mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
* model-conversion : add support for SentenceTransformers This commit adds support for models that use SentenceTransformer layers. The motivation for this is that if converted model includes any of the numbered layers specified in the original models repository then these changes enable these models to be used and verified. Currently the model-conversion only support the base model output without any of the additional transformation layers. Usage: Convert the model that also includes the SentenceTransformer layers: ```console (venv) $ export EMBEDDING_MODEL_PATH="~/google/embeddinggemma-300M" (venv) make embedding-convert-model ``` Verify the produced embeddings from the converted model against the original model embeddings: ```console (venv) make embedding-verify-logits-st ``` The original model can be run using SentenceTransformer: ```console (venv) make embedding-run-original-model-st ``` Run the converted model using "SentenceTransformer" layers whic enables pooling and normalization: ```console (venv) make embedding-run-converted-model-st ``` * add model-conversion example requirements * add support for -st flag in embedding model conversion This commit add support for the -st flag in the embedding model conversion script. This will enable models to be converted using sentence transformers dense layers.
178 lines
6.8 KiB
Python
Executable File
178 lines
6.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
|
||
import argparse
|
||
import os
|
||
import numpy as np
|
||
import importlib
|
||
from pathlib import Path
|
||
|
||
from transformers import AutoTokenizer, AutoConfig, AutoModel
|
||
import torch
|
||
|
||
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
||
|
||
parser = argparse.ArgumentParser(description='Process model with specified path')
|
||
parser.add_argument('--model-path', '-m', help='Path to the model')
|
||
parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
|
||
parser.add_argument('--use-sentence-transformers', action='store_true',
|
||
help='Use SentenceTransformer to apply all numbered layers (01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
|
||
args = parser.parse_args()
|
||
|
||
def read_prompt_from_file(file_path):
|
||
try:
|
||
with open(file_path, 'r', encoding='utf-8') as f:
|
||
return f.read().strip()
|
||
except FileNotFoundError:
|
||
print(f"Error: Prompts file '{file_path}' not found")
|
||
exit(1)
|
||
except Exception as e:
|
||
print(f"Error reading prompts file: {e}")
|
||
exit(1)
|
||
|
||
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
|
||
if model_path is None:
|
||
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
|
||
|
||
# Determine if we should use SentenceTransformer
|
||
use_sentence_transformers = args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
|
||
|
||
if use_sentence_transformers:
|
||
from sentence_transformers import SentenceTransformer
|
||
print("Using SentenceTransformer to apply all numbered layers")
|
||
model = SentenceTransformer(model_path)
|
||
tokenizer = model.tokenizer
|
||
config = model[0].auto_model.config # type: ignore
|
||
else:
|
||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||
|
||
config = AutoConfig.from_pretrained(model_path)
|
||
|
||
# This can be used to override the sliding window size for manual testing. This
|
||
# can be useful to verify the sliding window attention mask in the original model
|
||
# and compare it with the converted .gguf model.
|
||
if hasattr(config, 'sliding_window'):
|
||
original_sliding_window = config.sliding_window
|
||
#original_sliding_window = 6
|
||
print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
|
||
|
||
print(f"Using unreleased model: {unreleased_model_name}")
|
||
if unreleased_model_name:
|
||
model_name_lower = unreleased_model_name.lower()
|
||
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
||
class_name = f"{unreleased_model_name}Model"
|
||
print(f"Importing unreleased model module: {unreleased_module_path}")
|
||
|
||
try:
|
||
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
||
model = model_class.from_pretrained(model_path, config=config)
|
||
except (ImportError, AttributeError) as e:
|
||
print(f"Failed to import or load model: {e}")
|
||
exit(1)
|
||
else:
|
||
model = AutoModel.from_pretrained(model_path, config=config)
|
||
print(f"Model class: {type(model)}")
|
||
print(f"Model file: {type(model).__module__}")
|
||
|
||
# Verify the model is using the correct sliding window
|
||
if not use_sentence_transformers:
|
||
if hasattr(model.config, 'sliding_window'): # type: ignore
|
||
print(f"Model's sliding_window: {model.config.sliding_window}") # type: ignore
|
||
else:
|
||
print("Model config does not have sliding_window attribute")
|
||
|
||
model_name = os.path.basename(model_path)
|
||
|
||
if args.prompts_file:
|
||
prompt_text = read_prompt_from_file(args.prompts_file)
|
||
texts = [prompt_text]
|
||
else:
|
||
texts = ["Hello world today"]
|
||
|
||
with torch.no_grad():
|
||
if use_sentence_transformers:
|
||
embeddings = model.encode(texts, convert_to_numpy=True)
|
||
all_embeddings = embeddings # Shape: [batch_size, hidden_size]
|
||
|
||
encoded = tokenizer(
|
||
texts,
|
||
padding=True,
|
||
truncation=True,
|
||
return_tensors="pt"
|
||
)
|
||
tokens = encoded['input_ids'][0]
|
||
token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
||
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
||
print(f"{token_id:6d} -> '{token_str}'")
|
||
|
||
print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
|
||
print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}") # type: ignore
|
||
else:
|
||
# Standard approach: use base model output only
|
||
encoded = tokenizer(
|
||
texts,
|
||
padding=True,
|
||
truncation=True,
|
||
return_tensors="pt"
|
||
)
|
||
|
||
tokens = encoded['input_ids'][0]
|
||
token_strings = tokenizer.convert_ids_to_tokens(tokens)
|
||
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
||
print(f"{token_id:6d} -> '{token_str}'")
|
||
|
||
outputs = model(**encoded)
|
||
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
|
||
|
||
all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
|
||
|
||
print(f"Hidden states shape: {hidden_states.shape}")
|
||
print(f"All embeddings shape: {all_embeddings.shape}")
|
||
print(f"Embedding dimension: {all_embeddings.shape[1]}")
|
||
|
||
if len(all_embeddings.shape) == 1:
|
||
n_embd = all_embeddings.shape[0] # type: ignore
|
||
n_embd_count = 1
|
||
all_embeddings = all_embeddings.reshape(1, -1)
|
||
else:
|
||
n_embd = all_embeddings.shape[1] # type: ignore
|
||
n_embd_count = all_embeddings.shape[0] # type: ignore
|
||
|
||
print()
|
||
|
||
for j in range(n_embd_count):
|
||
embedding = all_embeddings[j]
|
||
print(f"embedding {j}: ", end="")
|
||
|
||
# Print first 3 values
|
||
for i in range(min(3, n_embd)):
|
||
print(f"{embedding[i]:9.6f} ", end="")
|
||
|
||
print(" ... ", end="")
|
||
|
||
# Print last 3 values
|
||
for i in range(n_embd - 3, n_embd):
|
||
print(f"{embedding[i]:9.6f} ", end="")
|
||
|
||
print() # New line
|
||
|
||
print()
|
||
|
||
data_dir = Path("data")
|
||
data_dir.mkdir(exist_ok=True)
|
||
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
|
||
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
|
||
|
||
flattened_embeddings = all_embeddings.flatten()
|
||
flattened_embeddings.astype(np.float32).tofile(bin_filename)
|
||
|
||
with open(txt_filename, "w") as f:
|
||
idx = 0
|
||
for j in range(n_embd_count):
|
||
for value in all_embeddings[j]:
|
||
f.write(f"{idx}: {value:.6f}\n")
|
||
idx += 1
|
||
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
|
||
print("")
|
||
print(f"Saved bin embeddings to: {bin_filename}")
|
||
print(f"Saved txt embeddings to: {txt_filename}")
|