mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 00131d6eaf
			
		
	
	00131d6eaf
	
	
	
		
			
			* test-thread-safety : each context uses a single sequence * embedding : handle --parallel argument ggml-ci * save-load : handle -np 1 ggml-ci * thread-safety : avoid overriding threads, reduce test case arg ggml-ci
llama.cpp/example/embedding
This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.
Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
Unix-based systems (Linux, macOS, etc.):
./llama-embedding -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>/dev/null
Windows:
llama-embedding.exe -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>$null
The above command will output space-separated float values.
extra parameters
--embd-normalize integer
| integer | description | formula | 
|---|---|---|
| -1 | none | |
| 0 | max absolute int16 | \Large{{32760 * x_i} \over\max \lvert x_i\rvert} | 
| 1 | taxicab | \Large{x_i \over\sum \lvert x_i\rvert} | 
| 2 | euclidean (default) | \Large{x_i \over\sqrt{\sum x_i^2}} | 
| >2 | p-norm | \Large{x_i \over\sqrt[p]{\sum \lvert x_i\rvert^p}} | 
--embd-output-format 'string'
| 'string' | description | |
|---|---|---|
| '' | same as before | (default) | 
| 'array' | single embeddings | [[x_1,...,x_n]] | 
| multiple embeddings | [[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]] | |
| 'json' | openai style | |
| 'json+' | add cosine similarity matrix | 
--embd-separator "string"
| "string" | |
|---|---|
| "\n" | (default) | 
| "<#embSep#>" | for exemple | 
| "<#sep#>" | other exemple | 
examples
Unix-based systems (Linux, macOS, etc.):
./llama-embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2  --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
Windows:
llama-embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2  --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null