mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	 d8914fc47e
			
		
	
	d8914fc47e
	
	
	
		
			
			* Checkpoint from VS Code for coding agent session * Initial plan * Fix typo in --override-tensor-draft flag implementation * Add null termination for speculative tensor buffer overrides * Apply suggestions from code review * Apply suggestions from code review * Extract tensor override parsing logic to common function (addresses @slaren's feedback) * Apply suggestions from code review * Apply suggestions --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Diego Devesa <slarengh@gmail.com>
		
			
				
	
	
		
			267 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "common.h"
 | |
| #include "sampling.h"
 | |
| #include "speculative.h"
 | |
| #include "log.h"
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     common_params params;
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (params.n_predict < -1) {
 | |
|         LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     if (params.speculative.model.path.empty()) {
 | |
|         LOG_ERR("%s: --model-draft is required\n", __func__);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // init llama.cpp
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     llama_model * model_tgt = NULL;
 | |
|     //llama_model * model_dft = NULL;
 | |
| 
 | |
|     llama_context * ctx_tgt = NULL;
 | |
|     llama_context * ctx_dft = NULL;
 | |
| 
 | |
|     // load the target model
 | |
|     common_init_result llama_init_tgt = common_init_from_params(params);
 | |
| 
 | |
|     model_tgt = llama_init_tgt.model.get();
 | |
|     ctx_tgt   = llama_init_tgt.context.get();
 | |
| 
 | |
|     const llama_vocab * vocab = llama_model_get_vocab(model_tgt);
 | |
| 
 | |
|     // load the draft model
 | |
|     params.devices      = params.speculative.devices;
 | |
|     params.model        = params.speculative.model;
 | |
|     params.n_ctx        = params.speculative.n_ctx;
 | |
|     params.n_batch      = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch;
 | |
|     params.n_gpu_layers = params.speculative.n_gpu_layers;
 | |
| 
 | |
|     if (params.speculative.cpuparams.n_threads > 0) {
 | |
|         params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
 | |
|     }
 | |
| 
 | |
|     params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
 | |
|     params.tensor_buft_overrides     = params.speculative.tensor_buft_overrides;
 | |
| 
 | |
|     common_init_result llama_init_dft = common_init_from_params(params);
 | |
| 
 | |
|     //model_dft = llama_init_dft.model.get();
 | |
|     ctx_dft   = llama_init_dft.context.get();
 | |
| 
 | |
|     if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
 | |
|         LOG_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params.speculative.model.path.c_str(), params.model.path.c_str());
 | |
|     }
 | |
| 
 | |
|     // Tokenize the prompt
 | |
|     std::vector<llama_token> inp;
 | |
|     inp = common_tokenize(ctx_tgt, params.prompt, true, true);
 | |
| 
 | |
|     if (llama_n_ctx(ctx_tgt) < (uint32_t) inp.size()) {
 | |
|         LOG_ERR("%s: the prompt exceeds the context size (%d tokens, ctx %d)\n", __func__, (int) inp.size(), llama_n_ctx(ctx_tgt));
 | |
| 
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (llama_n_batch(ctx_tgt) < (uint32_t) inp.size()) {
 | |
|         LOG_ERR("%s: the prompt exceeds the batch size (%d tokens, batch %d)\n", __func__, (int) inp.size(), llama_n_batch(ctx_tgt));
 | |
| 
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     LOG("\n\n");
 | |
| 
 | |
|     for (auto id : inp) {
 | |
|         LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
 | |
|     }
 | |
| 
 | |
|     // how many tokens to draft each time
 | |
|     int n_draft     = params.speculative.n_max;
 | |
|     int n_draft_min = params.speculative.n_min;
 | |
| 
 | |
|     float p_min = params.speculative.p_min;
 | |
| 
 | |
|     int n_predict = 0;
 | |
|     int n_drafted = 0;
 | |
|     int n_accept  = 0;
 | |
| 
 | |
|     // used to determine end of generation
 | |
|     bool has_eos = false;
 | |
| 
 | |
|     // ================================================
 | |
|     // everything until here is standard initialization
 | |
|     // the relevant stuff for speculative decoding starts here
 | |
| 
 | |
|     const auto t_enc_start = ggml_time_us();
 | |
| 
 | |
|     // target model sampling context
 | |
|     struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
 | |
| 
 | |
|     // eval the prompt
 | |
|     llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1));
 | |
| 
 | |
|     // note: keep the last token separate!
 | |
|     llama_token id_last = inp.back();
 | |
| 
 | |
|     // all tokens currently in the target context
 | |
|     llama_tokens prompt_tgt(inp.begin(), inp.end() - 1);
 | |
|     prompt_tgt.reserve(llama_n_ctx(ctx_tgt));
 | |
| 
 | |
|     int n_past = inp.size() - 1;
 | |
| 
 | |
|     // init the speculator
 | |
|     struct common_speculative_params params_spec;
 | |
|     params_spec.n_draft = n_draft;
 | |
|     params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
 | |
|     params_spec.p_min   = p_min;
 | |
| 
 | |
|     struct common_speculative * spec = common_speculative_init(ctx_tgt, ctx_dft);
 | |
|     for (auto &pair : params.speculative.replacements) {
 | |
|         common_speculative_add_replacement_tgt_dft(spec, pair.first.c_str(), pair.second.c_str());
 | |
|     }
 | |
| 
 | |
|     llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
 | |
| 
 | |
|     const auto t_enc_end = ggml_time_us();
 | |
| 
 | |
|     const auto t_dec_start = ggml_time_us();
 | |
| 
 | |
|     while (true) {
 | |
|         // optionally, generate draft tokens that can be appended to the target batch
 | |
|         //
 | |
|         // this is the most important part of the speculation. the more probable tokens that are provided here
 | |
|         // the better the performance will be. in theory, this computation can be performed asynchronously and even
 | |
|         // offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens
 | |
|         // from a cache or lookup tables.
 | |
|         //
 | |
|         llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last);
 | |
| 
 | |
|         //LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str());
 | |
| 
 | |
|         // always have a token to evaluate from before - id_last
 | |
|         common_batch_clear(batch_tgt);
 | |
|         common_batch_add  (batch_tgt, id_last, n_past++, { 0 }, true);
 | |
| 
 | |
|         // evaluate the target model on [id_last, draft0, draft1, ..., draftN-1]
 | |
|         {
 | |
|             // do not waste time on small drafts
 | |
|             if (draft.size() < (size_t) n_draft_min) {
 | |
|                 draft.clear();
 | |
|             }
 | |
| 
 | |
|             for (size_t i = 0; i < draft.size(); ++i) {
 | |
|                 common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
 | |
|             }
 | |
| 
 | |
|             //LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str());
 | |
| 
 | |
|             llama_decode(ctx_tgt, batch_tgt);
 | |
|         }
 | |
| 
 | |
|         // sample from the full target batch and return the accepted tokens based on the target sampler
 | |
|         //
 | |
|         // for each token to be accepted, the sampler would have to sample that same token
 | |
|         // in such cases, instead of decoding the sampled token as we normally do, we simply continue with the
 | |
|         // available logits from the batch and sample the next token until we run out of logits or the sampler
 | |
|         // disagrees with the draft
 | |
|         //
 | |
|         const auto ids = common_sampler_sample_and_accept_n(smpl, ctx_tgt, draft);
 | |
| 
 | |
|         //LOG_DBG("ids: %s\n", string_from(ctx_tgt, ids).c_str());
 | |
| 
 | |
|         GGML_ASSERT(ids.size() > 0); // there will always be at least one accepted token
 | |
| 
 | |
|         n_past    += ids.size() - 1;
 | |
|         n_drafted += draft.size(); // note: we ignore the discarded small drafts
 | |
|         n_accept  += ids.size() - 1;
 | |
|         n_predict += ids.size();
 | |
| 
 | |
|         // process the accepted tokens and update contexts
 | |
|         //
 | |
|         // this is the standard token post-processing that we normally do
 | |
|         // in this case, we do it for a group of accepted tokens at once
 | |
|         //
 | |
|         for (size_t i = 0; i < ids.size(); ++i) {
 | |
|             prompt_tgt.push_back(id_last);
 | |
| 
 | |
|             id_last = ids[i];
 | |
| 
 | |
|             if (llama_vocab_is_eog(vocab, id_last)) {
 | |
|                 has_eos = true;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             const std::string token_str = common_token_to_piece(ctx_tgt, id_last);
 | |
| 
 | |
|             if (params.use_color && i + 1 < ids.size()) {
 | |
|                 LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str());
 | |
|             } else {
 | |
|                 LOG("%s", token_str.c_str());
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         LOG_DBG("accepted %d/%d draft tokens, the last target token is: (%d)\n", (int) ids.size() - 1, (int) draft.size(), id_last);
 | |
| 
 | |
|         {
 | |
|             LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
 | |
| 
 | |
|             llama_memory_seq_rm(llama_get_memory(ctx_tgt), 0, n_past, -1);
 | |
|         }
 | |
| 
 | |
|         if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     auto t_dec_end = ggml_time_us();
 | |
| 
 | |
|     const int n_input = inp.size();
 | |
| 
 | |
|     LOG("\n\n");
 | |
| 
 | |
|     LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
 | |
|     LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
 | |
| 
 | |
|     LOG_INF("\n");
 | |
|     LOG_INF("n_draft   = %d\n", n_draft);
 | |
|     LOG_INF("n_predict = %d\n", n_predict);
 | |
|     LOG_INF("n_drafted = %d\n", n_drafted);
 | |
|     LOG_INF("n_accept  = %d\n", n_accept);
 | |
|     LOG_INF("accept    = %.3f%%\n", 100.0f * n_accept / n_drafted);
 | |
| 
 | |
|     LOG_INF("\n");
 | |
|     LOG_INF("draft:\n\n");
 | |
| 
 | |
|     llama_perf_context_print(ctx_dft);
 | |
| 
 | |
|     LOG_INF("\n");
 | |
|     LOG_INF("target:\n\n");
 | |
|     common_perf_print(ctx_tgt, smpl);
 | |
| 
 | |
|     common_sampler_free(smpl);
 | |
|     common_speculative_free(spec);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     LOG("\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 |