mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 99009e72f8
			
		
	
	99009e72f8
	
	
	
		
			
			* Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			1449 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			1449 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <atomic>
 | |
| #include <assert.h>
 | |
| 
 | |
| #include <cuda_runtime.h>
 | |
| #include <cublas_v2.h>
 | |
| #include <cuda_fp16.h>
 | |
| 
 | |
| #include "ggml-cuda.h"
 | |
| #include "ggml.h"
 | |
| 
 | |
| static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 | |
| 
 | |
| #define CUDA_CHECK(err)                                                                 \
 | |
|     do {                                                                                \
 | |
|         cudaError_t err_ = (err);                                                       \
 | |
|         if (err_ != cudaSuccess) {                                                      \
 | |
|             fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__,   \
 | |
|                 cudaGetErrorString(err_));                                              \
 | |
|             exit(1);                                                                    \
 | |
|         }                                                                               \
 | |
|     } while (0)
 | |
| 
 | |
| #define CUBLAS_CHECK(err)                                                               \
 | |
|     do {                                                                                \
 | |
|         cublasStatus_t err_ = (err);                                                    \
 | |
|         if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
 | |
|             fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__);    \
 | |
|             exit(1);                                                                    \
 | |
|         }                                                                               \
 | |
|     } while (0)
 | |
| 
 | |
| typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1);
 | |
| typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
 | |
| typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream);
 | |
| typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v);
 | |
| 
 | |
| // QK = number of values after dequantization
 | |
| // QR = QK / number of values before dequantization
 | |
| 
 | |
| #define QK4_0 32
 | |
| #define QR4_0 2
 | |
| typedef struct {
 | |
|     half    d;              // delta
 | |
|     uint8_t qs[QK4_0 / 2];  // nibbles / quants
 | |
| } block_q4_0;
 | |
| static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
 | |
| 
 | |
| #define QK4_1 32
 | |
| #define QR4_1 2
 | |
| typedef struct {
 | |
|     half    d;              // delta
 | |
|     half    m;              // min
 | |
|     uint8_t qs[QK4_1 / 2];  // nibbles / quants
 | |
| } block_q4_1;
 | |
| static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
 | |
| 
 | |
| #define QK5_0 32
 | |
| #define QR5_0 2
 | |
| typedef struct {
 | |
|     half d;                 // delta
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_0 / 2];  // nibbles / quants
 | |
| } block_q5_0;
 | |
| static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
 | |
| 
 | |
| #define QK5_1 32
 | |
| #define QR5_1 2
 | |
| typedef struct {
 | |
|     half d;                 // delta
 | |
|     half m;                 // min
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_1 / 2];  // nibbles / quants
 | |
| } block_q5_1;
 | |
| static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
 | |
| 
 | |
| #define QK8_0 32
 | |
| #define QR8_0 1
 | |
| typedef struct {
 | |
|     half    d;              // delta
 | |
|     int8_t  qs[QK8_0];      // quants
 | |
| } block_q8_0;
 | |
| static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
 | |
| 
 | |
| //================================= k-quants
 | |
| 
 | |
| #define QK_K 256
 | |
| 
 | |
| typedef struct {
 | |
|     uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
 | |
|     uint8_t qs[QK_K/4];      // quants
 | |
|     half d;                  // super-block scale for quantized scales
 | |
|     half dmin;               // super-block scale for quantized mins
 | |
| } block_q2_k;
 | |
| static_assert(sizeof(block_q2_k) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_k block size/padding");
 | |
| 
 | |
| typedef struct {
 | |
|     uint8_t hmask[QK_K/8];
 | |
|     uint8_t qs[QK_K/4]; // nibbles / quants
 | |
|     uint8_t scales[3*QK_K/64];
 | |
|     half d;
 | |
| } block_q3_k;
 | |
| static_assert(sizeof(block_q3_k) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_k block size/padding");
 | |
| 
 | |
| typedef struct {
 | |
|     half d;                    // super-block scale for quantized scales
 | |
|     half dmin;                 // super-block scale for quantized mins
 | |
|     uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
 | |
|     uint8_t qs[QK_K/2];        // 4--bit quants
 | |
| } block_q4_k;
 | |
| static_assert(sizeof(block_q4_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_k block size/padding");
 | |
| 
 | |
| typedef struct {
 | |
|     half    d;                   // super-block scale for quantized scales
 | |
|     half    dmin;                // super-block scale for quantized mins
 | |
|     uint8_t scales[3*QK_K/64];   // scales, quantized with 6 bits
 | |
|     uint8_t qh[QK_K/8];          // quants, high bit
 | |
|     uint8_t qs[QK_K/2];          // quants, low 4 bits
 | |
| } block_q5_k;
 | |
| static_assert(sizeof(block_q5_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_k block size/padding");
 | |
| 
 | |
| typedef struct {
 | |
|     uint8_t ql[QK_K/2];   // quants, lower 4 bits
 | |
|     uint8_t qh[QK_K/4];   // quants, upper 2 bits
 | |
|     int8_t  scales[QK_K/16]; // scales
 | |
|     half    d;         // delta
 | |
| } block_q6_k;
 | |
| static_assert(sizeof(block_q6_k) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_k block size/padding");
 | |
| 
 | |
| #define WARP_SIZE 32
 | |
| 
 | |
| #define CUDA_MUL_BLOCK_SIZE 256
 | |
| 
 | |
| #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
 | |
| 
 | |
| // dmmv = dequantize_mul_mat_vec
 | |
| #ifndef GGML_CUDA_DMMV_X
 | |
| #define GGML_CUDA_DMMV_X 32
 | |
| #endif
 | |
| #ifndef GGML_CUDA_DMMV_Y
 | |
| #define GGML_CUDA_DMMV_Y 1
 | |
| #endif
 | |
| 
 | |
| static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
 | |
|     const int i = blockDim.x*blockIdx.x + threadIdx.x;
 | |
| 
 | |
|     if (i >= kx) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = x[i] * y[i%ky];
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q4_0 * x = (const block_q4_0 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
| 
 | |
|     const uint8_t vui = x[ib].qs[iqs];
 | |
| 
 | |
|     const int8_t vi0 = vui & 0xF;
 | |
|     const int8_t vi1 = vui >> 4;
 | |
| 
 | |
|     v0 = (vi0 - 8)*d;
 | |
|     v1 = (vi1 - 8)*d;
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q4_1 * x = (const block_q4_1 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
|     const float m = x[ib].m;
 | |
| 
 | |
|     const uint8_t vui = x[ib].qs[iqs];
 | |
| 
 | |
|     const int8_t vi0 = vui & 0xF;
 | |
|     const int8_t vi1 = vui >> 4;
 | |
| 
 | |
|     v0 = vi0*d + m;
 | |
|     v1 = vi1*d + m;
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q5_0 * x = (const block_q5_0 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[ib].qh, sizeof(qh));
 | |
| 
 | |
|     const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
 | |
|     const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
 | |
| 
 | |
|     const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
 | |
|     const int32_t x1 = ((x[ib].qs[iqs] >>  4) | xh_1) - 16;
 | |
| 
 | |
|     v0 = x0*d;
 | |
|     v1 = x1*d;
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q5_1 * x = (const block_q5_1 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
|     const float m = x[ib].m;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[ib].qh, sizeof(qh));
 | |
| 
 | |
|     const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
 | |
|     const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
 | |
| 
 | |
|     const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
 | |
|     const int32_t x1 = ((x[ib].qs[iqs] >>  4) | xh_1);
 | |
| 
 | |
|     v0 = x0*d + m;
 | |
|     v1 = x1*d + m;
 | |
| }
 | |
| 
 | |
| static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const block_q8_0 * x = (const block_q8_0 *) vx;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
| 
 | |
|     const int8_t vi0 = x[ib].qs[iqs + 0];
 | |
|     const int8_t vi1 = x[ib].qs[iqs + 1];
 | |
| 
 | |
|     v0 = vi0*d;
 | |
|     v1 = vi1*d;
 | |
| }
 | |
| 
 | |
| //================================== k-quants
 | |
| 
 | |
| static __global__ void dequantize_block_q2_k(const void * vx, float * yy) {
 | |
| 
 | |
|     const int i   = blockIdx.x;
 | |
|     const int tid = threadIdx.x;
 | |
|     const int n   = tid/32;
 | |
|     const int l   = tid - 32*n;
 | |
|     const int is  = 8*n + l/16;
 | |
| 
 | |
|     const block_q2_k * x = (const block_q2_k *) vx;
 | |
| 
 | |
|     const uint8_t q = x[i].qs[32*n + l];
 | |
|     float * y = yy + i*QK_K + 128*n;
 | |
| 
 | |
|     float dall = x[i].d;
 | |
|     float dmin = x[i].dmin;
 | |
|     y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
 | |
|     y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
 | |
|     y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
 | |
|     y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
 | |
| 
 | |
| }
 | |
| 
 | |
| static __device__ void vec_dot_q2_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
 | |
| 
 | |
|     const block_q2_k * x = (const block_q2_k *) vx;
 | |
| 
 | |
|     // if n is 0, we want to do the lower 128, else the upper 128,
 | |
|     // covering y[l+0],  y[l+32], y[l+64], y[l+96] and
 | |
|     //          y[l+16], y[l+48], y[l+80], y[l+112]
 | |
|     int n = iqs/128;                // 0 or 1
 | |
|     int r = iqs - 128*n;            // 0...120 in steps of 8
 | |
|     int l = r/8;                    // 0...15 in steps of 1
 | |
| 
 | |
|     const float   * y = yy + 128*n + l;
 | |
|     const uint8_t * q = x[ib].qs + 32*n + l;
 | |
|     const uint8_t * s = x[ib].scales + 8*n;
 | |
| 
 | |
|     const float dall = x[ib].d;
 | |
|     const float dmin = x[ib].dmin;
 | |
| 
 | |
|     float sum = y[  0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4))
 | |
|               + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4))
 | |
|               + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4))
 | |
|               + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4))
 | |
|               + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4))
 | |
|               + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4))
 | |
|               + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4))
 | |
|               + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4));
 | |
| 
 | |
|     result = sum;
 | |
| 
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q3_k(const void * vx, float * yy) {
 | |
| 
 | |
|     int r = threadIdx.x/4;
 | |
|     int i = blockIdx.x;
 | |
|     int tid = r/2;
 | |
|     int is0 = r%2;
 | |
|     int l0 = 16*is0 + 4*(threadIdx.x%4);
 | |
|     int n = tid / 4;
 | |
|     int j = tid - 4*n;
 | |
| 
 | |
|     const block_q3_k * x = (const block_q3_k *) vx;
 | |
| 
 | |
|     uint8_t m = 1 << (4*n + j);
 | |
|     int is = 8*n + 2*j + is0;
 | |
|     int shift = 2*j;
 | |
| 
 | |
|     int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
 | |
|                 is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
 | |
|                 is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
 | |
|                           (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
 | |
|     float d_all = x[i].d;
 | |
|     float dl = d_all * (us - 32);
 | |
| 
 | |
|     float * y = yy + i*QK_K + 128*n + 32*j;
 | |
|     const uint8_t * q = x[i].qs + 32*n;
 | |
|     const uint8_t * hm = x[i].hmask;
 | |
| 
 | |
|     for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
 | |
| 
 | |
| }
 | |
| 
 | |
| static __device__ void vec_dot_q3_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
 | |
| 
 | |
|     const block_q3_k * x = (const block_q3_k *) vx;
 | |
| 
 | |
|     const uint32_t kmask1 = 0x03030303;
 | |
|     const uint32_t kmask2 = 0x0f0f0f0f;
 | |
| 
 | |
|     uint32_t aux[3];
 | |
|     uint32_t utmp[4];
 | |
| 
 | |
|     // if n is 0, we want to do the lower 128, else the upper 128,
 | |
|     // covering y[l+0],  y[l+32], y[l+64], y[l+96] and
 | |
|     //          y[l+16], y[l+48], y[l+80], y[l+112]
 | |
|     int n = iqs/128;                // 0 or 1
 | |
|     int r = iqs - 128*n;            // 0...120 in steps of 8
 | |
|     int l = r/8;                    // 0...15 in steps of 1
 | |
| 
 | |
|     const float   * y = yy + 128*n + l;
 | |
|     const uint8_t * q = x[ib].qs + 32*n + l;
 | |
|     const uint8_t * hm = x[ib].hmask + l;
 | |
|     const int8_t  * s = (const int8_t *)utmp + 8*n;
 | |
| 
 | |
|     memcpy(aux, x[ib].scales, 12);
 | |
|     utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
 | |
|     utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
 | |
|     utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
 | |
|     utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
 | |
| 
 | |
|     const float dall = x[ib].d;
 | |
| 
 | |
|     const uint8_t m = 1 << (4*n);
 | |
| 
 | |
|     float sum = y[  0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4))
 | |
|               + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4))
 | |
|               + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4))
 | |
|               + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4))
 | |
|               + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4))
 | |
|               + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4))
 | |
|               + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4))
 | |
|               + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4));
 | |
| 
 | |
|     result = sum * dall;
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
 | |
|     if (j < 4) {
 | |
|         d = q[j] & 63; m = q[j + 4] & 63;
 | |
|     } else {
 | |
|         d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
 | |
|         m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q4_k(const void * vx, float * yy) {
 | |
|     const block_q4_k * x = (const block_q4_k *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     //// assume 64 threads - this is very slightly better than the one below
 | |
|     //const int tid = threadIdx.x;
 | |
|     //const int il  = tid/16;
 | |
|     //const int ir  = tid%16;
 | |
|     //const int is  = 2*il;
 | |
|     //const int n   = 2;
 | |
| 
 | |
|     // assume 32 threads
 | |
|     const int tid = threadIdx.x;
 | |
|     const int il  = tid/8;
 | |
|     const int ir  = tid%8;
 | |
|     const int is  = 2*il;
 | |
|     const int n   = 4;
 | |
| 
 | |
|     float * y = yy + i*QK_K + 64*il + n*ir;
 | |
| 
 | |
|     const float dall = x[i].d;
 | |
|     const float dmin = x[i].dmin;
 | |
| 
 | |
|     const uint8_t * q = x[i].qs + 32*il + n*ir;
 | |
| 
 | |
|     uint8_t sc, m;
 | |
|     get_scale_min_k4(is + 0, x[i].scales, sc, m);
 | |
|     const float d1 = dall * sc; const float m1 = dmin * m;
 | |
|     get_scale_min_k4(is + 1, x[i].scales, sc, m);
 | |
|     const float d2 = dall * sc; const float m2 = dmin * m;
 | |
|     for (int l = 0; l < n; ++l) {
 | |
|         y[l + 0] = d1 * (q[l] & 0xF) - m1;
 | |
|         y[l +32] = d2 * (q[l] >>  4) - m2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __device__ void vec_dot_q4_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
 | |
| 
 | |
|     const block_q4_k * x = (const block_q4_k *) vx;
 | |
| 
 | |
|                                     // iqs is in 0...248 in steps of 8 =>
 | |
|     const int j  = iqs / 64;        // j  is in 0...3
 | |
|     const int ir = (iqs - 64*j)/2;  // ir is in 0...28 in steps of 4
 | |
|     const int is = 2*j;             // is is in 0...6 in steps of 2
 | |
| 
 | |
|     const float   * y = yy + 64*j + ir;
 | |
|     const uint8_t * q = x[ib].qs + 32*j + ir;
 | |
| 
 | |
|     const float dall = x[ib].d;
 | |
|     const float dmin = x[ib].dmin;
 | |
| 
 | |
|     uint8_t sc, m;
 | |
|     get_scale_min_k4(is + 0, x[ib].scales, sc, m);
 | |
|     const float d1 = dall * sc;
 | |
|     const float m1 = dmin * m;
 | |
|     get_scale_min_k4(is + 1, x[ib].scales, sc, m);
 | |
|     const float d2 = dall * sc;
 | |
|     const float m2 = dmin * m;
 | |
| 
 | |
|     float sum = 0;
 | |
|     for (int k = 0; k < 4; ++k) {
 | |
|         sum += y[k +  0] * (d1 * (q[k] & 0xF) - m1);
 | |
|         sum += y[k + 32] * (d2 * (q[k] >>  4) - m2);
 | |
|     }
 | |
|     result = sum;
 | |
| 
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q5_k(const void * vx, float * yy) {
 | |
|     const block_q5_k * x = (const block_q5_k *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     // assume 64 threads - this is very slightly better than the one below
 | |
|     const int tid = threadIdx.x;
 | |
|     const int il  = tid/16;   // il is in 0...3
 | |
|     const int ir  = tid%16;   // ir is in 0...15
 | |
|     const int is  = 2*il;     // is is in 0...6
 | |
| 
 | |
|     float * y = yy + i*QK_K + 64*il + 2*ir;
 | |
| 
 | |
|     const float dall = x[i].d;
 | |
|     const float dmin = x[i].dmin;
 | |
| 
 | |
|     const uint8_t * ql = x[i].qs + 32*il + 2*ir;
 | |
|     const uint8_t * qh = x[i].qh + 2*ir;
 | |
| 
 | |
|     uint8_t sc, m;
 | |
|     get_scale_min_k4(is + 0, x[i].scales, sc, m);
 | |
|     const float d1 = dall * sc; const float m1 = dmin * m;
 | |
|     get_scale_min_k4(is + 1, x[i].scales, sc, m);
 | |
|     const float d2 = dall * sc; const float m2 = dmin * m;
 | |
| 
 | |
|     uint8_t   hm  = 1 << (2*il);
 | |
|     y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
 | |
|     y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
 | |
|     hm <<= 1;
 | |
|     y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
 | |
|     y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
 | |
| }
 | |
| 
 | |
| static __device__ void vec_dot_q5_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
 | |
| 
 | |
|     const block_q5_k * x = (const block_q5_k *) vx;
 | |
| 
 | |
|                                     // iqs is in 0...248 in steps of 8 =>
 | |
|     const int j  = iqs / 64;        // j  is in 0...3
 | |
|     const int ir = (iqs - 64*j)/2;  // ir is in 0...28 in steps of 4
 | |
|     const int is = 2*j;             // is is in 0...6 in steps of 2
 | |
| 
 | |
|     const float   * y  = yy + 64*j + ir;
 | |
|     const uint8_t * ql = x[ib].qs + 32*j + ir;
 | |
|     const uint8_t * qh = x[ib].qh + ir;
 | |
| 
 | |
|     const float dall = x[ib].d;
 | |
|     const float dmin = x[ib].dmin;
 | |
| 
 | |
|     uint8_t sc, m;
 | |
|     get_scale_min_k4(is + 0, x[ib].scales, sc, m);
 | |
|     const float d1 = dall * sc;
 | |
|     const float m1 = dmin * m;
 | |
|     get_scale_min_k4(is + 1, x[ib].scales, sc, m);
 | |
|     const float d2 = dall * sc;
 | |
|     const float m2 = dmin * m;
 | |
| 
 | |
|     uint8_t   hm  = 1 << is;
 | |
|     float sum = 0;
 | |
|     for (int k = 0; k < 4; ++k) {
 | |
|         sum += y[k +  0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1);
 | |
|     }
 | |
|     hm <<= 1;
 | |
|     for (int k = 0; k < 4; ++k) {
 | |
|         sum += y[k + 32] * (d2 * ((ql[k] >>  4) + (qh[k] & hm ? 16 : 0)) - m2);
 | |
|     }
 | |
|     result = sum;
 | |
| 
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q6_k(const void * vx, float * yy) {
 | |
|     const block_q6_k * x = (const block_q6_k *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     // assume 64 threads - this is very slightly better than the one below
 | |
|     const int tid = threadIdx.x;
 | |
|     const int ip  = tid/32;   // ip is 0 or 1
 | |
|     const int il  = tid - 32*ip; // 0...32
 | |
|     const int is  = 8*ip + il/16;
 | |
| 
 | |
|     float * y = yy + i*QK_K + 128*ip + il;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t * ql = x[i].ql + 64*ip + il;
 | |
|     const uint8_t   qh = x[i].qh[32*ip + il];
 | |
|     const int8_t  * sc = x[i].scales + is;
 | |
| 
 | |
|     y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
 | |
|     y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
 | |
|     y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
 | |
|     y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
 | |
| }
 | |
| 
 | |
| static __device__ void vec_dot_q6_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
 | |
| 
 | |
|     const block_q6_k * x = (const block_q6_k *) vx;
 | |
| 
 | |
|     const int ip = iqs / 128;        // 0 or 1
 | |
|     const int il = (iqs - 128*ip)/8; // 0...15
 | |
|     const int is = 8*ip;
 | |
| 
 | |
|     const float * y = yy + 128*ip + il;
 | |
| 
 | |
|     const float d = x[ib].d;
 | |
| 
 | |
|     const uint8_t * ql = x[ib].ql + 64*ip + il;
 | |
|     const uint8_t * qh = x[ib].qh + 32*ip + il;
 | |
|     const int8_t  * sc = x[ib].scales + is;
 | |
| 
 | |
|     result = y[  0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32)
 | |
|            + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32)
 | |
|            + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32)
 | |
|            + y[ 96] * d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32)
 | |
|            + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32)
 | |
|            + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32)
 | |
|            + y[ 80] * d * sc[5] * ((int8_t)((ql[16]  >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32)
 | |
|            + y[112] * d * sc[7] * ((int8_t)((ql[48]  >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32);
 | |
| 
 | |
| }
 | |
| 
 | |
| static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){
 | |
|     const half * x = (const half *) vx;
 | |
| 
 | |
|     v0 = __half2float(x[ib + 0]);
 | |
|     v1 = __half2float(x[ib + 1]);
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
 | |
| static __global__ void dequantize_block(const void * vx, float * y, const int k) {
 | |
|     const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ib = i/qk; // block index
 | |
|     const int iqs = (i%qk)/qr; // quant index
 | |
|     const int iybs = i - i%qk; // y block start index
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
|     // dequantize
 | |
|     float & v0 = y[iybs + iqs + 0];
 | |
|     float & v1 = y[iybs + iqs + y_offset];
 | |
|     dequantize_kernel(vx, ib, iqs, v0, v1);
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
 | |
| static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) {
 | |
|     // qk = quantized weights per x block
 | |
|     // qr = number of quantized weights per data value in x block
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
|     const int tid = threadIdx.x;
 | |
| 
 | |
|     const int iter_stride = 2*GGML_CUDA_DMMV_X;
 | |
|     const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = 0; i < ncols; i += iter_stride) {
 | |
|         const int col = i + vals_per_iter*tid;
 | |
|         const int ib = (row*ncols + col)/qk; // x block index
 | |
|         const int iqs = (col%qk)/qr; // x quant index
 | |
|         const int iybs = col - col%qk; // y block start index
 | |
| 
 | |
| // processing >2 values per i iter is faster for fast GPUs
 | |
| #pragma unroll
 | |
|         for (int j = 0; j < vals_per_iter; j += 2) {
 | |
|             // process 2 vals per j iter
 | |
| 
 | |
|             // dequantize
 | |
|             float v0, v1;
 | |
|             dequantize_kernel(vx, ib, iqs + j/qr, v0, v1);
 | |
|             // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
 | |
| 
 | |
|             // matrix multiplication
 | |
|             tmp += v0 * y[iybs + iqs + j/qr + 0];
 | |
|             tmp += v1 * y[iybs + iqs + j/qr + y_offset];
 | |
|             // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
|     __syncthreads();
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <int n_thread, dot_kernel_k_t dot_kernel>
 | |
| static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y, float * dst, const int ncols) {
 | |
|     const int row = blockIdx.x*blockDim.y + threadIdx.y;
 | |
|     const int tid = threadIdx.x;
 | |
| 
 | |
|     const int iter_stride = QK_K;
 | |
|     const int vals_per_iter = iter_stride / n_thread;
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = 0; i < ncols; i += iter_stride) {
 | |
|         const int col = i + vals_per_iter*tid;
 | |
|         const int ib = ib0 + col/QK_K; // x block index
 | |
|         const int iqs = col%QK_K; // x quant index
 | |
|         const int iybs = col - col%QK_K; // y block start index
 | |
| 
 | |
|         float v;
 | |
|         dot_kernel(vx, ib, iqs, y + iybs, v);
 | |
|         tmp += v;
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
|     __syncthreads();
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
 | |
|     const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
 | |
|     mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q2_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
|     dequantize_block_q2_k<<<nb, 64, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q3_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
|     dequantize_block_q3_k<<<nb, 64, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
|     dequantize_block_q4_k<<<nb, 32, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q5_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
|     dequantize_block_q5_k<<<nb, 64, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q6_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK_K;
 | |
|     dequantize_block_q6_k<<<nb, 64, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q2_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2;
 | |
|     const dim3 block_dims(32, ny, 1);
 | |
|     dequantize_mul_mat_vec_k<32, vec_dot_q2_k><<<(nrows + ny - 1)/ny, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q3_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const dim3 block_dims(32, 2, 1);
 | |
|     dequantize_mul_mat_vec_k<32, vec_dot_q3_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const dim3 block_dims(32, 2, 1);
 | |
|     dequantize_mul_mat_vec_k<32, vec_dot_q4_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const dim3 block_dims(32, 2, 1);
 | |
|     dequantize_mul_mat_vec_k<32, vec_dot_q5_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q6_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const dim3 block_dims(32, 2, 1);
 | |
|     dequantize_mul_mat_vec_k<32, vec_dot_q6_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
 | |
|     const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
 | |
|     dequantize_block<32, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
 | |
| }
 | |
| 
 | |
| static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
 | |
|     GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
 | |
|     GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0);
 | |
|     const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
 | |
|     dequantize_mul_mat_vec<1, 1, convert_f16>
 | |
|         <<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
 | |
| }
 | |
| 
 | |
| static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_row_q4_0_cuda;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_row_q4_1_cuda;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_row_q5_0_cuda;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_row_q5_1_cuda;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_row_q8_0_cuda;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             return dequantize_row_q2_k_cuda;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             return dequantize_row_q3_k_cuda;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             return dequantize_row_q4_k_cuda;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             return dequantize_row_q5_k_cuda;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return dequantize_row_q6_k_cuda;
 | |
|         case GGML_TYPE_F16:
 | |
|             return convert_fp16_to_fp32_cuda;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static dequantize_mul_mat_vec_cuda_t ggml_get_dequantize_mul_mat_vec_cuda(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_mul_mat_vec_q4_0_cuda;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_mul_mat_vec_q4_1_cuda;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_mul_mat_vec_q5_0_cuda;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_mul_mat_vec_q5_1_cuda;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_mul_mat_vec_q8_0_cuda;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             return dequantize_mul_mat_vec_q2_k_cuda;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             return dequantize_mul_mat_vec_q3_k_cuda;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             return dequantize_mul_mat_vec_q4_k_cuda;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             return dequantize_mul_mat_vec_q5_k_cuda;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return dequantize_mul_mat_vec_q6_k_cuda;
 | |
|         case GGML_TYPE_F16:
 | |
|             return convert_mul_mat_vec_f16_cuda;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // buffer pool for cuda
 | |
| #define MAX_CUDA_BUFFERS 256
 | |
| 
 | |
| struct scoped_spin_lock {
 | |
|     std::atomic_flag& lock;
 | |
|     scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
 | |
|         while (lock.test_and_set(std::memory_order_acquire)) {
 | |
|             ; // spin
 | |
|         }
 | |
|     }
 | |
|     ~scoped_spin_lock() {
 | |
|         lock.clear(std::memory_order_release);
 | |
|     }
 | |
|     scoped_spin_lock(const scoped_spin_lock&) = delete;
 | |
|     scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
 | |
| };
 | |
| 
 | |
| struct cuda_buffer {
 | |
|     void * ptr = nullptr;
 | |
|     size_t size = 0;
 | |
| };
 | |
| 
 | |
| static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
 | |
| static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
 | |
| 
 | |
| static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
| 
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[i];
 | |
|         if (b.size >= size && b.ptr != nullptr) {
 | |
|             void * ptr = b.ptr;
 | |
|             *actual_size = b.size;
 | |
|             b.ptr = nullptr;
 | |
|             b.size = 0;
 | |
|             return ptr;
 | |
|         }
 | |
|     }
 | |
|     void * ptr;
 | |
|     CUDA_CHECK(cudaMalloc((void **) &ptr, size));
 | |
|     *actual_size = size;
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_pool_free(void * ptr, size_t size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
| 
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[i];
 | |
|         if (b.ptr == nullptr) {
 | |
|             b.ptr = ptr;
 | |
|             b.size = size;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
 | |
|     CUDA_CHECK(cudaFree(ptr));
 | |
| }
 | |
| 
 | |
| #define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
 | |
| #define GGML_CUDA_MAX_EVENTS 64
 | |
| static cublasHandle_t g_cublasH = nullptr;
 | |
| static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
 | |
| static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
 | |
| static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
 | |
| 
 | |
| void ggml_init_cublas() {
 | |
|     if (g_cublasH == nullptr) {
 | |
|         // create streams
 | |
|         for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
 | |
|             CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
 | |
|             CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
 | |
|         }
 | |
|         // create events
 | |
|         for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
 | |
|             CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
 | |
|         }
 | |
| 
 | |
|         // create cublas handle
 | |
|         CUBLAS_CHECK(cublasCreate(&g_cublasH));
 | |
|         CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
 | |
| 
 | |
|         // configure logging to stdout
 | |
|         // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void * ggml_cuda_host_malloc(size_t size) {
 | |
|     if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     void * ptr = nullptr;
 | |
|     cudaError_t err = cudaMallocHost((void **) &ptr, size);
 | |
|     if (err != cudaSuccess) {
 | |
|         fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
 | |
|             size/1024.0/1024.0, cudaGetErrorString(err));
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_host_free(void * ptr) {
 | |
|     CUDA_CHECK(cudaFreeHost(ptr));
 | |
| }
 | |
| 
 | |
| static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
 | |
|     const uint64_t ne0 = src->ne[0];
 | |
|     const uint64_t ne1 = src->ne[1];
 | |
|     const uint64_t nb0 = src->nb[0];
 | |
|     const uint64_t nb1 = src->nb[1];
 | |
|     const uint64_t nb2 = src->nb[2];
 | |
|     const uint64_t nb3 = src->nb[3];
 | |
|     const enum ggml_type type = src->type;
 | |
|     const size_t ts = ggml_type_size(type);
 | |
|     const size_t bs = ggml_blck_size(type);
 | |
| 
 | |
|     const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
 | |
|     if (nb0 == ts && nb1 == ts*ne0/bs) {
 | |
|         return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
 | |
|     } else if (nb0 == ts) {
 | |
|         return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
 | |
|     } else {
 | |
|         for (uint64_t i1 = 0; i1 < ne1; i1++) {
 | |
|             const void * rx = (const void *) ((const char *) x + i1*nb1);
 | |
|             void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
 | |
|             // pretend the row is a matrix with cols=1
 | |
|             cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
 | |
|             if (r != cudaSuccess) return r;
 | |
|         }
 | |
|         return cudaSuccess;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src1->backend == GGML_BACKEND_CUDA);
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[2];
 | |
|     const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
|     const int64_t ne13 = src1->ne[3];
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
|     size_t x_size, d_size;
 | |
| 
 | |
|     float * d_X = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &x_size); // src0
 | |
|     float * d_Y = (float *) src1->data; // src1 is already on device, broadcasted.
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &d_size); // dst
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             const int i0 = i03*ne02 + i02;
 | |
|             float * c_X2 = d_X + i0*ne01*ne00;
 | |
|             float * c_D2 = d_D + i0*ne01*ne00;
 | |
| 
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i0 % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaStream_t cudaStream2 = g_cudaStreams2[i0 % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaEvent_t  cudaEvent = g_cudaEvents[i0 % GGML_CUDA_MAX_EVENTS];
 | |
| 
 | |
|             // copy src0 to device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X2, src0, i03, i02, cudaStream2));
 | |
|             CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
 | |
| 
 | |
|             // wait for data
 | |
|             CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
 | |
| 
 | |
|             for (int64_t i01 = 0; i01 < ne01; i01++) {
 | |
|                 const int64_t i13 = i03%ne13;
 | |
|                 const int64_t i12 = i02%ne12;
 | |
|                 const int64_t i11 = i01%ne11;
 | |
|                 const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
 | |
| 
 | |
|                 float * c_X1 = c_X2 + i01*ne00;
 | |
|                 float * c_Y = d_Y + i1*ne10;
 | |
|                 float * c_D1 = c_D2 + i01*ne00;
 | |
| 
 | |
|                 // compute
 | |
|                 mul_f32_cuda(c_X1, c_Y, c_D1, ne00, ne10, cudaStream);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
|             }
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D2, sizeof(float)*ne00*ne01, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     ggml_cuda_pool_free(d_X, x_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
| 
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
| 
 | |
|     const float alpha = 1.0f;
 | |
|     const float beta = 0.0f;
 | |
|     const int x_ne = ne01 * ne00;
 | |
|     const int y_ne = ne11 * ne10;
 | |
|     const int d_ne = ne11 * ne01;
 | |
|     const int n_mm = ne03 * ne02;
 | |
| 
 | |
|     size_t x_size, y_size, d_size;
 | |
|     float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
 | |
|     float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             int i = i03*ne02 + i02;
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | |
| 
 | |
|             float * c_X = d_X + i * x_ne;
 | |
|             float * c_Y = d_Y + i * y_ne;
 | |
|             float * c_D = d_D + i * d_ne;
 | |
| 
 | |
|             // copy data to device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | |
| 
 | |
|             // compute
 | |
|             CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | |
|             CUBLAS_CHECK(
 | |
|                 cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                         ne01, ne11, ne10,
 | |
|                         &alpha, c_X, ne00,
 | |
|                                 c_Y, ne10,
 | |
|                         &beta,  c_D, ne01));
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     ggml_cuda_pool_free(d_X, x_size);
 | |
|     ggml_cuda_pool_free(d_Y, y_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
| 
 | |
|     const int nb10 = src1->nb[0];
 | |
|     const int nb11 = src1->nb[1];
 | |
|     const int nb12 = src1->nb[2];
 | |
|     const int nb13 = src1->nb[3];
 | |
| 
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
| 
 | |
|     const float alpha = 1.0f;
 | |
|     const float beta = 0.0f;
 | |
|     const int x_ne = ne01 * ne00;
 | |
|     const int y_ne = ne11 * ne10;
 | |
|     const int d_ne = ne11 * ne01;
 | |
|     const int n_mm = ne03 * ne02;
 | |
| 
 | |
|     size_t x_size, y_size, d_size;
 | |
|     half  * d_X =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
 | |
|     half  * d_Y =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | |
| 
 | |
|     bool src1_cont_rows = nb10 == sizeof(float);
 | |
|     bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             int i = i03*ne02 + i02;
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | |
| 
 | |
|             half  * c_X = d_X + i * x_ne;
 | |
|             half  * c_Y = d_Y + i * y_ne;
 | |
|             float * c_D = d_D + i * d_ne;
 | |
| 
 | |
|             // copy src0 to device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
 | |
| 
 | |
|             // convert src1 to fp16
 | |
|             // TODO: use multiple threads
 | |
|             ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
 | |
|             char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
 | |
|             if (src1_cont_rows) {
 | |
|                 if (src1_cont_cols) {
 | |
|                     ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
 | |
|                 }
 | |
|                 else {
 | |
|                     for (int64_t i01 = 0; i01 < ne11; i01++) {
 | |
|                         ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 for (int64_t i01 = 0; i01 < ne11; i01++) {
 | |
|                     for (int64_t i00 = 0; i00 < ne10; i00++) {
 | |
|                         // very slow due to no inlining
 | |
|                         tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // copy src1 to device
 | |
|             CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
 | |
| 
 | |
|             // compute
 | |
|             CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | |
|             CUBLAS_CHECK(
 | |
|                 cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                         ne01, ne11, ne10,
 | |
|                         &alpha, c_X, CUDA_R_16F, ne00,
 | |
|                                 c_Y, CUDA_R_16F, ne10,
 | |
|                         &beta,  c_D, CUDA_R_32F, ne01,
 | |
|                         CUBLAS_COMPUTE_32F_FAST_16F,
 | |
|                         CUBLAS_GEMM_DEFAULT));
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     ggml_cuda_pool_free(d_X, x_size);
 | |
|     ggml_cuda_pool_free(d_Y, y_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
| 
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
|     const ggml_type type = src0->type;
 | |
|     const bool mul_mat_vec = ne11 == 1;
 | |
| 
 | |
|     const float alpha = 1.0f;
 | |
|     const float beta = 0.0f;
 | |
|     const int x_ne = ne01 * ne00;
 | |
|     const int y_ne = ne11 * ne10;
 | |
|     const int d_ne = ne11 * ne01;
 | |
|     const int n_mm = ne03 * ne02;
 | |
|     const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
 | |
| 
 | |
|     size_t x_size, y_size, d_size, q_size;
 | |
|     float * d_X = nullptr;
 | |
|     if (!mul_mat_vec) {
 | |
|         d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
 | |
|     }
 | |
|     float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | |
|     char  * d_Q = (char  *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
 | |
| 
 | |
|     const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
 | |
|     dequantize_mul_mat_vec_cuda_t dmmv = ggml_get_dequantize_mul_mat_vec_cuda(type);
 | |
|     GGML_ASSERT(to_fp32_cuda != nullptr);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             int i = i03*ne02 + i02;
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaEvent_t  cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
 | |
| 
 | |
|             float * c_Y = d_Y + i * y_ne;
 | |
|             float * c_D = d_D + i * d_ne;
 | |
|             char  * c_Q = d_Q + i * q_sz;
 | |
| 
 | |
|             // copy src0 to device if necessary
 | |
|             if (src0->backend == GGML_BACKEND_CPU) {
 | |
|                 CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
 | |
|             } else if (src0->backend == GGML_BACKEND_CUDA) {
 | |
|                 c_Q = ((char *) src0->data) + i * q_sz;
 | |
|             } else {
 | |
|                 GGML_ASSERT(false);
 | |
|             }
 | |
|             if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
 | |
|                 CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
 | |
| 
 | |
|                 // copy src1 to device
 | |
|                 CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | |
| 
 | |
|                 // wait for data
 | |
|                 CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
 | |
| 
 | |
|                 // compute
 | |
|                 //printf("Calling dmmv\n");
 | |
|                 dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
| 
 | |
|             } else { // general dequantization kernel + cuBLAS matrix matrix multiplication
 | |
|                 float * c_X = d_X + i * x_ne;
 | |
| 
 | |
| //typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
 | |
|                 // convert src0 to fp32 on device
 | |
|                 to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
 | |
|                 CUDA_CHECK(cudaGetLastError());
 | |
|                 CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
 | |
| 
 | |
|                 // copy src1 to device
 | |
|                 CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | |
| 
 | |
|                 // wait for conversion
 | |
|                 CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
 | |
| 
 | |
|                 // compute
 | |
|                 CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | |
|                 CUBLAS_CHECK(
 | |
|                     cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                             ne01, ne11, ne10,
 | |
|                             &alpha, c_X, ne00,
 | |
|                                     c_Y, ne10,
 | |
|                             &beta,  c_D, ne01));
 | |
|             }
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     if (!mul_mat_vec) {
 | |
|         ggml_cuda_pool_free(d_X, x_size);
 | |
|     }
 | |
|     ggml_cuda_pool_free(d_Y, y_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
|     ggml_cuda_pool_free(d_Q, q_size);
 | |
| }
 | |
| 
 | |
| void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
 | |
|     ggml_cuda_mul_f32(src0, src1, dst);
 | |
| }
 | |
| 
 | |
| bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     // TODO: find the optimal values for these
 | |
|     if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
 | |
|         src1->type == GGML_TYPE_F32 &&
 | |
|         dst->type == GGML_TYPE_F32 &&
 | |
|         ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CUDA)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
 | |
|     size_t src0_sz = ggml_nbytes(src0);
 | |
|     size_t src1_sz = ggml_nbytes(src1);
 | |
| 
 | |
|     // mul_mat_q: src0 is converted to fp32 on device
 | |
|     size_t mul_mat_q_transfer = src0_sz + src1_sz;
 | |
| 
 | |
|     // mul_mat_f16: src1 is converted to fp16 on cpu
 | |
|     size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
 | |
| 
 | |
|     // choose the smaller one to transfer to the device
 | |
|     // TODO: this is not always the best choice due to the overhead of converting to fp16
 | |
|     return mul_mat_f16_transfer < mul_mat_q_transfer;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
 | |
|     GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
 | |
| 
 | |
|     if (src0->type == GGML_TYPE_F32) {
 | |
|         ggml_cuda_mul_mat_f32(src0, src1, dst);
 | |
|     }
 | |
|     else if (src0->type == GGML_TYPE_F16) {
 | |
|         if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
 | |
|             ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
 | |
|         }
 | |
|         else {
 | |
|             ggml_cuda_mul_mat_q_f32(src0, src1, dst);
 | |
|         }
 | |
|     }
 | |
|     else if (ggml_is_quantized(src0->type)) {
 | |
|         ggml_cuda_mul_mat_q_f32(src0, src1, dst);
 | |
|     }
 | |
|     else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
 | |
|         return ggml_nelements(src1) * sizeof(ggml_fp16_t);
 | |
|     }
 | |
|     else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_cuda_transform_tensor(ggml_tensor * tensor) {
 | |
|     const int64_t ne0 = tensor->ne[0];
 | |
|     const int64_t ne1 = tensor->ne[1];
 | |
|     const int64_t ne2 = tensor->ne[2];
 | |
|     const int64_t ne3 = tensor->ne[3];
 | |
| 
 | |
|     const ggml_type type = tensor->type;
 | |
|     const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
 | |
| 
 | |
|     size_t q_size;
 | |
|     char * dst = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
 | |
| 
 | |
|     cudaStream_t cudaStream2 = g_cudaStreams2[0];
 | |
| 
 | |
|     // copy tensor to device
 | |
|     for (int64_t i3 = 0; i3 < ne3; i3++) {
 | |
|         for (int64_t i2 = 0; i2 < ne2; i2++) {
 | |
|             int i = i3*ne2 + i2;
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(dst + i*ne0*ne1, tensor, i3, i2, cudaStream2));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tensor->data = dst;
 | |
|     tensor->backend = GGML_BACKEND_CUDA;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
 | |
|     FILE * fp = fopen(fname, "rb");
 | |
| 
 | |
|     const size_t size = ggml_nbytes(tensor);
 | |
| 
 | |
|     void * buf;
 | |
|     CUDA_CHECK(cudaMalloc(&buf, size));
 | |
|     void * buf_host = malloc(size);
 | |
| 
 | |
| #ifdef _WIN32
 | |
|     int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
 | |
| #else
 | |
|     int ret = fseek(fp, (long) offset, SEEK_SET);
 | |
| #endif
 | |
|     GGML_ASSERT(ret == 0); // same
 | |
| 
 | |
|     size_t ret2 = fread(buf_host, size, 1, fp);
 | |
|     if (ret2 != 1) {
 | |
|         fprintf(stderr, "unexpectedly reached end of file");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
 | |
|     cudaDeviceSynchronize();
 | |
| 
 | |
|     tensor->data = buf;
 | |
|     free(buf_host);
 | |
|     fclose(fp);
 | |
| }
 |