Files
llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_p021.comp
Jeff Bolz eddfb43850 vulkan: Optimize mul_mat_vec p021 and nc shaders (#12505)
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders

* vulkan: Optimize mul_mat_vec p021 and nc shaders.

These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).

Using subgroupAdd in the p021 shader also helps, use that conditionally.
2025-03-22 09:40:11 +01:00

155 lines
4.5 KiB
Plaintext

#version 450
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#if USE_SUBGROUP_ADD
#extension GL_KHR_shader_subgroup_arithmetic : enable
#endif
#define FLOAT_TYPE float
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];};
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
layout(constant_id = 0) const int BLOCK_SIZE = 32;
// gqa_ratio is in the range [1,8]
layout(constant_id = 1) const uint gqa_ratio = 1;
layout (push_constant) uniform parameter
{
uint ncols_x;
uint nrows_x;
uint nchannels_x;
uint nchannels_y;
uint b_offset;
uint d_offset;
} p;
#if !USE_SUBGROUP_ADD
shared FLOAT_TYPE tmp[8][BLOCK_SIZE];
#endif
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint row_x = gl_GlobalInvocationID.y;
uint channel, channel_x;
// When gqa_ratio > 1, each invocation does multiple rows.
// The row in the A matrix is starting from channel / gqa_ratio and the
// rows in the B matrix are [channel, channel+gqa_ratio).
// When gpa_ratio is 1, each invocation does one row.
if (gqa_ratio > 1) {
channel_x = gl_GlobalInvocationID.z;
channel = channel_x * gqa_ratio;
} else {
channel = gl_GlobalInvocationID.z;
channel_x = channel / (p.nchannels_y / p.nchannels_x);;
}
const uint nrows_y = p.ncols_x;
const uint nrows_dst = p.nrows_x;
const uint row_dst = row_x;
FLOAT_TYPE temp[8];
[[unroll]] for (uint i = 0; i < 8; ++i) {
temp[i] = FLOAT_TYPE(0.0f);
}
// Detect alignment for vector loads
bool is_aligned = (p.ncols_x % 4) == 0 && (p.nchannels_x % 4) == 0 && (nrows_y % 4) == 0;
for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
// Use vec4 loads if aligned
if (col_x0 + 4*BLOCK_SIZE <= p.ncols_x && is_aligned) {
uint col_x = col_x0 + 4*tid;
const uint row_y = col_x;
// x is transposed and permuted
const uint ix = row_x*p.nchannels_x*p.ncols_x + channel_x*p.ncols_x + col_x;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
// y is not transposed but permuted
const uint iy = (channel + c)*nrows_y + row_y;
vec4 bv4 = data_b_v4[iy / 4];
temp[c] += dot(av4, bv4);
}
col_x0 += 3*BLOCK_SIZE;
} else {
const uint col_x = col_x0 + tid;
if (col_x >= p.ncols_x) {
break;
}
// x is transposed and permuted
const uint ix = row_x*p.nchannels_x*p.ncols_x + channel_x*p.ncols_x + col_x;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
const uint row_y = col_x;
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
// y is not transposed but permuted
const uint iy = (channel + c)*nrows_y + row_y;
temp[c] = fma(xi, FLOAT_TYPE(data_b[iy]), temp[c]);
}
}
}
#if USE_SUBGROUP_ADD
// reduce vec4 at a time
vec4 t = vec4(temp[0], temp[1], temp[2], temp[3]);
t = subgroupAdd(t);
temp[0] = t[0];
temp[1] = t[1];
temp[2] = t[2];
temp[3] = t[3];
if (gqa_ratio > 4) {
t = vec4(temp[4], temp[5], temp[6], temp[7]);
t = subgroupAdd(t);
temp[4] = t[0];
temp[5] = t[1];
temp[6] = t[2];
temp[7] = t[3];
}
#else
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
tmp[c][tid] = temp[c];
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
temp[c] += tmp[c][tid + s];
tmp[c][tid] = temp[c];
}
}
barrier();
}
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
temp[c] = tmp[c][tid];
}
#endif
if (tid == 0) {
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
// dst is not transposed and not permuted
const uint idst = (channel + c)*nrows_dst + row_dst;
dst[idst] = temp[c];
}
}
}