mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 4f0154b0ba
			
		
	
	4f0154b0ba
	
	
	
		
			
			* Add support for quantizing already quantized models * Threaded dequantizing and f16 to f32 conversion * Clean up thread blocks with spares calculation a bit * Use std::runtime_error exceptions.
		
			
				
	
	
		
			170 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			170 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "build-info.h"
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <map>
 | |
| #include <string>
 | |
| 
 | |
| static const std::map<std::string, llama_ftype> LLAMA_FTYPE_MAP = {
 | |
|   {"q4_0",   LLAMA_FTYPE_MOSTLY_Q4_0},
 | |
|   {"q4_1",   LLAMA_FTYPE_MOSTLY_Q4_1},
 | |
|   {"q5_0",   LLAMA_FTYPE_MOSTLY_Q5_0},
 | |
|   {"q5_1",   LLAMA_FTYPE_MOSTLY_Q5_1},
 | |
|   {"q8_0",   LLAMA_FTYPE_MOSTLY_Q8_0},
 | |
|   {"q2_K",   LLAMA_FTYPE_MOSTLY_Q2_K},
 | |
|   {"q3_K",   LLAMA_FTYPE_MOSTLY_Q3_K_M},
 | |
|   {"q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S},
 | |
|   {"q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M},
 | |
|   {"q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L},
 | |
|   {"q4_K",   LLAMA_FTYPE_MOSTLY_Q4_K_M},
 | |
|   {"q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S},
 | |
|   {"q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M},
 | |
|   {"q5_K",   LLAMA_FTYPE_MOSTLY_Q5_K_M},
 | |
|   {"q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S},
 | |
|   {"q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M},
 | |
|   {"q6_K",   LLAMA_FTYPE_MOSTLY_Q6_K},
 | |
| };
 | |
| 
 | |
| bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) {
 | |
|     auto it = LLAMA_FTYPE_MAP.find(ftype_str);
 | |
|     if (it != LLAMA_FTYPE_MAP.end()) {
 | |
|         ftype = it->second;
 | |
|         ftype_str_out = it->first;
 | |
|         return true;
 | |
|     }
 | |
|     // try to parse as an integer
 | |
|     try {
 | |
|         int ftype_int = std::stoi(ftype_str);
 | |
|         for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
 | |
|             if (it->second == ftype_int) {
 | |
|                 ftype = it->second;
 | |
|                 ftype_str_out = it->first;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     catch (...) {
 | |
|         // stoi failed
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // usage:
 | |
| //  ./quantize models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
 | |
| //
 | |
| void usage(const char * executable) {
 | |
|     fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n", executable);
 | |
|     fprintf(stderr, "  --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
 | |
|     fprintf(stderr, "  --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
 | |
|     fprintf(stderr, "Allowed quantization types:\n");
 | |
|     for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
 | |
|         fprintf(stderr, "  type = \"%s\" or %d\n", it->first.c_str(), it->second);
 | |
|     }
 | |
|     exit(1);
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     if (argc < 3) {
 | |
|         usage(argv[0]);
 | |
|     }
 | |
| 
 | |
|     llama_model_quantize_params params = llama_model_quantize_default_params();
 | |
| 
 | |
|     int arg_idx = 1;
 | |
| 
 | |
|     for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
 | |
|         if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
 | |
|             params.quantize_output_tensor = false;
 | |
|         } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
 | |
|             params.allow_requantize = true;
 | |
|         } else {
 | |
|             usage(argv[0]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (argc - arg_idx < 3) {
 | |
|         usage(argv[0]);
 | |
|     }
 | |
| 
 | |
|     llama_init_backend();
 | |
| 
 | |
|     // parse command line arguments
 | |
|     const std::string fname_inp = argv[arg_idx];
 | |
|     arg_idx++;
 | |
|     std::string fname_out;
 | |
| 
 | |
|     std::string ftype_str;
 | |
|     if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
 | |
|         std::string fpath;
 | |
|         const size_t pos = fname_inp.find_last_of('/');
 | |
|         if (pos != std::string::npos) {
 | |
|             fpath = fname_inp.substr(0, pos + 1);
 | |
|         }
 | |
|         // export as [inp path]/ggml-model-[ftype].bin
 | |
|         fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
 | |
|         arg_idx++;
 | |
|     }
 | |
|     else {
 | |
|         fname_out = argv[arg_idx];
 | |
|         arg_idx++;
 | |
| 
 | |
|         if (argc <= arg_idx) {
 | |
|             fprintf(stderr, "%s: missing ftype\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
 | |
|             fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
 | |
|             return 1;
 | |
|         }
 | |
|         arg_idx++;
 | |
|     }
 | |
| 
 | |
|     // parse nthreads
 | |
|     if (argc > arg_idx) {
 | |
|         try {
 | |
|             params.nthread = std::stoi(argv[arg_idx]);
 | |
|         }
 | |
|         catch (const std::exception & e) {
 | |
|             fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | |
| 
 | |
|     fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
 | |
|     if (params.nthread > 0) {
 | |
|         fprintf(stderr, " using %d threads", params.nthread);
 | |
|     }
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     const int64_t t_main_start_us = llama_time_us();
 | |
| 
 | |
|     int64_t t_quantize_us = 0;
 | |
| 
 | |
|     // load the model
 | |
|     {
 | |
|         const int64_t t_start_us = llama_time_us();
 | |
| 
 | |
|         if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
 | |
|             fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         t_quantize_us = llama_time_us() - t_start_us;
 | |
|     }
 | |
| 
 | |
|     // report timing
 | |
|     {
 | |
|         const int64_t t_main_end_us = llama_time_us();
 | |
| 
 | |
|         printf("\n");
 | |
|         printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
 | |
|         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 |