mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 2af23d3043
			
		
	
	2af23d3043
	
	
	
		
			
			* feat: dockerize llamacpp * feat: split build & runtime stages * split dockerfile into main & tools * add quantize into tool docker image * Update .devops/tools.sh Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * add docker action pipeline * change CI to publish at github docker registry * fix name runs-on macOS-latest is macos-latest (lowercase) * include docker versioned images * fix github action docker * fix docker.yml * feat: include all-in-one command tool & update readme.md --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			182 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			182 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Convert a LLaMA model checkpoint to a ggml compatible file
 | |
| #
 | |
| # Load the model using Torch
 | |
| # Iterate over all variables and write them to a binary file.
 | |
| #
 | |
| # For each variable, write the following:
 | |
| #   - Number of dimensions (int)
 | |
| #   - Name length (int)
 | |
| #   - Dimensions (int[n_dims])
 | |
| #   - Name (char[name_length])
 | |
| #   - Data (float[n_dims])
 | |
| #
 | |
| # By default, the bigger matrices are converted to 16-bit floats.
 | |
| # This can be disabled by adding the "use-f32" CLI argument.
 | |
| #
 | |
| # At the start of the ggml file we write the model parameters
 | |
| # and vocabulary.
 | |
| #
 | |
| import os
 | |
| import sys
 | |
| import json
 | |
| import struct
 | |
| import numpy as np
 | |
| import torch
 | |
| from sentencepiece import SentencePieceProcessor
 | |
| 
 | |
| if len(sys.argv) < 3:
 | |
|     print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
 | |
|     print("  ftype == 0 -> float32")
 | |
|     print("  ftype == 1 -> float16")
 | |
|     sys.exit(1)
 | |
| 
 | |
| # output in the same directory as the model
 | |
| dir_model = sys.argv[1]
 | |
| 
 | |
| fname_hparams   = sys.argv[1] + "/params.json"
 | |
| fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
 | |
| 
 | |
| def get_n_parts(dim):
 | |
|     if dim == 4096:
 | |
|         return 1
 | |
|     elif dim == 5120:
 | |
|         return 2
 | |
|     elif dim == 6656:
 | |
|         return 4
 | |
|     elif dim == 8192:
 | |
|         return 8
 | |
|     else:
 | |
|         print("Invalid dim: " + str(dim))
 | |
|         sys.exit(1)
 | |
| 
 | |
| # possible data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| #
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| ftype = 1
 | |
| if len(sys.argv) > 2:
 | |
|     ftype = int(sys.argv[2])
 | |
|     if ftype < 0 or ftype > 1:
 | |
|         print("Invalid ftype: " + str(ftype))
 | |
|         sys.exit(1)
 | |
|     fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
 | |
| 
 | |
| if os.path.exists(fname_out):
 | |
|     print(f"Skip conversion, it already exists: {fname_out}")
 | |
|     sys.exit(0)
 | |
| 
 | |
| with open(fname_hparams, "r") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| tokenizer = SentencePieceProcessor(fname_tokenizer)
 | |
| 
 | |
| hparams.update({"vocab_size": tokenizer.vocab_size()})
 | |
| 
 | |
| n_parts = get_n_parts(hparams["dim"])
 | |
| 
 | |
| print(hparams)
 | |
| print('n_parts = ', n_parts)
 | |
| 
 | |
| for p in range(n_parts):
 | |
|     print('Processing part ', p)
 | |
| 
 | |
|     #fname_model = sys.argv[1] + "/consolidated.00.pth"
 | |
|     fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
 | |
|     fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
 | |
|     if (p > 0):
 | |
|         fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
 | |
| 
 | |
|     model = torch.load(fname_model, map_location="cpu")
 | |
| 
 | |
|     fout = open(fname_out, "wb")
 | |
| 
 | |
|     fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
 | |
|     fout.write(struct.pack("i", hparams["vocab_size"]))
 | |
|     fout.write(struct.pack("i", hparams["dim"]))
 | |
|     fout.write(struct.pack("i", hparams["multiple_of"]))
 | |
|     fout.write(struct.pack("i", hparams["n_heads"]))
 | |
|     fout.write(struct.pack("i", hparams["n_layers"]))
 | |
|     fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
 | |
|     fout.write(struct.pack("i", ftype))
 | |
| 
 | |
|     # Is this correct??
 | |
|     for i in range(tokenizer.vocab_size()):
 | |
|         if tokenizer.is_unknown(i):
 | |
|             # "<unk>" token (translated as ??)
 | |
|             text = " \u2047 ".encode("utf-8")
 | |
|             fout.write(struct.pack("i", len(text)))
 | |
|             fout.write(text)
 | |
|         elif tokenizer.is_control(i):
 | |
|             # "<s>"/"</s>" tokens
 | |
|             fout.write(struct.pack("i", 0))
 | |
|         elif tokenizer.is_byte(i):
 | |
|             # "<U+XX>" tokens (which may be invalid UTF-8)
 | |
|             piece = tokenizer.id_to_piece(i)
 | |
|             if len(piece) != 6:
 | |
|                 print("Invalid token: " + piece)
 | |
|                 sys.exit(1)
 | |
|             byte_value = int(piece[3:-1], 16)
 | |
|             fout.write(struct.pack("i", 1))
 | |
|             fout.write(struct.pack("B", byte_value))
 | |
|         else:
 | |
|             # normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
 | |
|             text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
 | |
|             fout.write(struct.pack("i", len(text)))
 | |
|             fout.write(text)
 | |
| 
 | |
|     for k, v in model.items():
 | |
|         name = k
 | |
|         shape = v.shape
 | |
| 
 | |
|         # skip layers.X.attention.inner_attention.rope.freqs
 | |
|         if name[-5:] == "freqs":
 | |
|             continue
 | |
| 
 | |
|         print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
 | |
| 
 | |
|         #data = tf.train.load_variable(dir_model, name).squeeze()
 | |
|         data = v.numpy().squeeze()
 | |
|         n_dims = len(data.shape);
 | |
| 
 | |
|         # for efficiency - transpose some matrices
 | |
|         # "model/h.*/attn/c_attn/w"
 | |
|         # "model/h.*/attn/c_proj/w"
 | |
|         # "model/h.*/mlp/c_fc/w"
 | |
|         # "model/h.*/mlp/c_proj/w"
 | |
|         #if name[-14:] == "/attn/c_attn/w" or \
 | |
|         #   name[-14:] == "/attn/c_proj/w" or \
 | |
|         #   name[-11:] == "/mlp/c_fc/w" or \
 | |
|         #   name[-13:] == "/mlp/c_proj/w":
 | |
|         #    print("  Transposing")
 | |
|         #    data = data.transpose()
 | |
| 
 | |
|         dshape = data.shape
 | |
| 
 | |
|         # default type is fp16
 | |
|         ftype_cur = 1
 | |
|         if ftype == 0 or n_dims == 1:
 | |
|             print("  Converting to float32")
 | |
|             data = data.astype(np.float32)
 | |
|             ftype_cur = 0
 | |
| 
 | |
|         # header
 | |
|         sname = name.encode('utf-8')
 | |
|         fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
 | |
|         for i in range(n_dims):
 | |
|             fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
 | |
|         fout.write(sname);
 | |
| 
 | |
|         # data
 | |
|         data.tofile(fout)
 | |
| 
 | |
|     # I hope this deallocates the memory ..
 | |
|     model = None
 | |
| 
 | |
|     fout.close()
 | |
| 
 | |
|     print("Done. Output file: " + fname_out + ", (part ", p, ")")
 | |
|     print("")
 |