Files
llama.cpp/examples/model-conversion/scripts/causal/run-casual-gen-embeddings-org.py
Daniel Bevenius 407c23786d model-conversion : fix pyright errors (#15770)
This commit addresses type errors reported by pyright in the model
conversion scripts.
2025-09-03 18:28:36 +02:00

115 lines
4.4 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import os
import importlib
import torch
import numpy as np
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from pathlib import Path
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
args = parser.parse_args()
model_path = os.environ.get('MODEL_PATH', args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable")
config = AutoConfig.from_pretrained(model_path)
print("Model type: ", config.model_type)
print("Vocab size: ", config.vocab_size)
print("Hidden size: ", config.hidden_size)
print("Number of layers: ", config.num_hidden_layers)
print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}ForCausalLM"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
print("Falling back to AutoModelForCausalLM")
model = AutoModelForCausalLM.from_pretrained(model_path)
else:
model = AutoModelForCausalLM.from_pretrained(model_path)
print(f"Model class: {type(model)}")
#print(f"Model file: {type(model).__module__}")
model_name = os.path.basename(model_path)
print(f"Model name: {model_name}")
prompt = "Hello world today"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
with torch.no_grad():
outputs = model(input_ids, output_hidden_states=True)
# Extract hidden states from the last layer
# outputs.hidden_states is a tuple of (num_layers + 1) tensors
# Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size]
last_hidden_states = outputs.hidden_states[-1]
# Get embeddings for all tokens
token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension
print(f"Hidden states shape: {last_hidden_states.shape}")
print(f"Token embeddings shape: {token_embeddings.shape}")
print(f"Hidden dimension: {token_embeddings.shape[-1]}")
print(f"Number of tokens: {token_embeddings.shape[0]}")
# Save raw token embeddings
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
# Save all token embeddings as binary
print(token_embeddings)
token_embeddings.astype(np.float32).tofile(bin_filename)
# Save as text for inspection
with open(txt_filename, "w") as f:
for i, embedding in enumerate(token_embeddings):
for j, val in enumerate(embedding):
f.write(f"{i} {j} {val:.6f}\n")
# Print embeddings per token in the requested format
print("\nToken embeddings:")
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
for i, embedding in enumerate(token_embeddings):
# Format: show first few values, ..., then last few values
if len(embedding) > 10:
# Show first 3 and last 3 values with ... in between
first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3])
last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:])
print(f"embedding {i}: {first_vals} ... {last_vals}")
else:
# If embedding is short, show all values
vals = " ".join(f"{val:8.6f}" for val in embedding)
print(f"embedding {i}: {vals}")
# Also show token info for reference
print(f"\nToken reference:")
for i, token in enumerate(tokens):
print(f" Token {i}: {repr(token)}")
print(f"Saved bin logits to: {bin_filename}")
print(f"Saved txt logist to: {txt_filename}")