mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			387 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			387 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "arg.h"
 | |
| #include "log.h"
 | |
| #include "common.h"
 | |
| #include "sampling.h"
 | |
| #include "llama.h"
 | |
| #include "ggml.h"
 | |
| #include "console.h"
 | |
| #include "chat.h"
 | |
| #include "mtmd.h"
 | |
| #include "mtmd-helper.h"
 | |
| 
 | |
| #include <vector>
 | |
| #include <limits.h>
 | |
| #include <cinttypes>
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
| #include <signal.h>
 | |
| #include <unistd.h>
 | |
| #elif defined (_WIN32)
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #ifndef NOMINMAX
 | |
| #define NOMINMAX
 | |
| #endif
 | |
| #include <windows.h>
 | |
| #include <signal.h>
 | |
| #endif
 | |
| 
 | |
| // volatile, because of signal being an interrupt
 | |
| static volatile bool g_is_generating = false;
 | |
| static volatile bool g_is_interrupted = false;
 | |
| 
 | |
| /**
 | |
|  * Please note that this is NOT a production-ready stuff.
 | |
|  * It is a playground for trying multimodal support in llama.cpp.
 | |
|  * For contributors: please keep this code simple and easy to understand.
 | |
|  */
 | |
| 
 | |
| static void show_additional_info(int /*argc*/, char ** argv) {
 | |
|     LOG(
 | |
|         "Experimental CLI for multimodal\n\n"
 | |
|         "Usage: %s [options] -m <model> --mmproj <mmproj> --image <image> --audio <audio> -p <prompt>\n\n"
 | |
|         "  -m and --mmproj are required\n"
 | |
|         "  -hf user/repo can replace both -m and --mmproj in most cases\n"
 | |
|         "  --image, --audio and -p are optional, if NOT provided, the CLI will run in chat mode\n"
 | |
|         "  to disable using GPU for mmproj model, add --no-mmproj-offload\n",
 | |
|         argv[0]
 | |
|     );
 | |
| }
 | |
| 
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
 | |
| static void sigint_handler(int signo) {
 | |
|     if (signo == SIGINT) {
 | |
|         if (g_is_generating) {
 | |
|             g_is_generating = false;
 | |
|         } else {
 | |
|             console::cleanup();
 | |
|             if (g_is_interrupted) {
 | |
|                 _exit(1);
 | |
|             }
 | |
|             g_is_interrupted = true;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct mtmd_cli_context {
 | |
|     mtmd::context_ptr ctx_vision;
 | |
|     common_init_result llama_init;
 | |
| 
 | |
|     llama_model       * model;
 | |
|     llama_context     * lctx;
 | |
|     const llama_vocab * vocab;
 | |
|     common_sampler    * smpl;
 | |
|     llama_batch         batch;
 | |
|     int                 n_batch;
 | |
| 
 | |
|     mtmd::bitmaps bitmaps;
 | |
| 
 | |
|     // note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
 | |
|     // so here we don't need to keep track of chat history
 | |
|     common_chat_templates_ptr tmpls;
 | |
| 
 | |
|     // support for legacy templates (models not having EOT token)
 | |
|     llama_tokens antiprompt_tokens;
 | |
| 
 | |
|     int n_threads    = 1;
 | |
|     llama_pos n_past = 0;
 | |
| 
 | |
|     mtmd_cli_context(common_params & params) : llama_init(common_init_from_params(params)) {
 | |
|         model = llama_init.model.get();
 | |
|         lctx = llama_init.context.get();
 | |
|         vocab = llama_model_get_vocab(model);
 | |
|         smpl = common_sampler_init(model, params.sampling);
 | |
|         n_threads = params.cpuparams.n_threads;
 | |
|         batch = llama_batch_init(1, 0, 1); // batch for next token generation
 | |
|         n_batch = params.n_batch;
 | |
| 
 | |
|         if (!model || !lctx) {
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         if (!llama_model_chat_template(model, nullptr) && params.chat_template.empty()) {
 | |
|             LOG_ERR("Model does not have chat template.\n");
 | |
|             LOG_ERR("  For old llava models, you may need to use '--chat-template vicuna'\n");
 | |
|             LOG_ERR("  For MobileVLM models, use '--chat-template deepseek'\n");
 | |
|             LOG_ERR("  For Mistral Small 3.1, use '--chat-template mistral-v7'\n");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         tmpls = common_chat_templates_init(model, params.chat_template);
 | |
|         LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(tmpls.get(), params.use_jinja, params.default_template_kwargs).c_str());
 | |
| 
 | |
|         init_vision_context(params);
 | |
| 
 | |
|         // load antiprompt tokens for legacy templates
 | |
|         if (params.chat_template == "vicuna") {
 | |
|             antiprompt_tokens = common_tokenize(lctx, "ASSISTANT:", false, true);
 | |
|         } else if (params.chat_template == "deepseek") {
 | |
|             antiprompt_tokens = common_tokenize(lctx, "###", false, true);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ~mtmd_cli_context() {
 | |
|         llama_batch_free(batch);
 | |
|         common_sampler_free(smpl);
 | |
|     }
 | |
| 
 | |
|     void init_vision_context(common_params & params) {
 | |
|         const char * clip_path = params.mmproj.path.c_str();
 | |
|         mtmd_context_params mparams = mtmd_context_params_default();
 | |
|         mparams.use_gpu = params.mmproj_use_gpu;
 | |
|         mparams.print_timings = true;
 | |
|         mparams.n_threads = params.cpuparams.n_threads;
 | |
|         mparams.verbosity = params.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
 | |
|         ctx_vision.reset(mtmd_init_from_file(clip_path, model, mparams));
 | |
|         if (!ctx_vision.get()) {
 | |
|             LOG_ERR("Failed to load vision model from %s\n", clip_path);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool check_antiprompt(const llama_tokens & generated_tokens) {
 | |
|         if (antiprompt_tokens.empty() || generated_tokens.size() < antiprompt_tokens.size()) {
 | |
|             return false;
 | |
|         }
 | |
|         return std::equal(
 | |
|             generated_tokens.end() - antiprompt_tokens.size(),
 | |
|             generated_tokens.end(),
 | |
|             antiprompt_tokens.begin()
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     bool load_media(const std::string & fname) {
 | |
|         mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_file(ctx_vision.get(), fname.c_str()));
 | |
|         if (!bmp.ptr) {
 | |
|             return false;
 | |
|         }
 | |
|         bitmaps.entries.push_back(std::move(bmp));
 | |
|         return true;
 | |
|     }
 | |
| };
 | |
| 
 | |
| static int generate_response(mtmd_cli_context & ctx, int n_predict) {
 | |
|     llama_tokens generated_tokens;
 | |
|     for (int i = 0; i < n_predict; i++) {
 | |
|         if (i > n_predict || !g_is_generating || g_is_interrupted) {
 | |
|             LOG("\n");
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         llama_token token_id = common_sampler_sample(ctx.smpl, ctx.lctx, -1);
 | |
|         generated_tokens.push_back(token_id);
 | |
|         common_sampler_accept(ctx.smpl, token_id, true);
 | |
| 
 | |
|         if (llama_vocab_is_eog(ctx.vocab, token_id) || ctx.check_antiprompt(generated_tokens)) {
 | |
|             LOG("\n");
 | |
|             break; // end of generation
 | |
|         }
 | |
| 
 | |
|         LOG("%s", common_token_to_piece(ctx.lctx, token_id).c_str());
 | |
|         fflush(stdout);
 | |
| 
 | |
|         if (g_is_interrupted) {
 | |
|             LOG("\n");
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // eval the token
 | |
|         common_batch_clear(ctx.batch);
 | |
|         common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true);
 | |
|         if (llama_decode(ctx.lctx, ctx.batch)) {
 | |
|             LOG_ERR("failed to decode token\n");
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int eval_message(mtmd_cli_context & ctx, common_chat_msg & msg, bool add_bos = false) {
 | |
|     common_chat_templates_inputs tmpl_inputs;
 | |
|     tmpl_inputs.messages = {msg};
 | |
|     tmpl_inputs.add_generation_prompt = true;
 | |
|     tmpl_inputs.use_jinja = false; // jinja is buggy here
 | |
|     auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
 | |
|     LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
 | |
| 
 | |
|     mtmd_input_text text;
 | |
|     text.text          = formatted_chat.prompt.c_str();
 | |
|     text.add_special   = add_bos;
 | |
|     text.parse_special = true;
 | |
| 
 | |
|     if (g_is_interrupted) return 0;
 | |
| 
 | |
|     mtmd::input_chunks chunks(mtmd_input_chunks_init());
 | |
|     auto bitmaps_c_ptr = ctx.bitmaps.c_ptr();
 | |
|     int32_t res = mtmd_tokenize(ctx.ctx_vision.get(),
 | |
|                         chunks.ptr.get(), // output
 | |
|                         &text, // text
 | |
|                         bitmaps_c_ptr.data(),
 | |
|                         bitmaps_c_ptr.size());
 | |
|     if (res != 0) {
 | |
|         LOG_ERR("Unable to tokenize prompt, res = %d\n", res);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     ctx.bitmaps.entries.clear();
 | |
| 
 | |
|     llama_pos new_n_past;
 | |
|     if (mtmd_helper_eval_chunks(ctx.ctx_vision.get(),
 | |
|                 ctx.lctx, // lctx
 | |
|                 chunks.ptr.get(), // chunks
 | |
|                 ctx.n_past, // n_past
 | |
|                 0, // seq_id
 | |
|                 ctx.n_batch, // n_batch
 | |
|                 true, // logits_last
 | |
|                 &new_n_past)) {
 | |
|         LOG_ERR("Unable to eval prompt\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     ctx.n_past = new_n_past;
 | |
| 
 | |
|     LOG("\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     ggml_time_init();
 | |
| 
 | |
|     common_params params;
 | |
|     params.sampling.temp = 0.2; // lower temp by default for better quality
 | |
| 
 | |
|     if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MTMD, show_additional_info)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     common_init();
 | |
| 
 | |
|     if (params.mmproj.path.empty()) {
 | |
|         show_additional_info(argc, argv);
 | |
|         LOG_ERR("ERR: Missing --mmproj argument\n");
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     mtmd_cli_context ctx(params);
 | |
|     LOG("%s: loading model: %s\n", __func__, params.model.path.c_str());
 | |
| 
 | |
|     bool is_single_turn = !params.prompt.empty() && !params.image.empty();
 | |
| 
 | |
|     int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict;
 | |
| 
 | |
|     // Ctrl+C handling
 | |
|     {
 | |
| #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
 | |
|         struct sigaction sigint_action;
 | |
|         sigint_action.sa_handler = sigint_handler;
 | |
|         sigemptyset (&sigint_action.sa_mask);
 | |
|         sigint_action.sa_flags = 0;
 | |
|         sigaction(SIGINT, &sigint_action, NULL);
 | |
| #elif defined (_WIN32)
 | |
|         auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
 | |
|             return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
 | |
|         };
 | |
|         SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (g_is_interrupted) return 130;
 | |
| 
 | |
|     if (is_single_turn) {
 | |
|         g_is_generating = true;
 | |
|         if (params.prompt.find(mtmd_default_marker()) == std::string::npos) {
 | |
|             for (size_t i = 0; i < params.image.size(); i++) {
 | |
|                 params.prompt += mtmd_default_marker();
 | |
|             }
 | |
|         }
 | |
|         common_chat_msg msg;
 | |
|         msg.role = "user";
 | |
|         msg.content = params.prompt;
 | |
|         for (const auto & image : params.image) {
 | |
|             if (!ctx.load_media(image)) {
 | |
|                 return 1; // error is already printed by libmtmd
 | |
|             }
 | |
|         }
 | |
|         if (eval_message(ctx, msg, true)) {
 | |
|             return 1;
 | |
|         }
 | |
|         if (!g_is_interrupted && generate_response(ctx, n_predict)) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|     } else {
 | |
|         LOG("\n Running in chat mode, available commands:");
 | |
|         if (mtmd_support_vision(ctx.ctx_vision.get())) {
 | |
|             LOG("\n   /image <path>    load an image");
 | |
|         }
 | |
|         if (mtmd_support_audio(ctx.ctx_vision.get())) {
 | |
|             LOG("\n   /audio <path>    load an audio");
 | |
|         }
 | |
|         LOG("\n   /clear           clear the chat history");
 | |
|         LOG("\n   /quit or /exit   exit the program");
 | |
|         LOG("\n");
 | |
| 
 | |
|         bool is_first_msg = true;
 | |
|         std::string content;
 | |
| 
 | |
|         while (!g_is_interrupted) {
 | |
|             g_is_generating = false;
 | |
|             LOG("\n> ");
 | |
|             console::set_display(console::user_input);
 | |
|             std::string line;
 | |
|             console::readline(line, false);
 | |
|             if (g_is_interrupted) break;
 | |
|             console::set_display(console::reset);
 | |
|             line = string_strip(line);
 | |
|             if (line.empty()) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (line == "/quit" || line == "/exit") {
 | |
|                 break;
 | |
|             }
 | |
|             if (line == "/clear") {
 | |
|                 ctx.n_past = 0;
 | |
|                 llama_memory_seq_rm(llama_get_memory(ctx.lctx), 0, 1, -1); // keep BOS
 | |
|                 LOG("Chat history cleared\n\n");
 | |
|                 continue;
 | |
|             }
 | |
|             g_is_generating = true;
 | |
|             bool is_image = line == "/image" || line.find("/image ") == 0;
 | |
|             bool is_audio = line == "/audio" || line.find("/audio ") == 0;
 | |
|             if (is_image || is_audio) {
 | |
|                 if (line.size() < 8) {
 | |
|                     LOG_ERR("ERR: Missing media filename\n");
 | |
|                     continue;
 | |
|                 }
 | |
|                 std::string media_path = line.substr(7);
 | |
|                 if (ctx.load_media(media_path)) {
 | |
|                     LOG("%s %s loaded\n", media_path.c_str(), is_image ? "image" : "audio");
 | |
|                     content += mtmd_default_marker();
 | |
|                 }
 | |
|                 // else, error is already printed by libmtmd
 | |
|                 continue;
 | |
|             } else {
 | |
|                 content += line;
 | |
|             }
 | |
|             common_chat_msg msg;
 | |
|             msg.role = "user";
 | |
|             msg.content = content;
 | |
|             int ret = eval_message(ctx, msg, is_first_msg);
 | |
|             if (ret) {
 | |
|                 return 1;
 | |
|             }
 | |
|             if (g_is_interrupted) break;
 | |
|             if (generate_response(ctx, n_predict)) {
 | |
|                 return 1;
 | |
|             }
 | |
|             content.clear();
 | |
|             is_first_msg = false;
 | |
|         }
 | |
|     }
 | |
|     if (g_is_interrupted) LOG("\nInterrupted by user\n");
 | |
|     LOG("\n\n");
 | |
|     llama_perf_context_print(ctx.lctx);
 | |
|     return g_is_interrupted ? 130 : 0;
 | |
| }
 | 
