type HBM
 | |
| 
 | |
| #include <hbwmalloc.h>
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
 | |
|     return "CPU_HBM";
 | |
| 
 | |
|     GGML_UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
 | |
|     return "CPU_HBM";
 | |
| 
 | |
|     GGML_UNUSED(buf);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     hbw_free(buffer->context);
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     //void * ptr = hbw_malloc(size);
 | |
|     void * ptr;
 | |
|     int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
 | |
|     if (result != 0) {
 | |
|         fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
 | |
|     buffer->buft = buft;
 | |
|     buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
 | |
|     buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
 | |
| 
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
 | |
|     static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
 | |
|         /* .iface    = */ {
 | |
|             /* .get_name         = */ ggml_backend_cpu_hbm_buffer_type_get_name,
 | |
|             /* .alloc_buffer     = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
 | |
|             /* .get_alignment    = */ ggml_backend_cpu_buffer_type_get_alignment,
 | |
|             /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
 | |
|             /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
 | |
|             /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
 | |
|             /* .is_host          = */ ggml_backend_cpu_buffer_type_is_host,
 | |
|         },
 | |
|         /* .context  = */ NULL,
 | |
|     };
 | |
| 
 | |
|     return &ggml_backend_cpu_buffer_type_hbm;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct ggml_backend_cpu_context {
 | |
|     int n_threads;
 | |
|     void * work_data;
 | |
|     size_t work_size;
 | |
| 
 | |
|     ggml_abort_callback abort_callback;
 | |
|     void *              abort_callback_data;
 | |
| };
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
 | |
|     return "CPU";
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
 | |
|     struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
 | |
|     free(cpu_ctx->work_data);
 | |
|     free(cpu_ctx);
 | |
|     free(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
 | |
|     return ggml_backend_cpu_buffer_type();
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| struct ggml_backend_plan_cpu {
 | |
|     struct ggml_cplan cplan;
 | |
|     struct ggml_cgraph cgraph;
 | |
| };
 | |
| 
 | |
| GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
 | |
|     struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
 | |
| 
 | |
|     struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
 | |
| 
 | |
|     cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
 | |
|     cpu_plan->cgraph = *cgraph; // FIXME: deep copy
 | |
| 
 | |
|     if (cpu_plan->cplan.work_size > 0) {
 | |
|         cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
 | |
|         if (cpu_plan->cplan.work_data == NULL) {
 | |
|             free(cpu_plan);
 | |
|             return NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cpu_plan->cplan.abort_callback      = cpu_ctx->abort_callback;
 | |
|     cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
 | |
| 
 | |
|     return cpu_plan;
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
 | |
|     struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
 | |
| 
 | |
|     free(cpu_plan->cplan.work_data);
 | |
|     free(cpu_plan);
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
 | |
|     struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
 | |
| 
 | |
|     return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
 | |
|     struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
 | |
| 
 | |
|     struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
 | |
| 
 | |
|     if (cpu_ctx->work_size < cplan.work_size) {
 | |
|         free(cpu_ctx->work_data);
 | |
|         cpu_ctx->work_data = malloc(cplan.work_size);
 | |
|         if (cpu_ctx->work_data == NULL) {
 | |
|             cpu_ctx->work_size = 0;
 | |
|             return GGML_STATUS_ALLOC_FAILED;
 | |
|         }
 | |
|         cpu_ctx->work_size = cplan.work_size;
 | |
|     }
 | |
|     cplan.work_data = cpu_ctx->work_data;
 | |
| 
 | |
|     cplan.abort_callback      = cpu_ctx->abort_callback;
 | |
|     cplan.abort_callback_data = cpu_ctx->abort_callback_data;
 | |
| 
 | |
|     return ggml_graph_compute(cgraph, &cplan);
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
 | |
|     switch (op->op) {
 | |
|         case GGML_OP_CPY:
 | |
|             return
 | |
|                 op->type != GGML_TYPE_IQ2_XXS &&
 | |
|                 op->type != GGML_TYPE_IQ2_XS  &&
 | |
|                 op->type != GGML_TYPE_IQ1_S   &&
 | |
|                 op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
 | |
|         case GGML_OP_MUL_MAT:
 | |
|             return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
 | |
|         default:
 | |
|             return true;
 | |
|     }
 | |
| 
 | |
|     GGML_UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_i cpu_backend_i = {
 | |
|     /* .get_name                = */ ggml_backend_cpu_name,
 | |
|     /* .free                    = */ ggml_backend_cpu_free,
 | |
|     /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
 | |
|     /* .set_tensor_async        = */ NULL,
 | |
|     /* .get_tensor_async        = */ NULL,
 | |
|     /* .cpy_tensor_async        = */ NULL,
 | |
|     /* .synchronize             = */ NULL,
 | |
|     /* .graph_plan_create       = */ ggml_backend_cpu_graph_plan_create,
 | |
|     /* .graph_plan_free         = */ ggml_backend_cpu_graph_plan_free,
 | |
|     /* .graph_plan_compute      = */ ggml_backend_cpu_graph_plan_compute,
 | |
|     /* .graph_compute           = */ ggml_backend_cpu_graph_compute,
 | |
|     /* .supports_op             = */ ggml_backend_cpu_supports_op,
 | |
|     /* .offload_op              = */ NULL,
 | |
|     /* .event_new               = */ NULL,
 | |
|     /* .event_free              = */ NULL,
 | |
|     /* .event_record            = */ NULL,
 | |
|     /* .event_wait              = */ NULL,
 | |
|     /* .event_synchronize       = */ NULL,
 | |
| };
 | |
| 
 | |
| static ggml_guid_t ggml_backend_cpu_guid(void) {
 | |
|     static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
 | |
|     return &guid;
 | |
| }
 | |
| 
 | |
| ggml_backend_t ggml_backend_cpu_init(void) {
 | |
|     struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
 | |
|     if (ctx == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ctx->n_threads           = GGML_DEFAULT_N_THREADS;
 | |
|     ctx->work_data           = NULL;
 | |
|     ctx->work_size           = 0;
 | |
|     ctx->abort_callback      = NULL;
 | |
|     ctx->abort_callback_data = NULL;
 | |
| 
 | |
|     ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
 | |
|     if (cpu_backend == NULL) {
 | |
|         free(ctx);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     *cpu_backend = (struct ggml_backend) {
 | |
|         /* .guid      = */ ggml_backend_cpu_guid(),
 | |
|         /* .interface = */ cpu_backend_i,
 | |
|         /* .context   = */ ctx
 | |
|     };
 | |
|     return cpu_backend;
 | |
| }
 | |
| 
 | |
| GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
 | |
|     return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
 | |
| }
 | |
| 
 | |
| void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
 | |
|     GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
 | |
| 
 | |
|     struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
 | |
|     ctx->n_threads = n_threads;
 | |
| }
 | |
| 
 | |
| void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
 | |
|     GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
 | |
| 
 | |
|     struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
 | |
|     ctx->abort_callback = abort_callback;
 | |
|     ctx->abort_callback_data = abort_callback_data;
 | |
| }
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
 | |
|     GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
 | |
|     return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
 | |
| }
 | |
| 
 | |
| GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
 | |
|     return ggml_backend_cpu_init();
 | |
| 
 | |
|     GGML_UNUSED(params);
 | |
|     GGML_UNUSED(user_data);
 | |
| }
 | |
| 
 | |
| // multi-buffer buffer
 | |
| 
 | |
| struct ggml_backend_multi_buffer_context {
 | |
|     ggml_backend_buffer_t * buffers;
 | |
|     size_t n_buffers;
 | |
| };
 | |
| 
 | |
| typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
 | |
|     ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
 | |
| 
 | |
|     return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
 | |
|     for (size_t i = 0; i < ctx->n_buffers; i++) {
 | |
|         ggml_backend_buffer_free(ctx->buffers[i]);
 | |
|     }
 | |
| 
 | |
|     free(ctx->buffers);
 | |
|     free(ctx);
 | |
| }
 | |
| 
 | |
| GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
 | |
|     ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
 | |
|     for (size_t i = 0; i < ctx->n_buffers; i++) {
 | |
|         ggml_backend_buffer_clear(ctx->buffers[i], value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
 | |
|     static struct ggml_backend_buffer_i multi_backend_buffer_i = {
 | |
|         /* .get_name        = */ ggml_backend_multi_buffer_get_name,
 | |
|         /* .free_buffer     = */ ggml_backend_multi_buffer_free_buffer,
 | |
|         /* .get_base        = */ NULL,
 | |
|         /* .init_tensor     = */ NULL,
 | |
|         /* .set_tensor      = */ NULL,
 | |
|         /* .get_tensor      = */ NULL,
 | |
|         /* .cpy_tensor      = */ NULL,
 | |
|         /* .clear           = */ ggml_backend_multi_buffer_clear,
 | |
|         /* .reset           = */ NULL,
 | |
|     };
 | |
| 
 | |
|     return multi_backend_buffer_i;
 | |
| }
 | |
| 
 | |
| GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
 | |
|     ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
 | |
|     ctx->n_buffers = n_buffers;
 | |
|     ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
 | |
| 
 | |
|     GGML_ASSERT(ctx->buffers != NULL);
 | |
| 
 | |
|     size_t total_size = 0;
 | |
|     for (size_t i = 0; i < n_buffers; i++) {
 | |
|         ctx->buffers[i] = buffers[i];
 | |
|         total_size += ggml_backend_buffer_get_size(buffers[i]);
 | |
|     }
 | |
| 
 | |
|     return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
 | |
| }
 | |
| 
 | |
| GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
 | |
|     return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
 | |
| }
 | |
| 
 | |
| GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
 | |
|     GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
 | |
|     ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
 | |
|     for (size_t i = 0; i < ctx->n_buffers; i++) {
 | |
|         ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // creates a copy of the tensor with the same memory layout
 | |
| static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
 | |
|     struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | |
|         dup->nb[i] = tensor->nb[i];
 | |
|     }
 | |
|     return dup;
 | |
| }
 | |
| 
 | |
| static bool ggml_is_view_op(enum ggml_op op) {
 | |
|     return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
 | |
| }
 | |
| 
 | |
| // scheduler
 | |
| 
 | |
| #ifndef GGML_SCHED_MAX_BACKENDS
 | |
| #define GGML_SCHED_MAX_BACKENDS 16
 | |
| #endif
 | |
| 
 | |
| #ifndef GGML_SCHED_MAX_SPLITS
 | |
| #define GGML_SCHED_MAX_SPLITS 2048
 | |
| #endif
 | |
| 
 | |
| #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
 | |
| #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
 | |
| #endif
 | |
| 
 | |
| #ifndef GGML_SCHED_MAX_COPIES
 | |
| #define GGML_SCHED_MAX_COPIES 4
 | |
| #endif
 | |
| 
 | |
| struct ggml_backend_sched_split {
 | |
|     int backend_id;
 | |
|     int i_start;
 | |
|     int i_end;
 | |
|     struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
 | |
|     int n_inputs;
 | |
|     // graph view of this split
 | |
|     struct ggml_cgraph graph;
 | |
| };
 | |
| 
 | |
| struct ggml_backend_sched {
 | |
|     bool is_reset; // true if the scheduler has been reset since the last graph split
 | |
|     bool is_alloc;
 | |
| 
 | |
|     int n_backends;
 | |
| 
 | |
|     ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
 | |
|     ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
 | |
|     ggml_gallocr_t galloc;
 | |
| 
 | |
|     // hash keys of the nodes in the graph
 | |
|     struct ggml_hash_set    hash_set;
 | |
|     // hash values
 | |
|     int * tensor_backend_id;
 | |
|     struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
 | |
| 
 | |
|     int * node_backend_ids; // [graph_size]
 | |
|     int * leaf_backend_ids; // [graph_size]
 | |
| 
 | |
|     // copy of the graph with modified inputs
 | |
|     struct ggml_cgraph * graph;
 | |
| 
 | |
|     // graph splits
 | |
|     struct ggml_backend_sched_split * splits;
 | |
|     int n_splits;
 | |
|     int splits_capacity;
 | |
| 
 | |
|     // pipeline parallelism support
 | |
|     int n_copies;
 | |
|     int cur_copy;
 | |
|     ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
 | |
|     struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
 | |
|     int n_graph_inputs;
 | |
| 
 | |
|     struct ggml_context * ctx;
 | |
| 
 | |
|     ggml_backend_sched_eval_callback callback_eval;
 | |
|     void * callback_eval_user_data;
 | |
| 
 | |
|     // align context_buffer to GGML_MEM_ALIGN
 | |
| #ifdef _MSC_VER
 | |
|     __declspec(align(GGML_MEM_ALIGN))
 | |
| #else
 | |
|     __attribute__((aligned(GGML_MEM_ALIGN)))
 | |
| #endif
 | |
|     char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
 | |
| };
 | |
| 
 | |
| #define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
 | |
| #define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
 | |
| 
 | |
| // returns the priority of the backend, lower id is higher priority
 | |
| static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
 | |
|     for (int i = 0; i < sched->n_backends; i++) {
 | |
|         if (sched->backends[i] == backend) {
 | |
|             return i;
 | |
|         }
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
 | |
|     ggml_backend_buffer_t buffer = tensor->buffer;
 | |
|     if (buffer == NULL) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     // find highest prio backend that supports the buffer type
 | |
|     for (int i = 0; i < sched->n_backends; i++) {
 | |
|         if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
 | |
|             return i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
 | |
|         __func__, ggml_backend_buffer_name(buffer), tensor->name);
 | |
|     GGML_ASSERT(false);
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
 | |
| #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
 | |
| #define GET_CAUSE(node) causes[hash_id(node)]
 | |
| #else
 | |
| #define SET_CAUSE(node, ...)
 | |
| #define GET_CAUSE(node) ""
 | |
| #endif
 | |
| 
 | |
| // returns the backend that should be used for the node based on the current locations
 | |
| static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
 | |
|     // TODO: use supports_op to check if the backend supports the op
 | |
| 
 | |
|     // assign pre-allocated nodes to their backend
 | |
|     int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
 | |
|     if (cur_backend_id != -1) {
 | |
|         SET_CAUSE(tensor, "1.dst");
 | |
|         return cur_backend_id;
 | |
|     }
 | |
| 
 | |
|     // view_src
 | |
|     if (tensor->view_src != NULL) {
 | |
|         cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
 | |
|         if (cur_backend_id != -1) {
 | |
|             SET_CAUSE(tensor, "1.vsrc");
 | |
|             return cur_backend_id;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // graph input
 | |
|     if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
 | |
|         cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
 | |
|         SET_CAUSE(tensor, "1.inp");
 | |
|         return cur_backend_id;
 | |
|     }
 | |
| 
 | |
|     // assign nodes that use weights to the backend of the weights
 | |
|     // operations with weights are preferably run on the same backend as the weights
 | |
|     for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|         const struct ggml_tensor * src = tensor->src[i];
 | |
|         if (src == NULL) {
 | |
|             continue;
 | |
|         }
 | |
|         if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
 | |
|             int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
 | |
|             // check if a backend with higher prio wants to offload the op
 | |
|             if (src_backend_id == sched->n_backends - 1) {
 | |
|                 for (int b = 0; b < src_backend_id; b++) {
 | |
|                     if (ggml_backend_offload_op(sched->backends[b], tensor)) {
 | |
|                         SET_CAUSE(tensor, "1.off");
 | |
|                         return b;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             SET_CAUSE(tensor, "1.wgt%d", i);
 | |
|             return src_backend_id;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static char * fmt_size(size_t size) {
 | |
|     static char buffer[128];
 | |
|     if (size >= 1024*1024) {
 | |
|         sprintf(buffer, "%zuM", size/1024/1024);
 | |
|     } else {
 | |
|         sprintf(buffer, "%zuK", size/1024);
 | |
|     }
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
 | |
|     int cur_split = 0;
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
 | |
|             ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
 | |
|             fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
 | |
|                 sched->splits[cur_split].n_inputs);
 | |
|             for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
 | |
|                 fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
 | |
|                     fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
 | |
|             }
 | |
|             fprintf(stderr, "\n");
 | |
|             cur_split++;
 | |
|         }
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         if (ggml_is_view_op(node->op)) {
 | |
|             continue;
 | |
|         }
 | |
|         ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
 | |
|         fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
 | |
|             fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * src = node->src[j];
 | |
|             if (src == NULL) {
 | |
|                 continue;
 | |
|             }
 | |
|             ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
 | |
|             fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
 | |
|                 fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
 | |
|         }
 | |
|         fprintf(stderr, "\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| //#define DEBUG_PASS1
 | |
| //#define DEBUG_PASS2
 | |
| //#define DEBUG_PASS3
 | |
| //#define DEBUG_PASS4
 | |
| 
 | |
| // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
 | |
| static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
 | |
|     // reset splits
 | |
|     sched->n_splits = 0;
 | |
|     sched->n_graph_inputs = 0;
 | |
|     sched->is_reset = false;
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /* .mem_size =   */ sizeof(sched->context_buffer),
 | |
|         /* .mem_buffer = */ sched->context_buffer,
 | |
|         /* .no_alloc =   */ true
 | |
|     };
 | |
| 
 | |
|     ggml_free(sched->ctx);
 | |
| 
 | |
|     sched->ctx = ggml_init(params);
 | |
|     if (sched->ctx == NULL) {
 | |
|         fprintf(stderr, "%s: failed to initialize context\n", __func__);
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     // pass 1: assign backends to ops with pre-allocated inputs
 | |
|     for (int i = 0; i < graph->n_leafs; i++) {
 | |
|         struct ggml_tensor * leaf = graph->leafs[i];
 | |
|         int * leaf_backend_id = &tensor_backend_id(leaf);
 | |
|         if (*leaf_backend_id != -1) {
 | |
|             // do not overwrite user assignments
 | |
|             continue;
 | |
|         }
 | |
|         *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         int * node_backend_id = &tensor_backend_id(node);
 | |
|         if (*node_backend_id != -1) {
 | |
|             // do not overwrite user assignments
 | |
|             continue;
 | |
|         }
 | |
|         *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
 | |
|         // src
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * src = node->src[j];
 | |
|             if (src == NULL) {
 | |
|                 continue;
 | |
|             }
 | |
|             int * src_backend_id = &tensor_backend_id(src);
 | |
|             if (*src_backend_id == -1) {
 | |
|                 *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #ifdef DEBUG_PASS1
 | |
|     fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
 | |
| #endif
 | |
| 
 | |
|     // pass 2: expand current backend assignments
 | |
|     // assign the same backend to adjacent nodes
 | |
|     // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
 | |
|     // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
 | |
| 
 | |
| 
 | |
|     // pass 2.2 expand gpu down
 | |
|     {
 | |
|         int cur_backend_id = -1;
 | |
|         for (int i = 0; i < graph->n_nodes; i++) {
 | |
|             struct ggml_tensor * node = graph->nodes[i];
 | |
|             if (ggml_is_view_op(node->op)) {
 | |
|                 continue;
 | |
|             }
 | |
|             int * node_backend_id = &tensor_backend_id(node);
 | |
|             if (*node_backend_id != -1) {
 | |
|                 if (*node_backend_id == sched->n_backends - 1) {
 | |
|                     // skip cpu (lowest prio backend)
 | |
|                     cur_backend_id = -1;
 | |
|                 } else {
 | |
|                     cur_backend_id = *node_backend_id;
 | |
|                 }
 | |
|             } else {
 | |
|                 *node_backend_id = cur_backend_id;
 | |
|                 SET_CAUSE(node, "2.2");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     // pass 2.1 expand gpu up
 | |
|     {
 | |
|         int cur_backend_id = -1;
 | |
|         for (int i = graph->n_nodes - 1; i >= 0; i--) {
 | |
|             struct ggml_tensor * node = graph->nodes[i];
 | |
|             if (ggml_is_view_op(node->op)) {
 | |
|                 continue;
 | |
|             }
 | |
|             int * node_backend_id = &tensor_backend_id(node);
 | |
|             if (*node_backend_id != -1) {
 | |
|                 if (*node_backend_id == sched->n_backends - 1) {
 | |
|                     // skip cpu (lowest prio backend)
 | |
|                     cur_backend_id = -1;
 | |
|                 } else {
 | |
|                     cur_backend_id = *node_backend_id;
 | |
|                 }
 | |
|             } else {
 | |
|                 *node_backend_id = cur_backend_id;
 | |
|                 SET_CAUSE(node, "2.1");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     // pass 2.4 expand rest down
 | |
|     {
 | |
|         int cur_backend_id = -1;
 | |
|         for (int i = 0; i < graph->n_nodes; i++) {
 | |
|             struct ggml_tensor * node = graph->nodes[i];
 | |
|             if (ggml_is_view_op(node->op)) {
 | |
|                 continue;
 | |
|             }
 | |
|             int * node_backend_id = &tensor_backend_id(node);
 | |
|             if (*node_backend_id != -1) {
 | |
|                 cur_backend_id = *node_backend_id;
 | |
|             } else {
 | |
|                 *node_backend_id = cur_backend_id;
 | |
|                 SET_CAUSE(node, "2.4");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     // pass 2.3 expand rest up
 | |
|     {
 | |
|         int cur_backend_id = -1;
 | |
|         for (int i = graph->n_nodes - 1; i >= 0; i--) {
 | |
|             struct ggml_tensor * node = graph->nodes[i];
 | |
|             if (ggml_is_view_op(node->op)) {
 | |
|                 continue;
 | |
|             }
 | |
|             int * node_backend_id = &tensor_backend_id(node);
 | |
|             if (*node_backend_id != -1) {
 | |
|                 cur_backend_id = *node_backend_id;
 | |
|             } else {
 | |
|                 *node_backend_id = cur_backend_id;
 | |
|                 SET_CAUSE(node, "2.3");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef DEBUG_PASS2
 | |
|     fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
 | |
| #endif
 | |
| 
 | |
|     // pass 3: assign backends to remaining src from dst and view_src
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         int * cur_backend_id = &tensor_backend_id(node);
 | |
|         if (node->view_src != NULL && *cur_backend_id == -1) {
 | |
|             *cur_backend_id = tensor_backend_id(node->view_src);
 | |
|             SET_CAUSE(node, "3.vsrc");
 | |
|         }
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             struct ggml_tensor * src = node->src[j];
 | |
|             if (src == NULL) {
 | |
|                 continue;
 | |
|             }
 | |
|             int * src_backend_id = &tensor_backend_id(src);
 | |
|             if (*src_backend_id == -1) {
 | |
|                 if (src->view_src != NULL) {
 | |
|                     // views are always on the same backend as the source
 | |
|                     *src_backend_id = tensor_backend_id(src->view_src);
 | |
|                     SET_CAUSE(src, "3.vsrc");
 | |
|                 } else {
 | |
|                     *src_backend_id = *cur_backend_id;
 | |
|                     SET_CAUSE(src, "3.cur");
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #ifdef DEBUG_PASS3
 | |
|     fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
 | |
| #endif
 | |
| 
 | |
|     // pass 4: split graph, find tensors that need to be copied
 | |
|     {
 | |
|         int i_split = 0;
 | |
|         struct ggml_backend_sched_split * split = &sched->splits[0];
 | |
|         // find the backend of the first split, skipping view ops
 | |
|         for (int i = 0; i < graph->n_nodes; i++) {
 | |
|             struct ggml_tensor * node = graph->nodes[i];
 | |
|             if (!ggml_is_view_op(node->op)) {
 | |
|                 split->backend_id = tensor_backend_id(node);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         split->i_start = 0;
 | |
|         split->n_inputs = 0;
 | |
|         memset(split->inputs, 0, sizeof(split->inputs)); //HACK
 | |
|         int cur_backend_id = split->backend_id;
 | |
|         for (int i = 0; i < graph->n_nodes; i++) {
 | |
|             struct ggml_tensor * node = graph->nodes[i];
 | |
| 
 | |
|             if (ggml_is_view_op(node->op)) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             const int node_backend_id = tensor_backend_id(node);
 | |
| 
 | |
|             GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
 | |
| 
 | |
|             // check if we should start a new split based on the sources of the current node
 | |
|             bool need_new_split = false;
 | |
|             if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
 | |
|                 for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                     struct ggml_tensor * src = node->src[j];
 | |
|                     if (src == NULL) {
 | |
|                         continue;
 | |
|                     }
 | |
|                     // check if a weight is on a different backend
 | |
|                     // by starting a new split, the memory of the previously offloaded weights can be reused
 | |
|                     if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
 | |
|                         int src_backend_id = tensor_backend_id(src);
 | |
|                         if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
 | |
|                             need_new_split = true;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     // check if the split has too many inputs
 | |
|                     if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
 | |
|                         const size_t id = hash_id(src);
 | |
|                         int src_backend_id = sched->tensor_backend_id[id];
 | |
|                         if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
 | |
|                             //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
 | |
|                             need_new_split = true;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (node_backend_id != cur_backend_id || need_new_split) {
 | |
|                 split->i_end = i;
 | |
|                 i_split++;
 | |
|                 if (i_split >= sched->splits_capacity) {
 | |
|                     sched->splits_capacity *= 2;
 | |
|                     sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
 | |
|                     GGML_ASSERT(sched->splits != NULL);
 | |
|                 }
 | |
|                 GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
 | |
|                 split = &sched->splits[i_split];
 | |
|                 split->backend_id = node_backend_id;
 | |
|                 split->i_start = i;
 | |
|                 split->n_inputs = 0;
 | |
|                 cur_backend_id = node_backend_id;
 | |
|             }
 | |
| 
 | |
|             // find inputs that are not on the same backend
 | |
|             for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|                 struct ggml_tensor * src = node->src[j];
 | |
|                 if (src == NULL) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 const int src_backend_id = tensor_backend_id(src);
 | |
|                 assert(src_backend_id != -1); // all inputs should be assigned by now
 | |
| 
 | |
|                 if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1)  {
 | |
|                     size_t id = hash_id(src);
 | |
|                     if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
 | |
|                         ggml_backend_t backend = sched->backends[src_backend_id];
 | |
|                         for (int c = 0; c < sched->n_copies; c++) {
 | |
|                             struct ggml_tensor * tensor_copy;
 | |
|                             if (c == sched->cur_copy) {
 | |
|                                 tensor_copy = src; // use the original tensor as the current copy
 | |
|                             } else {
 | |
|                                 tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
 | |
|                                 ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
 | |
|                             }
 | |
|                             if (sched->n_copies > 1) {
 | |
|                                 ggml_set_input(tensor_copy);
 | |
|                                 ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
 | |
|                             }
 | |
|                             sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
 | |
|                             SET_CAUSE(tensor_copy, "4.cpy");
 | |
|                         }
 | |
|                         int n_graph_inputs = sched->n_graph_inputs++;
 | |
|                         GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
 | |
|                         sched->graph_inputs[n_graph_inputs] = src;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (src_backend_id != node_backend_id) {
 | |
|                     // create a copy of the input in the split's backend
 | |
|                     const size_t id = hash_id(src);
 | |
|                     if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
 | |
|                         ggml_backend_t backend = sched->backends[cur_backend_id];
 | |
|                         for (int c = 0; c < sched->n_copies; c++) {
 | |
|                             struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
 | |
|                             ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
 | |
|                             if (sched->n_copies > 1) {
 | |
|                                 ggml_set_input(tensor_copy);
 | |
|                                 ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
 | |
|                             }
 | |
|                             sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
 | |
|                             SET_CAUSE(tensor_copy, "4.cpy");
 | |
|                         }
 | |
|                         int n_inputs = split->n_inputs++;
 | |
|                         GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
 | |
|                         split->inputs[n_inputs] = src;
 | |
|                     }
 | |
|                     node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         split->i_end = graph->n_nodes;
 | |
|         sched->n_splits = i_split + 1;
 | |
|     }
 | |
| #ifdef DEBUG_PASS4
 | |
|     fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
 | |
| #endif
 | |
| 
 | |
|     // create copies of the graph for each split
 | |
|     // TODO: avoid this copy
 | |
|     struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
 | |
|     for (int i = 0; i < sched->n_splits; i++) {
 | |
|         struct ggml_backend_sched_split * split = &sched->splits[i];
 | |
|         split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
 | |
| 
 | |
|         // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
 | |
|         for (int j = 0; j < split->n_inputs; j++) {
 | |
|             assert(graph_copy->size > (graph_copy->n_nodes + 1));
 | |
| 
 | |
|             struct ggml_tensor * input = split->inputs[j];
 | |
|             const size_t input_id = hash_id(input);
 | |
|             struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
 | |
| 
 | |
|             // add a dependency to the input source so that it is not freed before the copy is done
 | |
|             struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
 | |
|             input_dep->src[0] = input;
 | |
|             sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
 | |
|             graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
 | |
| 
 | |
|             // add a dependency to the input copy so that it is allocated at the start of the split
 | |
|             sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
 | |
|             graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
 | |
|         }
 | |
| 
 | |
|         for (int j = split->i_start; j < split->i_end; j++) {
 | |
|             assert(graph_copy->size > graph_copy->n_nodes);
 | |
|             sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
 | |
|             graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (sched->n_copies > 1) {
 | |
|         // add input copies as leafs so that they are allocated first
 | |
|         for (int i = 0; i < sched->n_graph_inputs; i++) {
 | |
|             struct ggml_tensor * input = sched->graph_inputs[i];
 | |
|             size_t id = hash_id(input);
 | |
|             int backend_id = tensor_backend_id(input);
 | |
|             for (int c = 0; c < sched->n_copies; c++) {
 | |
|                 struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
 | |
|                 sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
 | |
|                 graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i < sched->n_splits; i++) {
 | |
|             struct ggml_backend_sched_split * split = &sched->splits[i];
 | |
|             int backend_id = split->backend_id;
 | |
|             for (int j = 0; j < split->n_inputs; j++) {
 | |
|                 struct ggml_tensor * input = split->inputs[j];
 | |
|                 size_t id = hash_id(input);
 | |
|                 for (int c = 0; c < sched->n_copies; c++) {
 | |
|                     struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
 | |
|                     sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
 | |
|                     graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // add leafs from the original graph
 | |
|     for (int i = 0; i < graph->n_leafs; i++) {
 | |
|         struct ggml_tensor * leaf = graph->leafs[i];
 | |
|         sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
 | |
|         graph_copy->leafs[graph_copy->n_leafs++] = leaf;
 | |
|     }
 | |
| 
 | |
|     sched->graph = graph_copy;
 | |
| }
 | |
| 
 | |
| static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
 | |
|     // allocate graph
 | |
|     if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
 | |
|         // the re-allocation may cause the split inputs to be moved to a different address
 | |
|         ggml_backend_sched_synchronize(sched);
 | |
| #ifndef NDEBUG
 | |
|         fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
 | |
| #endif
 | |
|         ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
 | |
|         if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
 | |
|             fprintf(stderr, "%s: failed to allocate graph\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
 | |
|     struct ggml_backend_sched_split * splits = sched->splits;
 | |
| 
 | |
|     for (int i = 0; i < sched->n_splits; i++) {
 | |
|         struct ggml_backend_sched_split * split = &splits[i];
 | |
|         int split_backend_id = split->backend_id;
 | |
|         ggml_backend_t split_backend = sched->backends[split_backend_id];
 | |
| 
 | |
|         // copy the input tensors to the split backend
 | |
|         for (int j = 0; j < split->n_inputs; j++) {
 | |
|             ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
 | |
|             struct ggml_tensor * input = split->inputs[j];
 | |
|             struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
 | |
| 
 | |
|             if (input->flags & GGML_TENSOR_FLAG_INPUT) {
 | |
|                 // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
 | |
|                 if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
 | |
|                     ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
 | |
|                 } else {
 | |
|                     ggml_backend_synchronize(split_backend);
 | |
|                 }
 | |
|                 ggml_backend_tensor_copy(input, input_cpy);
 | |
|             } else {
 | |
|                 // wait for the split backend to finish using the input before overwriting it
 | |
|                 if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
 | |
|                     ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
 | |
|                 } else {
 | |
|                     ggml_backend_synchronize(split_backend);
 | |
|                 }
 | |
|                 ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!sched->callback_eval) {
 | |
|             enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
 | |
|             if (ec != GGML_STATUS_SUCCESS) {
 | |
|                 return ec;
 | |
|             }
 | |
|         } else {
 | |
|             // similar to ggml_backend_compare_graph_backend
 | |
|             for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
 | |
|                 struct ggml_tensor * t = split->graph.nodes[j0];
 | |
| 
 | |
|                 // check if the user needs data from this node
 | |
|                 bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
 | |
| 
 | |
|                 int j1 = j0;
 | |
| 
 | |
|                 // determine the range [j0, j1] of nodes that can be computed together
 | |
|                 while (!need && j1 < split->graph.n_nodes - 1) {
 | |
|                     t = split->graph.nodes[++j1];
 | |
|                     need = sched->callback_eval(t, true, sched->callback_eval_user_data);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
 | |
| 
 | |
|                 enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
 | |
|                 if (ec != GGML_STATUS_SUCCESS) {
 | |
|                     return ec;
 | |
|                 }
 | |
| 
 | |
|                 // TODO: pass backend to the callback, then the user can decide if they want to synchronize
 | |
|                 ggml_backend_synchronize(split_backend);
 | |
| 
 | |
|                 if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 j0 = j1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // record the event of this copy
 | |
|         if (split->n_inputs > 0) {
 | |
|             if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
 | |
|                 ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
 | |
| 
 | |
|     return GGML_STATUS_SUCCESS;
 | |
| }
 | |
| 
 | |
| ggml_backend_sched_t ggml_backend_sched_new(
 | |
|         ggml_backend_t * backends,
 | |
|         ggml_backend_buffer_type_t * bufts,
 | |
|         int n_backends,
 | |
|         size_t graph_size,
 | |
|         bool parallel) {
 | |
|     GGML_ASSERT(n_backends > 0);
 | |
|     GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
 | |
|     GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
 | |
| 
 | |
|     struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
 | |
| 
 | |
|     // initialize hash table
 | |
|     sched->hash_set          = ggml_hash_set_new(graph_size);
 | |
|     sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
 | |
|     sched->tensor_copies     = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
 | |
| 
 | |
|     const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
 | |
|     sched->node_backend_ids  = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
 | |
|     sched->leaf_backend_ids  = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
 | |
| 
 | |
|     sched->n_backends = n_backends;
 | |
| 
 | |
|     sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
 | |
| 
 | |
|     const int initial_splits_capacity = 16;
 | |
|     sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
 | |
|     sched->splits_capacity = initial_splits_capacity;
 | |
| 
 | |
|     for (int b = 0; b < n_backends; b++) {
 | |
|         sched->backends[b] = backends[b];
 | |
|         sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
 | |
|         GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
 | |
|         if (sched->n_copies > 1) {
 | |
|             for (int c = 0; c < sched->n_copies; c++) {
 | |
|                 sched->events[b][c] = ggml_backend_event_new(backends[b]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
 | |
| 
 | |
|     ggml_backend_sched_reset(sched);
 | |
| 
 | |
|     return sched;
 | |
| }
 | |
| 
 | |
| void ggml_backend_sched_free(ggml_backend_sched_t sched) {
 | |
|     if (sched == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     for (int b = 0; b < sched->n_backends; b++) {
 | |
|         for (int c = 0; c < sched->n_copies; c++) {
 | |
|             ggml_backend_event_free(sched->events[b][c]);
 | |
|         }
 | |
|     }
 | |
|     ggml_gallocr_free(sched->galloc);
 | |
|     ggml_free(sched->ctx);
 | |
|     free(sched->splits);
 | |
|     free(sched->hash_set.keys);
 | |
|     free(sched->tensor_backend_id);
 | |
|     free(sched->tensor_copies);
 | |
|     free(sched->node_backend_ids);
 | |
|     free(sched->leaf_backend_ids);
 | |
|     free(sched);
 | |
| }
 | |
| 
 | |
| void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
 | |
|     // reset state for the next run
 | |
|     if (!sched->is_reset) {
 | |
|         size_t hash_size = sched->hash_set.size;
 | |
|         memset(sched->hash_set.keys,      0, sizeof(sched->hash_set.keys[0])     * hash_size); // NOLINT
 | |
|         memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
 | |
|         memset(sched->tensor_copies,      0, sizeof(sched->tensor_copies[0])     * hash_size);
 | |
| 
 | |
|         sched->is_reset = true;
 | |
|     }
 | |
|     sched->is_alloc = false;
 | |
| }
 | |
| 
 | |
| bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
 | |
|     GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
 | |
| 
 | |
|     ggml_backend_sched_split_graph(sched, measure_graph);
 | |
| 
 | |
|     // TODO: extract this to a separate function
 | |
|     if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_sched_reset(sched);
 | |
|     ggml_backend_sched_synchronize(sched);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
 | |
|     GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
 | |
| 
 | |
|     ggml_backend_sched_split_graph(sched, graph);
 | |
| 
 | |
|     if (!ggml_backend_sched_alloc_splits(sched)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     sched->is_alloc = true;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
 | |
|     enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
 | |
|     ggml_backend_sched_synchronize(sched);
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
 | |
|     if (!sched->is_reset && !sched->is_alloc) {
 | |
|         ggml_backend_sched_reset(sched);
 | |
|     }
 | |
| 
 | |
|     if (!sched->is_alloc) {
 | |
|         if (!ggml_backend_sched_alloc_graph(sched, graph)) {
 | |
|             return GGML_STATUS_ALLOC_FAILED;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ggml_backend_sched_compute_splits(sched);
 | |
| }
 | |
| 
 | |
| void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
 | |
|     for (int i = 0; i < sched->n_backends; i++) {
 | |
|         ggml_backend_synchronize(sched->backends[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
 | |
|     sched->callback_eval = callback;
 | |
|     sched->callback_eval_user_data = user_data;
 | |
| }
 | |
| 
 | |
| int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
 | |
|     return sched->n_splits;
 | |
| }
 | |
| 
 | |
| int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
 | |
|     return sched->n_copies;
 | |
| }
 | |
| 
 | |
| size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
 | |
|     int backend_index = ggml_backend_sched_backend_id(sched, backend);
 | |
|     GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
 | |
| 
 | |
|     return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
 | |
| }
 | |
| 
 | |
| void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
 | |
|     int backend_index = ggml_backend_sched_backend_id(sched, backend);
 | |
|     GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
 | |
|     tensor_backend_id(node) = backend_index;
 | |
| }
 | |
| 
 | |
| ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
 | |
|     int backend_index = tensor_backend_id(node);
 | |
|     if (backend_index == -1) {
 | |
|         return NULL;
 | |
|     }
 | |
|     return sched->backends[backend_index];
 | |
| }
 | |
| 
 | |
| // utils
 | |
| 
 | |
| void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
 | |
|     GGML_ASSERT(tensor->buffer == NULL);
 | |
|     GGML_ASSERT(tensor->view_src != NULL);
 | |
|     GGML_ASSERT(tensor->view_src->buffer != NULL);
 | |
|     GGML_ASSERT(tensor->view_src->data != NULL);
 | |
| 
 | |
|     tensor->buffer = buffer;
 | |
|     tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
 | |
|     tensor->backend = tensor->view_src->backend;
 | |
|     ggml_backend_buffer_init_tensor(buffer, tensor);
 | |
| }
 | |
| 
 | |
| void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
 | |
|     GGML_ASSERT(tensor->buffer == NULL);
 | |
|     GGML_ASSERT(tensor->data == NULL);
 | |
|     GGML_ASSERT(tensor->view_src == NULL);
 | |
|     GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
 | |
|     GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
 | |
|                 (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
 | |
| 
 | |
|     tensor->buffer = buffer;
 | |
|     tensor->data = addr;
 | |
|     ggml_backend_buffer_init_tensor(buffer, tensor);
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
 | |
|     struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
 | |
| 
 | |
|     GGML_ASSERT(src != NULL);
 | |
|     GGML_ASSERT(src->data && "graph must be allocated");
 | |
| 
 | |
|     size_t id = ggml_hash_insert(hash_set, src);
 | |
|     if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
 | |
|         return node_copies[ggml_hash_find(hash_set, src)];
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
 | |
|     if (src->view_src != NULL) {
 | |
|         dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
 | |
|         dst->view_offs = src->view_offs;
 | |
|     }
 | |
|     dst->op = src->op;
 | |
|     memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
 | |
|     ggml_set_name(dst, src->name);
 | |
| 
 | |
|     // copy src
 | |
|     for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|         struct ggml_tensor * s = src->src[i];
 | |
|         if (s == NULL) {
 | |
|             continue;
 | |
|         }
 | |
|         dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
 | |
|     }
 | |
| 
 | |
|     node_copies[id] = dst;
 | |
|     return dst;
 | |
| }
 | |
| 
 | |
| static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
 | |
|     size_t id = ggml_hash_find(hash_set, src);
 | |
|     if (node_init[id]) {
 | |
|         return;
 | |
|     }
 | |
|     node_init[id] = true;
 | |
| 
 | |
|     struct ggml_tensor * dst = node_copies[id];
 | |
|     if (dst->view_src != NULL) {
 | |
|         graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
 | |
|         ggml_backend_view_init(dst->view_src->buffer, dst);
 | |
|     }
 | |
|     else {
 | |
|         ggml_backend_tensor_copy(src, dst);
 | |
|     }
 | |
| 
 | |
|     // init src
 | |
|     for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|         struct ggml_tensor * s = src->src[i];
 | |
|         if (s == NULL) {
 | |
|             continue;
 | |
|         }
 | |
|         graph_copy_init_tensor(hash_set, node_copies, node_init, s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
 | |
|     struct ggml_hash_set hash_set = {
 | |
|         /* .size = */ graph->visited_hash_table.size,
 | |
|         /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
 | |
|     };
 | |
|     struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
 | |
|     bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /* .mem_size   = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
 | |
|         /* .mem_buffer = */ NULL,
 | |
|         /* .no_alloc   = */ true
 | |
|     };
 | |
| 
 | |
|     struct ggml_context * ctx_allocated = ggml_init(params);
 | |
|     struct ggml_context * ctx_unallocated = ggml_init(params);
 | |
| 
 | |
|     if (ctx_allocated == NULL || ctx_unallocated == NULL) {
 | |
|         fprintf(stderr, "failed to allocate context for graph copy\n");
 | |
|         free(hash_set.keys);
 | |
|         free(node_copies);
 | |
|         free(node_init);
 | |
|         ggml_free(ctx_allocated);
 | |
|         ggml_free(ctx_unallocated);
 | |
|         return (struct ggml_backend_graph_copy) {
 | |
|             /* .buffer           = */ NULL,
 | |
|             /* .ctx_allocated    = */ NULL,
 | |
|             /* .ctx_unallocated  = */ NULL,
 | |
|             /* .graph            = */ NULL,
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     // dup nodes
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
 | |
|     }
 | |
| 
 | |
|     // allocate nodes
 | |
|     ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
 | |
|     if (buffer == NULL) {
 | |
|         fprintf(stderr, "failed to allocate buffer for graph copy\n");
 | |
|         free(hash_set.keys);
 | |
|         free(node_copies);
 | |
|         free(node_init);
 | |
|         ggml_free(ctx_allocated);
 | |
|         ggml_free(ctx_unallocated);
 | |
|         return (struct ggml_backend_graph_copy) {
 | |
|             /* .buffer           = */ NULL,
 | |
|             /* .ctx_allocated    = */ NULL,
 | |
|             /* .ctx_unallocated  = */ NULL,
 | |
|             /* .graph            = */ NULL,
 | |
|         };
 | |
|     }
 | |
| 
 | |
|     //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
 | |
| 
 | |
|     // copy data and init views
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         graph_copy_init_tensor(hash_set, node_copies, node_init, node);
 | |
|     }
 | |
| 
 | |
|     // build graph copy
 | |
|     struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
 | |
|     for (int i = 0; i < graph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = graph->nodes[i];
 | |
|         struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
 | |
|         graph_copy->nodes[i] = node_copy;
 | |
|     }
 | |
|     graph_copy->n_nodes = graph->n_nodes;
 | |
| 
 | |
|     free(hash_set.keys);
 | |
|     free(node_copies);
 | |
|     free(node_init);
 | |
| 
 | |
|     return (struct ggml_backend_graph_copy) {
 | |
|         /* .buffer           = */ buffer,
 | |
|         /* .ctx_allocated    = */ ctx_allocated,
 | |
|         /* .ctx_unallocated  = */ ctx_unallocated,
 | |
|         /* .graph            = */ graph_copy,
 | |
|     };
 | |
| }
 | |
| 
 | |
| void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
 | |
|     ggml_backend_buffer_free(copy.buffer);
 | |
|     ggml_free(copy.ctx_allocated);
 | |
|     ggml_free(copy.ctx_unallocated);
 | |
| }
 | |
| 
 | |
| bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
 | |
|     struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
 | |
|     if (copy.buffer == NULL) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * g1 = graph;
 | |
|     struct ggml_cgraph * g2 = copy.graph;
 | |
| 
 | |
|     assert(g1->n_nodes == g2->n_nodes);
 | |
| 
 | |
|     for (int i = 0; i < g1->n_nodes; i++) {
 | |
|         //printf("eval %d/%d\n", i, g1->n_nodes);
 | |
|         struct ggml_tensor * t1 = g1->nodes[i];
 | |
|         struct ggml_tensor * t2 = g2->nodes[i];
 | |
| 
 | |
|         assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
 | |
| 
 | |
|         struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
 | |
|         struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
 | |
| 
 | |
|         ggml_backend_graph_compute(backend1, &g1v);
 | |
|         ggml_backend_graph_compute(backend2, &g2v);
 | |
| 
 | |
|         if (ggml_is_view_op(t1->op)) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         // compare results, calculate rms etc
 | |
|         if (!callback(i, t1, t2, user_data)) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_backend_graph_copy_free(copy);
 | |
| 
 | |
|     return true;
 | |
| }
 | 
