mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
This commit adds support for passing a prompt file to the model conversion targets/scripts. It also updates the logits.cpp to print out embedding information in the same format as when running the original embedding model. The motivation for this is that it allows us to pass files of different sizes when running the converted models and validating the logits. This can be particularly important when testing the sliding window functionality of models where the sequence length needs to exceed a certain number of tokens to trigger the sliding window logic.
82 lines
2.0 KiB
Bash
Executable File
82 lines
2.0 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
set -e
|
|
|
|
# Parse command line arguments
|
|
MODEL_PATH=""
|
|
MODEL_NAME=""
|
|
PROMPTS_FILE=""
|
|
|
|
# First argument is always model path
|
|
if [ $# -gt 0 ] && [[ "$1" != --* ]]; then
|
|
MODEL_PATH="$1"
|
|
shift
|
|
fi
|
|
|
|
# Parse remaining arguments
|
|
while [[ $# -gt 0 ]]; do
|
|
case $1 in
|
|
--prompts-file|-pf)
|
|
PROMPTS_FILE="$2"
|
|
shift 2
|
|
;;
|
|
*)
|
|
# If MODEL_NAME not set and this isn't a flag, use as model name
|
|
if [ -z "$MODEL_NAME" ] && [[ "$1" != --* ]]; then
|
|
MODEL_NAME="$1"
|
|
fi
|
|
shift
|
|
;;
|
|
esac
|
|
done
|
|
|
|
# Set defaults
|
|
MODEL_PATH="${MODEL_PATH:-"$EMBEDDING_MODEL_PATH"}"
|
|
MODEL_NAME="${MODEL_NAME:-$(basename "$MODEL_PATH")}"
|
|
|
|
if [ -t 0 ]; then
|
|
CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
|
|
else
|
|
# Process piped JSON data and convert to binary (matching logits.cpp format)
|
|
TEMP_FILE=$(mktemp /tmp/tmp.XXXXXX.binn)
|
|
python3 -c "
|
|
import json
|
|
import sys
|
|
import struct
|
|
|
|
data = json.load(sys.stdin)
|
|
|
|
# Flatten all embeddings completely
|
|
flattened = []
|
|
for item in data:
|
|
embedding = item['embedding']
|
|
for token_embedding in embedding:
|
|
flattened.extend(token_embedding)
|
|
|
|
print(f'Total embedding values: {len(flattened)}', file=sys.stderr)
|
|
|
|
# Write as binary floats - matches logitc.cpp fwrite format
|
|
with open('$TEMP_FILE', 'wb') as f:
|
|
for value in flattened:
|
|
f.write(struct.pack('f', value))
|
|
"
|
|
CPP_EMBEDDINGS="$TEMP_FILE"
|
|
trap "rm -f $TEMP_FILE" EXIT
|
|
fi
|
|
|
|
# Build the semantic_check.py command
|
|
SEMANTIC_CMD="python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
|
|
--python-embeddings data/pytorch-${MODEL_NAME}-embeddings.bin \
|
|
--cpp-embeddings $CPP_EMBEDDINGS"
|
|
|
|
# Add prompts file if specified, otherwise use default prompt
|
|
if [ -n "$PROMPTS_FILE" ]; then
|
|
SEMANTIC_CMD="$SEMANTIC_CMD --prompts-file \"$PROMPTS_FILE\""
|
|
else
|
|
SEMANTIC_CMD="$SEMANTIC_CMD --prompt \"Hello world today\""
|
|
fi
|
|
|
|
# Execute the command
|
|
eval $SEMANTIC_CMD
|
|
|