mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-02 09:12:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			240 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			240 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# HF gptneox--> gguf conversion
 | 
						|
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import argparse
 | 
						|
import json
 | 
						|
import os
 | 
						|
import struct
 | 
						|
import sys
 | 
						|
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from transformers import AutoTokenizer  # type: ignore[import]
 | 
						|
 | 
						|
if 'NO_LOCAL_GGUF' not in os.environ:
 | 
						|
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
 | 
						|
import gguf
 | 
						|
 | 
						|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
 | 
						|
 | 
						|
 | 
						|
def bytes_to_unicode():
 | 
						|
    """
 | 
						|
    Returns list of utf-8 byte and a corresponding list of unicode strings.
 | 
						|
    The reversible bpe codes work on unicode strings.
 | 
						|
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | 
						|
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | 
						|
    This is a significant percentage of your normal, say, 32K bpe vocab.
 | 
						|
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | 
						|
    And avoids mapping to whitespace/control characters the bpe code barfs on.
 | 
						|
    """
 | 
						|
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
 | 
						|
    cs = bs[:]
 | 
						|
    n = 0
 | 
						|
    for b in range(2**8):
 | 
						|
        if b not in bs:
 | 
						|
            bs.append(b)
 | 
						|
            cs.append(2**8+n)
 | 
						|
            n += 1
 | 
						|
    return dict(zip(bs, (chr(n) for n in cs)))
 | 
						|
 | 
						|
 | 
						|
def count_model_parts(dir_model: Path) -> int:
 | 
						|
    num_parts = 0
 | 
						|
    for filename in os.listdir(dir_model):
 | 
						|
        if filename.startswith("pytorch_model-"):
 | 
						|
            num_parts += 1
 | 
						|
 | 
						|
    if num_parts > 0:
 | 
						|
        print("gguf: found " + str(num_parts) + " model parts")
 | 
						|
    return num_parts
 | 
						|
 | 
						|
 | 
						|
def parse_args() -> argparse.Namespace:
 | 
						|
    parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file")
 | 
						|
    parser.add_argument("--vocab-only",  action="store_true",    help="extract only the vocab")
 | 
						|
    parser.add_argument("--outfile",     type=Path,              help="path to write to; default: based on input")
 | 
						|
    parser.add_argument("model",         type=Path,              help="directory containing model file, or model file itself (*.bin)")
 | 
						|
    parser.add_argument("ftype",     type=int, choices=[0, 1],   help="output format - use 0 for float32, 1 for float16", default = 1)
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
args = parse_args()
 | 
						|
 | 
						|
dir_model = args.model
 | 
						|
ftype = args.ftype
 | 
						|
if not dir_model.is_dir():
 | 
						|
    print(f'Error: {args.model} is not a directory', file = sys.stderr)
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# possible tensor data types
 | 
						|
#   ftype == 0 -> float32
 | 
						|
#   ftype == 1 -> float16
 | 
						|
 | 
						|
# map from ftype to string
 | 
						|
ftype_str = ["f32", "f16"]
 | 
						|
 | 
						|
if args.outfile is not None:
 | 
						|
    fname_out = args.outfile
 | 
						|
else:
 | 
						|
    # output in the same directory as the model by default
 | 
						|
    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
 | 
						|
 | 
						|
print("gguf: loading model "+dir_model.name)
 | 
						|
 | 
						|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | 
						|
    hparams = json.load(f)
 | 
						|
 | 
						|
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
 | 
						|
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
						|
 | 
						|
    sys.exit()
 | 
						|
 | 
						|
# get number of model parts
 | 
						|
num_parts = count_model_parts(dir_model)
 | 
						|
 | 
						|
ARCH=gguf.MODEL_ARCH.GPTNEOX
 | 
						|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | 
						|
 | 
						|
print("gguf: get model metadata")
 | 
						|
 | 
						|
block_count = hparams["num_hidden_layers"]
 | 
						|
 | 
						|
gguf_writer.add_name(dir_model.name)
 | 
						|
gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | 
						|
gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
						|
gguf_writer.add_block_count(block_count)
 | 
						|
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
						|
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
 | 
						|
gguf_writer.add_head_count(hparams["num_attention_heads"])
 | 
						|
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
 | 
						|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
 | 
						|
 | 
						|
# TOKENIZATION
 | 
						|
 | 
						|
print("gguf: get tokenizer metadata")
 | 
						|
 | 
						|
tokens: list[bytearray] = []
 | 
						|
 | 
						|
tokenizer_json_file = dir_model / 'tokenizer.json'
 | 
						|
if not tokenizer_json_file.is_file():
 | 
						|
    print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# gpt2 tokenizer
 | 
						|
gguf_writer.add_tokenizer_model("gpt2")
 | 
						|
 | 
						|
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
 | 
						|
    tokenizer_json = json.load(f)
 | 
						|
 | 
						|
print("gguf: get gpt2 tokenizer vocab")
 | 
						|
 | 
						|
vocab_size = len(tokenizer_json["model"]["vocab"])
 | 
						|
 | 
						|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
 | 
						|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | 
						|
 | 
						|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | 
						|
byte_encoder = bytes_to_unicode()
 | 
						|
byte_decoder = {v: k for k, v in byte_encoder.items()}
 | 
						|
 | 
						|
for i in range(vocab_size):
 | 
						|
    if i in reverse_vocab:
 | 
						|
        try:
 | 
						|
            text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
 | 
						|
        except KeyError:
 | 
						|
            text = bytearray()
 | 
						|
            for c in reverse_vocab[i]:
 | 
						|
                if ord(c) < 256:  # single byte character
 | 
						|
                    text.append(byte_decoder[ord(c)])
 | 
						|
                else:  # multibyte special token character
 | 
						|
                    text.extend(c.encode('utf-8'))
 | 
						|
    else:
 | 
						|
        print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
 | 
						|
        pad_token = f"[PAD{i}]".encode("utf8")
 | 
						|
        text = bytearray(pad_token)
 | 
						|
 | 
						|
    tokens.append(text)
 | 
						|
 | 
						|
gguf_writer.add_token_list(tokens)
 | 
						|
 | 
						|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
 | 
						|
special_vocab.add_to_gguf(gguf_writer)
 | 
						|
 | 
						|
# TENSORS
 | 
						|
 | 
						|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | 
						|
 | 
						|
# tensor info
 | 
						|
print("gguf: get tensor metadata")
 | 
						|
 | 
						|
if num_parts == 0:
 | 
						|
    part_names = iter(("pytorch_model.bin",))
 | 
						|
else:
 | 
						|
    part_names = (
 | 
						|
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | 
						|
    )
 | 
						|
 | 
						|
for part_name in part_names:
 | 
						|
    if args.vocab_only:
 | 
						|
        break
 | 
						|
    print("gguf: loading model part '" + part_name + "'")
 | 
						|
    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | 
						|
 | 
						|
    for name in model_part.keys():
 | 
						|
        data = model_part[name]
 | 
						|
 | 
						|
        # we don't need these
 | 
						|
        if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
 | 
						|
            continue
 | 
						|
 | 
						|
        old_dtype = data.dtype
 | 
						|
 | 
						|
        # convert any unsupported data types to float32
 | 
						|
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
						|
            data = data.to(torch.float32)
 | 
						|
 | 
						|
        data = data.squeeze().numpy()
 | 
						|
 | 
						|
        # map tensor names
 | 
						|
        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | 
						|
        if new_name is None:
 | 
						|
            print("Can not map tensor '" + name + "'")
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
        n_dims = len(data.shape)
 | 
						|
        data_dtype = data.dtype
 | 
						|
 | 
						|
        # if f32 desired, convert any float16 to float32
 | 
						|
        if ftype == 0 and data_dtype == np.float16:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
            data = data.astype(np.float16)
 | 
						|
 | 
						|
        print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
						|
 | 
						|
        gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
print("gguf: write header")
 | 
						|
gguf_writer.write_header_to_file()
 | 
						|
print("gguf: write metadata")
 | 
						|
gguf_writer.write_kv_data_to_file()
 | 
						|
if not args.vocab_only:
 | 
						|
    print("gguf: write tensors")
 | 
						|
    gguf_writer.write_tensors_to_file()
 | 
						|
 | 
						|
gguf_writer.close()
 | 
						|
 | 
						|
print(f"gguf: model successfully exported to '{fname_out}'")
 | 
						|
print("")
 |