mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* add glm edge chat model * use config partial_rotary_factor as rope ratio * support for glm edge model * vision model support * remove debug info * fix format * llava.cpp trailing whitespace * remove unused AutoTokenizer * Update src/llama.cpp for not contain <|end|> or </s> Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> * add edge template * fix chat template * fix confict * fix confict * fix ci err * fix format err * fix template err * 9b hf chat support * format * format clip.cpp * fix format * Apply suggestions from code review * Apply suggestions from code review * Update examples/llava/clip.cpp * fix format * minor : style --------- Co-authored-by: liyuhang <yuhang.li@zhipuai.cn> Co-authored-by: piDack <pcdack@hotmail.co> Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> Co-authored-by: liyuhang <yuhang.li@aminer.cn> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			34 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			34 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
import torch
 | 
						|
from transformers import AutoModel
 | 
						|
 | 
						|
ap = argparse.ArgumentParser()
 | 
						|
ap.add_argument("-m", "--model", help="Path to GLM model")
 | 
						|
args = ap.parse_args()
 | 
						|
 | 
						|
# find the model part that includes the the multimodal projector weights
 | 
						|
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
 | 
						|
checkpoint = model.state_dict()
 | 
						|
 | 
						|
# get a list of mm tensor names
 | 
						|
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.adapter.")]
 | 
						|
 | 
						|
# store these tensors in a new dictionary and torch.save them
 | 
						|
projector = {name: checkpoint[name].float() for name in mm_tensors}
 | 
						|
torch.save(projector, f"{args.model}/glm.projector")
 | 
						|
 | 
						|
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.vit.model.vision_model.")]
 | 
						|
if len(clip_tensors) > 0:
 | 
						|
    clip = {name.replace("vision.vit.model.", ""): checkpoint[name].float() for name in clip_tensors}
 | 
						|
    torch.save(clip, f"{args.model}/glm.clip")
 | 
						|
 | 
						|
    # added tokens should be removed to be able to convert Mistral models
 | 
						|
    if os.path.exists(f"{args.model}/added_tokens.json"):
 | 
						|
        with open(f"{args.model}/added_tokens.json", "w") as f:
 | 
						|
            f.write("{}\n")
 | 
						|
 | 
						|
print("Done!")
 | 
						|
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
 | 
						|
print(f"Also, use {args.model}glm.projector to prepare a glm-encoder.gguf file.")
 |