mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			18693 lines
		
	
	
		
			596 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			18693 lines
		
	
	
		
			596 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
 | |
| #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
 | |
| 
 | |
| #include "ggml.h"
 | |
| 
 | |
| #ifdef GGML_USE_K_QUANTS
 | |
| #include "k_quants.h"
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)
 | |
| #include <malloc.h> // using malloc.h with MSC/MINGW
 | |
| #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
 | |
| #include <alloca.h>
 | |
| #endif
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <errno.h>
 | |
| #include <time.h>
 | |
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdint.h>
 | |
| #include <inttypes.h>
 | |
| #include <stdio.h>
 | |
| #include <float.h>
 | |
| #include <limits.h>
 | |
| #include <stdarg.h>
 | |
| #include <signal.h>
 | |
| 
 | |
| #ifdef GGML_USE_METAL
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| // static_assert should be a #define, but if it's not,
 | |
| // fall back to the _Static_assert C11 keyword.
 | |
| // if C99 - static_assert is noop
 | |
| // ref: https://stackoverflow.com/a/53923785/4039976
 | |
| #ifndef static_assert
 | |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
 | |
| #define static_assert(cond, msg) _Static_assert(cond, msg)
 | |
| #else
 | |
| #define static_assert(cond, msg) struct global_scope_noop_trick
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| // disable "possible loss of data" to avoid hundreds of casts
 | |
| // we should just be careful :)
 | |
| #pragma warning(disable: 4244 4267)
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| 
 | |
| #include <windows.h>
 | |
| 
 | |
| typedef volatile LONG atomic_int;
 | |
| typedef atomic_int atomic_bool;
 | |
| 
 | |
| static void atomic_store(atomic_int * ptr, LONG val) {
 | |
|     InterlockedExchange(ptr, val);
 | |
| }
 | |
| static LONG atomic_load(atomic_int * ptr) {
 | |
|     return InterlockedCompareExchange(ptr, 0, 0);
 | |
| }
 | |
| static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
 | |
|     return InterlockedExchangeAdd(ptr, inc);
 | |
| }
 | |
| static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
 | |
|     return atomic_fetch_add(ptr, -(dec));
 | |
| }
 | |
| 
 | |
| typedef HANDLE pthread_t;
 | |
| 
 | |
| typedef DWORD thread_ret_t;
 | |
| static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
 | |
|     (void) unused;
 | |
|     HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
 | |
|     if (handle == NULL)
 | |
|     {
 | |
|         return EAGAIN;
 | |
|     }
 | |
| 
 | |
|     *out = handle;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int pthread_join(pthread_t thread, void * unused) {
 | |
|     (void) unused;
 | |
|     return (int) WaitForSingleObject(thread, INFINITE);
 | |
| }
 | |
| 
 | |
| static int sched_yield (void) {
 | |
|     Sleep (0);
 | |
|     return 0;
 | |
| }
 | |
| #else
 | |
| #include <pthread.h>
 | |
| #include <stdatomic.h>
 | |
| 
 | |
| typedef void * thread_ret_t;
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/stat.h>
 | |
| #include <unistd.h>
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
 | |
| #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
 | |
| #ifndef __FMA__
 | |
| #define __FMA__
 | |
| #endif
 | |
| #ifndef __F16C__
 | |
| #define __F16C__
 | |
| #endif
 | |
| #ifndef __SSE3__
 | |
| #define __SSE3__
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /*#define GGML_PERF*/
 | |
| #define GGML_DEBUG 0
 | |
| #define GGML_GELU_FP16
 | |
| #define GGML_GELU_QUICK_FP16
 | |
| #define GGML_SILU_FP16
 | |
| 
 | |
| #define GGML_SOFT_MAX_UNROLL 4
 | |
| #define GGML_VEC_DOT_UNROLL  2
 | |
| 
 | |
| //
 | |
| // logging
 | |
| //
 | |
| 
 | |
| #if (GGML_DEBUG >= 1)
 | |
| #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 5)
 | |
| #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_5(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 10)
 | |
| #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_10(...)
 | |
| #endif
 | |
| 
 | |
| #define GGML_PRINT(...) printf(__VA_ARGS__)
 | |
| 
 | |
| #ifdef GGML_USE_ACCELERATE
 | |
| // uncomment to use vDSP for soft max computation
 | |
| // note: not sure if it is actually faster
 | |
| //#define GGML_SOFT_MAX_ACCELERATE
 | |
| #endif
 | |
| 
 | |
| #if UINTPTR_MAX == 0xFFFFFFFF
 | |
|     #define GGML_MEM_ALIGN 4
 | |
| #else
 | |
|     #define GGML_MEM_ALIGN 16
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // logging
 | |
| //
 | |
| 
 | |
| #if (GGML_DEBUG >= 1)
 | |
| #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 5)
 | |
| #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_5(...)
 | |
| #endif
 | |
| 
 | |
| #if (GGML_DEBUG >= 10)
 | |
| #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
 | |
| #else
 | |
| #define GGML_PRINT_DEBUG_10(...)
 | |
| #endif
 | |
| 
 | |
| #define GGML_PRINT(...) printf(__VA_ARGS__)
 | |
| 
 | |
| //
 | |
| // end of logging block
 | |
| //
 | |
| 
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)
 | |
| #define GGML_ALIGNED_MALLOC(size)  _aligned_malloc(size, GGML_MEM_ALIGN)
 | |
| #define GGML_ALIGNED_FREE(ptr)     _aligned_free(ptr)
 | |
| #else
 | |
| inline static void* ggml_aligned_malloc(size_t size) {
 | |
|     void* aligned_memory = NULL;
 | |
| #ifdef GGML_USE_METAL
 | |
|     int result = posix_memalign(&aligned_memory, getpagesize(), size);
 | |
| #else
 | |
|     int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
 | |
| #endif
 | |
|     if (result != 0) {
 | |
|         // Handle allocation failure
 | |
|         const char *error_desc = "unknown allocation error";
 | |
|         switch (result) {
 | |
|             case EINVAL:
 | |
|                 error_desc = "invalid alignment value";
 | |
|                 break;
 | |
|             case ENOMEM:
 | |
|                 error_desc = "insufficient memory";
 | |
|                 break;
 | |
|         }
 | |
|         GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
 | |
|             __func__, error_desc, size/(1024.0*1024.0));
 | |
|         return NULL;
 | |
|     }
 | |
|     return aligned_memory;
 | |
| }
 | |
| #define GGML_ALIGNED_MALLOC(size)  ggml_aligned_malloc(size)
 | |
| #define GGML_ALIGNED_FREE(ptr)     free(ptr)
 | |
| #endif
 | |
| 
 | |
| #define UNUSED GGML_UNUSED
 | |
| #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
 | |
| 
 | |
| //
 | |
| // tensor access macros
 | |
| //
 | |
| 
 | |
| #define GGML_TENSOR_UNARY_OP_LOCALS \
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb); \
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne); \
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb,  dst,  nb);
 | |
| 
 | |
| #define GGML_TENSOR_BINARY_OP_LOCALS \
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb); \
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb); \
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne); \
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb,  dst,  nb);
 | |
| 
 | |
| #if defined(GGML_USE_ACCELERATE)
 | |
| #include <Accelerate/Accelerate.h>
 | |
| #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
 | |
| #include "ggml-opencl.h"
 | |
| #endif
 | |
| #elif defined(GGML_USE_OPENBLAS)
 | |
| #if defined(GGML_BLAS_USE_MKL)
 | |
| #include <mkl.h>
 | |
| #else
 | |
| #include <cblas.h>
 | |
| #endif
 | |
| #elif defined(GGML_USE_CUBLAS)
 | |
| #include "ggml-cuda.h"
 | |
| #elif defined(GGML_USE_CLBLAST)
 | |
| #include "ggml-opencl.h"
 | |
| #endif
 | |
| 
 | |
| #undef MIN
 | |
| #undef MAX
 | |
| #define MIN(a, b) ((a) < (b) ? (a) : (b))
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| 
 | |
| // floating point type used to accumulate sums
 | |
| typedef double ggml_float;
 | |
| 
 | |
| // 16-bit float
 | |
| // on Arm, we use __fp16
 | |
| // on x86, we use uint16_t
 | |
| #ifdef __ARM_NEON
 | |
| 
 | |
| // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
 | |
| //
 | |
| //   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
 | |
| //
 | |
| #include <arm_neon.h>
 | |
| 
 | |
| #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
 | |
| #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
 | |
| 
 | |
| #define GGML_FP16_TO_FP32(x) ((float) (x))
 | |
| #define GGML_FP32_TO_FP16(x) (x)
 | |
| 
 | |
| #else
 | |
| 
 | |
| #ifdef __wasm_simd128__
 | |
| #include <wasm_simd128.h>
 | |
| #else
 | |
| #ifdef __POWER9_VECTOR__
 | |
| #include <altivec.h>
 | |
| #undef bool
 | |
| #define bool _Bool
 | |
| #else
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)
 | |
| #include <intrin.h>
 | |
| #else
 | |
| #if !defined(__riscv)
 | |
| #include <immintrin.h>
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef __F16C__
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
 | |
| #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
 | |
| #else
 | |
| #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
 | |
| #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
 | |
| #endif
 | |
| 
 | |
| #elif defined(__POWER9_VECTOR__)
 | |
| 
 | |
| #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
 | |
| #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
 | |
| /* the inline asm below is about 12% faster than the lookup method */
 | |
| #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
 | |
| #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
 | |
| 
 | |
| static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
 | |
|     register float f;
 | |
|     register double d;
 | |
|     __asm__(
 | |
|         "mtfprd %0,%2\n"
 | |
|         "xscvhpdp %0,%0\n"
 | |
|         "frsp %1,%0\n" :
 | |
|         /* temp */ "=d"(d),
 | |
|         /* out */  "=f"(f):
 | |
|         /* in */   "r"(h));
 | |
|     return f;
 | |
| }
 | |
| 
 | |
| static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
 | |
|     register double d;
 | |
|     register ggml_fp16_t r;
 | |
|     __asm__( /* xscvdphp can work on double or single precision */
 | |
|         "xscvdphp %0,%2\n"
 | |
|         "mffprd %1,%0\n" :
 | |
|         /* temp */ "=d"(d),
 | |
|         /* out */  "=r"(r):
 | |
|         /* in */   "f"(f));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| // FP16 <-> FP32
 | |
| // ref: https://github.com/Maratyszcza/FP16
 | |
| 
 | |
| static inline float fp32_from_bits(uint32_t w) {
 | |
|     union {
 | |
|         uint32_t as_bits;
 | |
|         float as_value;
 | |
|     } fp32;
 | |
|     fp32.as_bits = w;
 | |
|     return fp32.as_value;
 | |
| }
 | |
| 
 | |
| static inline uint32_t fp32_to_bits(float f) {
 | |
|     union {
 | |
|         float as_value;
 | |
|         uint32_t as_bits;
 | |
|     } fp32;
 | |
|     fp32.as_value = f;
 | |
|     return fp32.as_bits;
 | |
| }
 | |
| 
 | |
| static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
 | |
|     const uint32_t w = (uint32_t) h << 16;
 | |
|     const uint32_t sign = w & UINT32_C(0x80000000);
 | |
|     const uint32_t two_w = w + w;
 | |
| 
 | |
|     const uint32_t exp_offset = UINT32_C(0xE0) << 23;
 | |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
 | |
|     const float exp_scale = 0x1.0p-112f;
 | |
| #else
 | |
|     const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
 | |
| #endif
 | |
|     const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
 | |
| 
 | |
|     const uint32_t magic_mask = UINT32_C(126) << 23;
 | |
|     const float magic_bias = 0.5f;
 | |
|     const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
 | |
| 
 | |
|     const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
 | |
|     const uint32_t result = sign |
 | |
|         (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
 | |
|     return fp32_from_bits(result);
 | |
| }
 | |
| 
 | |
| static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
 | |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
 | |
|     const float scale_to_inf = 0x1.0p+112f;
 | |
|     const float scale_to_zero = 0x1.0p-110f;
 | |
| #else
 | |
|     const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
 | |
|     const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
 | |
| #endif
 | |
|     float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
 | |
| 
 | |
|     const uint32_t w = fp32_to_bits(f);
 | |
|     const uint32_t shl1_w = w + w;
 | |
|     const uint32_t sign = w & UINT32_C(0x80000000);
 | |
|     uint32_t bias = shl1_w & UINT32_C(0xFF000000);
 | |
|     if (bias < UINT32_C(0x71000000)) {
 | |
|         bias = UINT32_C(0x71000000);
 | |
|     }
 | |
| 
 | |
|     base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
 | |
|     const uint32_t bits = fp32_to_bits(base);
 | |
|     const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
 | |
|     const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
 | |
|     const uint32_t nonsign = exp_bits + mantissa_bits;
 | |
|     return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
 | |
| }
 | |
| 
 | |
| #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
 | |
| #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
 | |
| 
 | |
| #endif // __F16C__
 | |
| 
 | |
| #endif // __ARM_NEON
 | |
| 
 | |
| //
 | |
| // global data
 | |
| //
 | |
| 
 | |
| // precomputed gelu table for f16 (128 KB)
 | |
| static ggml_fp16_t table_gelu_f16[1 << 16];
 | |
| 
 | |
| // precomputed quick gelu table for f16 (128 KB)
 | |
| static ggml_fp16_t table_gelu_quick_f16[1 << 16];
 | |
| 
 | |
| // precomputed silu table for f16 (128 KB)
 | |
| static ggml_fp16_t table_silu_f16[1 << 16];
 | |
| 
 | |
| // precomputed exp table for f16 (128 KB)
 | |
| static ggml_fp16_t table_exp_f16[1 << 16];
 | |
| 
 | |
| // precomputed f32 table for f16 (256 KB)
 | |
| static float table_f32_f16[1 << 16];
 | |
| 
 | |
| #if defined(__ARM_NEON) || defined(__wasm_simd128__)
 | |
| #define B1(c,s,n)  0x ## n ## c ,  0x ## n ## s
 | |
| #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
 | |
| #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
 | |
| #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
 | |
| #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
 | |
| #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
 | |
| #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
 | |
| #define B8(c,s  ) B7(c,s,     c), B7(c,s,     s)
 | |
| 
 | |
| // precomputed tables for expanding 8bits to 8 bytes:
 | |
| static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
 | |
| static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
 | |
| #endif
 | |
| 
 | |
| // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
 | |
| // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
 | |
| // This is also true for POWER9.
 | |
| #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
 | |
| 
 | |
| inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
 | |
|     uint16_t s;
 | |
|     memcpy(&s, &f, sizeof(uint16_t));
 | |
|     return table_f32_f16[s];
 | |
| }
 | |
| 
 | |
| #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
 | |
| #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // note: do not use these inside ggml.c
 | |
| // these are meant to be used via the ggml.h API
 | |
| float ggml_fp16_to_fp32(ggml_fp16_t x) {
 | |
|     return (float) GGML_FP16_TO_FP32(x);
 | |
| }
 | |
| 
 | |
| ggml_fp16_t ggml_fp32_to_fp16(float x) {
 | |
|     return GGML_FP32_TO_FP16(x);
 | |
| }
 | |
| 
 | |
| void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         y[i] = GGML_FP16_TO_FP32(x[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
 | |
|     int i = 0;
 | |
| #if defined(__F16C__)
 | |
|     for (; i + 7 < n; i += 8) {
 | |
|         __m256 x_vec = _mm256_loadu_ps(x + i);
 | |
|         __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
 | |
|         _mm_storeu_si128((__m128i *)(y + i), y_vec);
 | |
|     }
 | |
|     for(; i + 3 < n; i += 4) {
 | |
|         __m128 x_vec = _mm_loadu_ps(x + i);
 | |
|         __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
 | |
|         _mm_storel_epi64((__m128i *)(y + i), y_vec);
 | |
|     }
 | |
| #endif
 | |
|     for (; i < n; i++) {
 | |
|         y[i] = GGML_FP32_TO_FP16(x[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // timing
 | |
| //
 | |
| 
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)
 | |
| static int64_t timer_freq, timer_start;
 | |
| void ggml_time_init(void) {
 | |
|     LARGE_INTEGER t;
 | |
|     QueryPerformanceFrequency(&t);
 | |
|     timer_freq = t.QuadPart;
 | |
| 
 | |
|     // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
 | |
|     // and the uptime is high enough.
 | |
|     // We subtract the program start time to reduce the likelihood of that happening.
 | |
|     QueryPerformanceCounter(&t);
 | |
|     timer_start = t.QuadPart;
 | |
| }
 | |
| int64_t ggml_time_ms(void) {
 | |
|     LARGE_INTEGER t;
 | |
|     QueryPerformanceCounter(&t);
 | |
|     return ((t.QuadPart-timer_start) * 1000) / timer_freq;
 | |
| }
 | |
| int64_t ggml_time_us(void) {
 | |
|     LARGE_INTEGER t;
 | |
|     QueryPerformanceCounter(&t);
 | |
|     return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
 | |
| }
 | |
| #else
 | |
| void ggml_time_init(void) {}
 | |
| int64_t ggml_time_ms(void) {
 | |
|     struct timespec ts;
 | |
|     clock_gettime(CLOCK_MONOTONIC, &ts);
 | |
|     return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
 | |
| }
 | |
| 
 | |
| int64_t ggml_time_us(void) {
 | |
|     struct timespec ts;
 | |
|     clock_gettime(CLOCK_MONOTONIC, &ts);
 | |
|     return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int64_t ggml_cycles(void) {
 | |
|     return clock();
 | |
| }
 | |
| 
 | |
| int64_t ggml_cycles_per_ms(void) {
 | |
|     return CLOCKS_PER_SEC/1000;
 | |
| }
 | |
| 
 | |
| #ifdef GGML_PERF
 | |
| #define ggml_perf_time_ms()       ggml_time_ms()
 | |
| #define ggml_perf_time_us()       ggml_time_us()
 | |
| #define ggml_perf_cycles()        ggml_cycles()
 | |
| #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
 | |
| #else
 | |
| #define ggml_perf_time_ms()       0
 | |
| #define ggml_perf_time_us()       0
 | |
| #define ggml_perf_cycles()        0
 | |
| #define ggml_perf_cycles_per_ms() 0
 | |
| #endif
 | |
| 
 | |
| 
 | |
| //
 | |
| // cache line
 | |
| //
 | |
| 
 | |
| #if defined(__cpp_lib_hardware_interference_size)
 | |
| #define CACHE_LINE_SIZE hardware_destructive_interference_size
 | |
| #else
 | |
| #if defined(__POWER9_VECTOR__)
 | |
| #define CACHE_LINE_SIZE 128
 | |
| #else
 | |
| #define CACHE_LINE_SIZE 64
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
 | |
| 
 | |
| //
 | |
| // quantization
 | |
| //
 | |
| 
 | |
| #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
 | |
| 
 | |
| #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
 | |
| // multiply int8_t, add results pairwise twice
 | |
| static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
 | |
|     // Get absolute values of x vectors
 | |
|     const __m128i ax = _mm_sign_epi8(x, x);
 | |
|     // Sign the values of the y vectors
 | |
|     const __m128i sy = _mm_sign_epi8(y, x);
 | |
|     // Perform multiplication and create 16-bit values
 | |
|     const __m128i dot = _mm_maddubs_epi16(ax, sy);
 | |
|     const __m128i ones = _mm_set1_epi16(1);
 | |
|     return _mm_madd_epi16(ones, dot);
 | |
| }
 | |
| 
 | |
| #if __AVX__ || __AVX2__ || __AVX512F__
 | |
| // horizontally add 8 floats
 | |
| static inline float hsum_float_8(const __m256 x) {
 | |
|     __m128 res = _mm256_extractf128_ps(x, 1);
 | |
|     res = _mm_add_ps(res, _mm256_castps256_ps128(x));
 | |
|     res = _mm_add_ps(res, _mm_movehl_ps(res, res));
 | |
|     res = _mm_add_ss(res, _mm_movehdup_ps(res));
 | |
|     return _mm_cvtss_f32(res);
 | |
| }
 | |
| 
 | |
| // horizontally add 8 int32_t
 | |
| static inline int hsum_i32_8(const __m256i a) {
 | |
|     const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
 | |
|     const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
 | |
|     const __m128i sum64 = _mm_add_epi32(hi64, sum128);
 | |
|     const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
 | |
|     return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
 | |
| }
 | |
| 
 | |
| // horizontally add 4 int32_t
 | |
| static inline int hsum_i32_4(const __m128i a) {
 | |
|     const __m128i hi64 = _mm_unpackhi_epi64(a, a);
 | |
|     const __m128i sum64 = _mm_add_epi32(hi64, a);
 | |
|     const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
 | |
|     return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
 | |
| }
 | |
| 
 | |
| #if defined(__AVX2__) || defined(__AVX512F__)
 | |
| // spread 32 bits to 32 bytes { 0x00, 0xFF }
 | |
| static inline __m256i bytes_from_bits_32(const uint8_t * x) {
 | |
|     uint32_t x32;
 | |
|     memcpy(&x32, x, sizeof(uint32_t));
 | |
|     const __m256i shuf_mask = _mm256_set_epi64x(
 | |
|             0x0303030303030303, 0x0202020202020202,
 | |
|             0x0101010101010101, 0x0000000000000000);
 | |
|     __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
 | |
|     const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
 | |
|     bytes = _mm256_or_si256(bytes, bit_mask);
 | |
|     return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
 | |
| }
 | |
| 
 | |
| // Unpack 32 4-bit fields into 32 bytes
 | |
| // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
 | |
| static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
 | |
| {
 | |
|     const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
 | |
|     const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
 | |
|     const __m256i lowMask = _mm256_set1_epi8( 0xF );
 | |
|     return _mm256_and_si256(lowMask, bytes);
 | |
| }
 | |
| 
 | |
| // add int16_t pairwise and return as float vector
 | |
| static inline __m256 sum_i16_pairs_float(const __m256i x) {
 | |
|     const __m256i ones = _mm256_set1_epi16(1);
 | |
|     const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
 | |
|     return _mm256_cvtepi32_ps(summed_pairs);
 | |
| }
 | |
| 
 | |
| static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
 | |
| #if __AVXVNNI__
 | |
|     const __m256i zero = _mm256_setzero_si256();
 | |
|     const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
 | |
|     return _mm256_cvtepi32_ps(summed_pairs);
 | |
| #else
 | |
|     // Perform multiplication and create 16-bit values
 | |
|     const __m256i dot = _mm256_maddubs_epi16(ax, sy);
 | |
|     return sum_i16_pairs_float(dot);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // multiply int8_t, add results pairwise twice and return as float vector
 | |
| static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
 | |
| #if __AVXVNNIINT8__
 | |
|     const __m256i zero = _mm256_setzero_si256();
 | |
|     const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
 | |
|     return _mm256_cvtepi32_ps(summed_pairs);
 | |
| #else
 | |
|     // Get absolute values of x vectors
 | |
|     const __m256i ax = _mm256_sign_epi8(x, x);
 | |
|     // Sign the values of the y vectors
 | |
|     const __m256i sy = _mm256_sign_epi8(y, x);
 | |
|     return mul_sum_us8_pairs_float(ax, sy);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline __m128i packNibbles( __m256i bytes )
 | |
| {
 | |
|     // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
 | |
| #if __AVX512F__
 | |
|     const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4);   // 0000_0000_abcd_0000
 | |
|     bytes = _mm256_or_si256(bytes, bytes_srli_4);               // 0000_abcd_abcd_efgh
 | |
|     return _mm256_cvtepi16_epi8(bytes);                         // abcd_efgh
 | |
| #else
 | |
|     const __m256i lowByte = _mm256_set1_epi16( 0xFF );
 | |
|     __m256i high = _mm256_andnot_si256( lowByte, bytes );
 | |
|     __m256i low = _mm256_and_si256( lowByte, bytes );
 | |
|     high = _mm256_srli_epi16( high, 4 );
 | |
|     bytes = _mm256_or_si256( low, high );
 | |
| 
 | |
|     // Compress uint16_t lanes into bytes
 | |
|     __m128i r0 = _mm256_castsi256_si128( bytes );
 | |
|     __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
 | |
|     return _mm_packus_epi16( r0, r1 );
 | |
| #endif
 | |
| }
 | |
| #elif defined(__AVX__)
 | |
| // spread 32 bits to 32 bytes { 0x00, 0xFF }
 | |
| static inline __m256i bytes_from_bits_32(const uint8_t * x) {
 | |
|     uint32_t x32;
 | |
|     memcpy(&x32, x, sizeof(uint32_t));
 | |
|     const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
 | |
|     const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
 | |
|     __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
 | |
|     __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
 | |
|     const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
 | |
|     bytesl = _mm_or_si128(bytesl, bit_mask);
 | |
|     bytesh = _mm_or_si128(bytesh, bit_mask);
 | |
|     bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
 | |
|     bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
 | |
|     return MM256_SET_M128I(bytesh, bytesl);
 | |
| }
 | |
| 
 | |
| // Unpack 32 4-bit fields into 32 bytes
 | |
| // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
 | |
| static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
 | |
| {
 | |
|     // Load 16 bytes from memory
 | |
|     __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
 | |
|     __m128i tmph = _mm_srli_epi16(tmpl, 4);
 | |
|     const __m128i lowMask = _mm_set1_epi8(0xF);
 | |
|     tmpl = _mm_and_si128(lowMask, tmpl);
 | |
|     tmph = _mm_and_si128(lowMask, tmph);
 | |
|     return MM256_SET_M128I(tmph, tmpl);
 | |
| }
 | |
| 
 | |
| // add int16_t pairwise and return as float vector
 | |
| static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
 | |
|     const __m128i ones = _mm_set1_epi16(1);
 | |
|     const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
 | |
|     const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
 | |
|     const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
 | |
|     return _mm256_cvtepi32_ps(summed_pairs);
 | |
| }
 | |
| 
 | |
| static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
 | |
|     const __m128i axl = _mm256_castsi256_si128(ax);
 | |
|     const __m128i axh = _mm256_extractf128_si256(ax, 1);
 | |
|     const __m128i syl = _mm256_castsi256_si128(sy);
 | |
|     const __m128i syh = _mm256_extractf128_si256(sy, 1);
 | |
|     // Perform multiplication and create 16-bit values
 | |
|     const __m128i dotl = _mm_maddubs_epi16(axl, syl);
 | |
|     const __m128i doth = _mm_maddubs_epi16(axh, syh);
 | |
|     return sum_i16_pairs_float(doth, dotl);
 | |
| }
 | |
| 
 | |
| // multiply int8_t, add results pairwise twice and return as float vector
 | |
| static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
 | |
|     const __m128i xl = _mm256_castsi256_si128(x);
 | |
|     const __m128i xh = _mm256_extractf128_si256(x, 1);
 | |
|     const __m128i yl = _mm256_castsi256_si128(y);
 | |
|     const __m128i yh = _mm256_extractf128_si256(y, 1);
 | |
|     // Get absolute values of x vectors
 | |
|     const __m128i axl = _mm_sign_epi8(xl, xl);
 | |
|     const __m128i axh = _mm_sign_epi8(xh, xh);
 | |
|     // Sign the values of the y vectors
 | |
|     const __m128i syl = _mm_sign_epi8(yl, xl);
 | |
|     const __m128i syh = _mm_sign_epi8(yh, xh);
 | |
|     // Perform multiplication and create 16-bit values
 | |
|     const __m128i dotl = _mm_maddubs_epi16(axl, syl);
 | |
|     const __m128i doth = _mm_maddubs_epi16(axh, syh);
 | |
|     return sum_i16_pairs_float(doth, dotl);
 | |
| }
 | |
| 
 | |
| static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
 | |
| {
 | |
|     // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
 | |
|     const __m128i lowByte = _mm_set1_epi16( 0xFF );
 | |
|     __m128i high = _mm_andnot_si128( lowByte, bytes1 );
 | |
|     __m128i low = _mm_and_si128( lowByte, bytes1 );
 | |
|     high = _mm_srli_epi16( high, 4 );
 | |
|     bytes1 = _mm_or_si128( low, high );
 | |
|     high = _mm_andnot_si128( lowByte, bytes2 );
 | |
|     low = _mm_and_si128( lowByte, bytes2 );
 | |
|     high = _mm_srli_epi16( high, 4 );
 | |
|     bytes2 = _mm_or_si128( low, high );
 | |
| 
 | |
|     return _mm_packus_epi16( bytes1, bytes2);
 | |
| }
 | |
| #endif
 | |
| #elif defined(__SSSE3__)
 | |
| // horizontally add 4x4 floats
 | |
| static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
 | |
|     __m128 res_0 =_mm_hadd_ps(a, b);
 | |
|     __m128 res_1 =_mm_hadd_ps(c, d);
 | |
|     __m128 res =_mm_hadd_ps(res_0, res_1);
 | |
|     res =_mm_hadd_ps(res, res);
 | |
|     res =_mm_hadd_ps(res, res);
 | |
| 
 | |
|     return _mm_cvtss_f32(res);
 | |
| }
 | |
| #endif // __AVX__ || __AVX2__ || __AVX512F__
 | |
| #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
| 
 | |
| #if !defined(__aarch64__)
 | |
| 
 | |
| inline static uint16_t vaddvq_u8(uint8x16_t v) {
 | |
|     return
 | |
|         (uint16_t)vgetq_lane_u8(v, 0)  + (uint16_t)vgetq_lane_u8(v, 1)  +
 | |
|         (uint16_t)vgetq_lane_u8(v, 2)  + (uint16_t)vgetq_lane_u8(v, 3)  +
 | |
|         (uint16_t)vgetq_lane_u8(v, 4)  + (uint16_t)vgetq_lane_u8(v, 5)  +
 | |
|         (uint16_t)vgetq_lane_u8(v, 6)  + (uint16_t)vgetq_lane_u8(v, 7)  +
 | |
|         (uint16_t)vgetq_lane_u8(v, 8)  + (uint16_t)vgetq_lane_u8(v, 9)  +
 | |
|         (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
 | |
|         (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
 | |
|         (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
 | |
| }
 | |
| 
 | |
| inline static int16_t vaddvq_s8(int8x16_t v) {
 | |
|     return
 | |
|         (int16_t)vgetq_lane_s8(v, 0)  + (int16_t)vgetq_lane_s8(v, 1)  +
 | |
|         (int16_t)vgetq_lane_s8(v, 2)  + (int16_t)vgetq_lane_s8(v, 3)  +
 | |
|         (int16_t)vgetq_lane_s8(v, 4)  + (int16_t)vgetq_lane_s8(v, 5)  +
 | |
|         (int16_t)vgetq_lane_s8(v, 6)  + (int16_t)vgetq_lane_s8(v, 7)  +
 | |
|         (int16_t)vgetq_lane_s8(v, 8)  + (int16_t)vgetq_lane_s8(v, 9)  +
 | |
|         (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
 | |
|         (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
 | |
|         (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
 | |
| }
 | |
| 
 | |
| inline static int32_t vaddvq_s16(int16x8_t v) {
 | |
|     return
 | |
|         (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
 | |
|         (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
 | |
|         (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
 | |
|         (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
 | |
| }
 | |
| 
 | |
| inline static uint32_t vaddvq_u16(uint16x8_t v) {
 | |
|     return
 | |
|         (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
 | |
|         (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
 | |
|         (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
 | |
|         (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
 | |
| }
 | |
| 
 | |
| inline static int32_t vaddvq_s32(int32x4_t v) {
 | |
|     return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
 | |
| }
 | |
| 
 | |
| inline static float vaddvq_f32(float32x4_t v) {
 | |
|     return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
 | |
| }
 | |
| 
 | |
| inline static float vminvq_f32(float32x4_t v) {
 | |
|     return
 | |
|         MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
 | |
|             MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
 | |
| }
 | |
| 
 | |
| inline static float vmaxvq_f32(float32x4_t v) {
 | |
|     return
 | |
|         MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
 | |
|             MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
 | |
| }
 | |
| 
 | |
| inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
 | |
|     int32x4_t res;
 | |
| 
 | |
|     res[0] = roundf(vgetq_lane_f32(v, 0));
 | |
|     res[1] = roundf(vgetq_lane_f32(v, 1));
 | |
|     res[2] = roundf(vgetq_lane_f32(v, 2));
 | |
|     res[3] = roundf(vgetq_lane_f32(v, 3));
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #define QK4_0 32
 | |
| typedef struct {
 | |
|     ggml_fp16_t d;          // delta
 | |
|     uint8_t qs[QK4_0 / 2];  // nibbles / quants
 | |
| } block_q4_0;
 | |
| static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
 | |
| 
 | |
| #define QK4_1 32
 | |
| typedef struct {
 | |
|     ggml_fp16_t d;          // delta
 | |
|     ggml_fp16_t m;          // min
 | |
|     uint8_t qs[QK4_1 / 2];  // nibbles / quants
 | |
| } block_q4_1;
 | |
| static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
 | |
| 
 | |
| #define QK5_0 32
 | |
| typedef struct {
 | |
|     ggml_fp16_t d;         // delta
 | |
|     uint8_t qh[4];         // 5-th bit of quants
 | |
|     uint8_t qs[QK5_0 / 2]; // nibbles / quants
 | |
| } block_q5_0;
 | |
| static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
 | |
| 
 | |
| #define QK5_1 32
 | |
| typedef struct {
 | |
|     ggml_fp16_t d;         // delta
 | |
|     ggml_fp16_t m;         // min
 | |
|     uint8_t qh[4];         // 5-th bit of quants
 | |
|     uint8_t qs[QK5_1 / 2]; // nibbles / quants
 | |
| } block_q5_1;
 | |
| static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
 | |
| 
 | |
| #define QK8_0 32
 | |
| typedef struct {
 | |
|     ggml_fp16_t d;         // delta
 | |
|     int8_t  qs[QK8_0];     // quants
 | |
| } block_q8_0;
 | |
| static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
 | |
| 
 | |
| #define QK8_1 32
 | |
| typedef struct {
 | |
|     float d;               // delta
 | |
|     float s;               // d * sum(qs[i])
 | |
|     int8_t  qs[QK8_1];     // quants
 | |
| } block_q8_1;
 | |
| static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
 | |
| 
 | |
| // reference implementation for deterministic creation of model files
 | |
| static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
 | |
|     static const int qk = QK4_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float amax = 0.0f; // absolute max
 | |
|         float max  = 0.0f;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             const float v = x[i*qk + j];
 | |
|             if (amax < fabsf(v)) {
 | |
|                 amax = fabsf(v);
 | |
|                 max  = v;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const float d  = max / -8;
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const float x0 = x[i*qk + 0    + j]*id;
 | |
|             const float x1 = x[i*qk + qk/2 + j]*id;
 | |
| 
 | |
|             const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
 | |
|             const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
 | |
| 
 | |
|             y[i].qs[j]  = xi0;
 | |
|             y[i].qs[j] |= xi1 << 4;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
 | |
|     quantize_row_q4_0_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
 | |
|     const int qk = QK4_1;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float min = FLT_MAX;
 | |
|         float max = -FLT_MAX;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             const float v = x[i*qk + j];
 | |
| 
 | |
|             if (v < min) min = v;
 | |
|             if (v > max) max = v;
 | |
|         }
 | |
| 
 | |
|         const float d  = (max - min) / ((1 << 4) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
|         y[i].m = GGML_FP32_TO_FP16(min);
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const float x0 = (x[i*qk + 0    + j] - min)*id;
 | |
|             const float x1 = (x[i*qk + qk/2 + j] - min)*id;
 | |
| 
 | |
|             const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
 | |
|             const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
 | |
| 
 | |
|             y[i].qs[j]  = xi0;
 | |
|             y[i].qs[j] |= xi1 << 4;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
 | |
|     quantize_row_q4_1_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
 | |
|     static const int qk = QK5_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float amax = 0.0f; // absolute max
 | |
|         float max  = 0.0f;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             const float v = x[i*qk + j];
 | |
|             if (amax < fabsf(v)) {
 | |
|                 amax = fabsf(v);
 | |
|                 max  = v;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const float d  = max / -16;
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         uint32_t qh = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const float x0 = x[i*qk + 0    + j]*id;
 | |
|             const float x1 = x[i*qk + qk/2 + j]*id;
 | |
| 
 | |
|             const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
 | |
|             const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
 | |
| 
 | |
|             y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
 | |
| 
 | |
|             // get the 5-th bit and store it in qh at the right position
 | |
|             qh |= ((xi0 & 0x10) >> 4) << (j + 0);
 | |
|             qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
 | |
|         }
 | |
| 
 | |
|         memcpy(&y[i].qh, &qh, sizeof(qh));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
 | |
|     quantize_row_q5_0_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
 | |
|     const int qk = QK5_1;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float min = FLT_MAX;
 | |
|         float max = -FLT_MAX;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             const float v = x[i*qk + j];
 | |
| 
 | |
|             if (v < min) min = v;
 | |
|             if (v > max) max = v;
 | |
|         }
 | |
| 
 | |
|         const float d  = (max - min) / ((1 << 5) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
|         y[i].m = GGML_FP32_TO_FP16(min);
 | |
| 
 | |
|         uint32_t qh = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const float x0 = (x[i*qk + 0    + j] - min)*id;
 | |
|             const float x1 = (x[i*qk + qk/2 + j] - min)*id;
 | |
| 
 | |
|             const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
 | |
|             const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
 | |
| 
 | |
|             y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
 | |
| 
 | |
|             // get the 5-th bit and store it in qh at the right position
 | |
|             qh |= ((xi0 & 0x10) >> 4) << (j + 0);
 | |
|             qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
 | |
|         }
 | |
| 
 | |
|         memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
 | |
|     quantize_row_q5_1_reference(x, y, k);
 | |
| }
 | |
| 
 | |
| // reference implementation for deterministic creation of model files
 | |
| static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
 | |
|     assert(k % QK8_0 == 0);
 | |
|     const int nb = k / QK8_0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float amax = 0.0f; // absolute max
 | |
| 
 | |
|         for (int j = 0; j < QK8_0; j++) {
 | |
|             const float v = x[i*QK8_0 + j];
 | |
|             amax = MAX(amax, fabsf(v));
 | |
|         }
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         for (int j = 0; j < QK8_0; ++j) {
 | |
|             const float x0 = x[i*QK8_0 + j]*id;
 | |
| 
 | |
|             y[i].qs[j] = roundf(x0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(QK8_0 == 32);
 | |
|     assert(k % QK8_0 == 0);
 | |
|     const int nb = k / QK8_0;
 | |
| 
 | |
|     block_q8_0 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float32x4_t srcv [8];
 | |
|         float32x4_t asrcv[8];
 | |
|         float32x4_t amaxv[8];
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
 | |
|         for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
 | |
| 
 | |
|         for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
 | |
|         for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
 | |
|         for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
 | |
| 
 | |
|         const float amax = vmaxvq_f32(amaxv[0]);
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) {
 | |
|             const float32x4_t v  = vmulq_n_f32(srcv[j], id);
 | |
|             const int32x4_t   vi = vcvtnq_s32_f32(v);
 | |
| 
 | |
|             y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
 | |
|             y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
 | |
|             y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
 | |
|             y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
 | |
|         }
 | |
|     }
 | |
| #elif defined(__wasm_simd128__)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         v128_t srcv [8];
 | |
|         v128_t asrcv[8];
 | |
|         v128_t amaxv[8];
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
 | |
|         for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
 | |
| 
 | |
|         for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
 | |
|         for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
 | |
|         for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
 | |
| 
 | |
|         const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
 | |
|                                    wasm_f32x4_extract_lane(amaxv[0], 1)),
 | |
|                                MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
 | |
|                                    wasm_f32x4_extract_lane(amaxv[0], 3)));
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) {
 | |
|             const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
 | |
|             const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
 | |
| 
 | |
|             y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
 | |
|             y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
 | |
|             y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
 | |
|             y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
 | |
|         }
 | |
|     }
 | |
| #elif defined(__AVX2__) || defined(__AVX__)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         // Load elements into 4 AVX vectors
 | |
|         __m256 v0 = _mm256_loadu_ps( x );
 | |
|         __m256 v1 = _mm256_loadu_ps( x + 8 );
 | |
|         __m256 v2 = _mm256_loadu_ps( x + 16 );
 | |
|         __m256 v3 = _mm256_loadu_ps( x + 24 );
 | |
|         x += 32;
 | |
| 
 | |
|         // Compute max(abs(e)) for the block
 | |
|         const __m256 signBit = _mm256_set1_ps( -0.0f );
 | |
|         __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
 | |
| 
 | |
|         __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
 | |
|         max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
 | |
|         max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
 | |
|         const float maxScalar = _mm_cvtss_f32( max4 );
 | |
| 
 | |
|         // Quantize these floats
 | |
|         const float d = maxScalar / 127.f;
 | |
|         y[i].d = GGML_FP32_TO_FP16(d);
 | |
|         const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
 | |
|         const __m256 mul = _mm256_set1_ps( id );
 | |
| 
 | |
|         // Apply the multiplier
 | |
|         v0 = _mm256_mul_ps( v0, mul );
 | |
|         v1 = _mm256_mul_ps( v1, mul );
 | |
|         v2 = _mm256_mul_ps( v2, mul );
 | |
|         v3 = _mm256_mul_ps( v3, mul );
 | |
| 
 | |
|         // Round to nearest integer
 | |
|         v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
 | |
|         v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
 | |
|         v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
 | |
|         v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
 | |
| 
 | |
|         // Convert floats to integers
 | |
|         __m256i i0 = _mm256_cvtps_epi32( v0 );
 | |
|         __m256i i1 = _mm256_cvtps_epi32( v1 );
 | |
|         __m256i i2 = _mm256_cvtps_epi32( v2 );
 | |
|         __m256i i3 = _mm256_cvtps_epi32( v3 );
 | |
| 
 | |
| #if defined(__AVX2__)
 | |
|         // Convert int32 to int16
 | |
|         i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
 | |
|         i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
 | |
|                                             // Convert int16 to int8
 | |
|         i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
 | |
| 
 | |
|         // We got our precious signed bytes, but the order is now wrong
 | |
|         // These AVX2 pack instructions process 16-byte pieces independently
 | |
|         // The following instruction is fixing the order
 | |
|         const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
 | |
|         i0 = _mm256_permutevar8x32_epi32( i0, perm );
 | |
| 
 | |
|         _mm256_storeu_si256((__m256i *)y[i].qs, i0);
 | |
| #else
 | |
|         // Since we don't have in AVX some necessary functions,
 | |
|         // we split the registers in half and call AVX2 analogs from SSE
 | |
|         __m128i ni0 = _mm256_castsi256_si128( i0 );
 | |
|         __m128i ni1 = _mm256_extractf128_si256( i0, 1);
 | |
|         __m128i ni2 = _mm256_castsi256_si128( i1 );
 | |
|         __m128i ni3 = _mm256_extractf128_si256( i1, 1);
 | |
|         __m128i ni4 = _mm256_castsi256_si128( i2 );
 | |
|         __m128i ni5 = _mm256_extractf128_si256( i2, 1);
 | |
|         __m128i ni6 = _mm256_castsi256_si128( i3 );
 | |
|         __m128i ni7 = _mm256_extractf128_si256( i3, 1);
 | |
| 
 | |
|         // Convert int32 to int16
 | |
|         ni0 = _mm_packs_epi32( ni0, ni1 );
 | |
|         ni2 = _mm_packs_epi32( ni2, ni3 );
 | |
|         ni4 = _mm_packs_epi32( ni4, ni5 );
 | |
|         ni6 = _mm_packs_epi32( ni6, ni7 );
 | |
|         // Convert int16 to int8
 | |
|         ni0 = _mm_packs_epi16( ni0, ni2 );
 | |
|         ni4 = _mm_packs_epi16( ni4, ni6 );
 | |
| 
 | |
|         _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
 | |
|         _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
 | |
| #endif
 | |
|     }
 | |
| #else
 | |
|     // scalar
 | |
|     quantize_row_q8_0_reference(x, y, k);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // reference implementation for deterministic creation of model files
 | |
| static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
 | |
|     assert(QK8_1 == 32);
 | |
|     assert(k % QK8_1 == 0);
 | |
|     const int nb = k / QK8_1;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float amax = 0.0f; // absolute max
 | |
| 
 | |
|         for (int j = 0; j < QK8_1; j++) {
 | |
|             const float v = x[i*QK8_1 + j];
 | |
|             amax = MAX(amax, fabsf(v));
 | |
|         }
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = d;
 | |
| 
 | |
|         int sum = 0;
 | |
| 
 | |
|         for (int j = 0; j < QK8_1/2; ++j) {
 | |
|             const float v0 = x[i*QK8_1           + j]*id;
 | |
|             const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
 | |
| 
 | |
|             y[i].qs[          j] = roundf(v0);
 | |
|             y[i].qs[QK8_1/2 + j] = roundf(v1);
 | |
| 
 | |
|             sum += y[i].qs[          j];
 | |
|             sum += y[i].qs[QK8_1/2 + j];
 | |
|         }
 | |
| 
 | |
|         y[i].s = sum*d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
 | |
|     assert(k % QK8_1 == 0);
 | |
|     const int nb = k / QK8_1;
 | |
| 
 | |
|     block_q8_1 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         float32x4_t srcv [8];
 | |
|         float32x4_t asrcv[8];
 | |
|         float32x4_t amaxv[8];
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
 | |
|         for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
 | |
| 
 | |
|         for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
 | |
|         for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
 | |
|         for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
 | |
| 
 | |
|         const float amax = vmaxvq_f32(amaxv[0]);
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = d;
 | |
| 
 | |
|         int32x4_t accv = vdupq_n_s32(0);
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) {
 | |
|             const float32x4_t v  = vmulq_n_f32(srcv[j], id);
 | |
|             const int32x4_t   vi = vcvtnq_s32_f32(v);
 | |
| 
 | |
|             y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
 | |
|             y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
 | |
|             y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
 | |
|             y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
 | |
| 
 | |
|             accv = vaddq_s32(accv, vi);
 | |
|         }
 | |
| 
 | |
|         y[i].s = d * vaddvq_s32(accv);
 | |
|     }
 | |
| #elif defined(__wasm_simd128__)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         v128_t srcv [8];
 | |
|         v128_t asrcv[8];
 | |
|         v128_t amaxv[8];
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
 | |
|         for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
 | |
| 
 | |
|         for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
 | |
|         for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
 | |
|         for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
 | |
| 
 | |
|         const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
 | |
|                                    wasm_f32x4_extract_lane(amaxv[0], 1)),
 | |
|                                MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
 | |
|                                    wasm_f32x4_extract_lane(amaxv[0], 3)));
 | |
| 
 | |
|         const float d = amax / ((1 << 7) - 1);
 | |
|         const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|         y[i].d = d;
 | |
| 
 | |
|         v128_t accv = wasm_i32x4_splat(0);
 | |
| 
 | |
|         for (int j = 0; j < 8; j++) {
 | |
|             const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
 | |
|             const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
 | |
| 
 | |
|             y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
 | |
|             y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
 | |
|             y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
 | |
|             y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
 | |
| 
 | |
|             accv = wasm_i32x4_add(accv, vi);
 | |
|         }
 | |
| 
 | |
|         y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
 | |
|                       wasm_i32x4_extract_lane(accv, 1) +
 | |
|                       wasm_i32x4_extract_lane(accv, 2) +
 | |
|                       wasm_i32x4_extract_lane(accv, 3));
 | |
|     }
 | |
| #elif defined(__AVX2__) || defined(__AVX__)
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         // Load elements into 4 AVX vectors
 | |
|         __m256 v0 = _mm256_loadu_ps( x );
 | |
|         __m256 v1 = _mm256_loadu_ps( x + 8 );
 | |
|         __m256 v2 = _mm256_loadu_ps( x + 16 );
 | |
|         __m256 v3 = _mm256_loadu_ps( x + 24 );
 | |
|         x += 32;
 | |
| 
 | |
|         // Compute max(abs(e)) for the block
 | |
|         const __m256 signBit = _mm256_set1_ps( -0.0f );
 | |
|         __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
 | |
|         maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
 | |
| 
 | |
|         __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
 | |
|         max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
 | |
|         max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
 | |
|         const float maxScalar = _mm_cvtss_f32( max4 );
 | |
| 
 | |
|         // Quantize these floats
 | |
|         const float d = maxScalar / 127.f;
 | |
|         y[i].d = d;
 | |
|         const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
 | |
|         const __m256 mul = _mm256_set1_ps( id );
 | |
| 
 | |
|         // Apply the multiplier
 | |
|         v0 = _mm256_mul_ps( v0, mul );
 | |
|         v1 = _mm256_mul_ps( v1, mul );
 | |
|         v2 = _mm256_mul_ps( v2, mul );
 | |
|         v3 = _mm256_mul_ps( v3, mul );
 | |
| 
 | |
|         // Round to nearest integer
 | |
|         v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
 | |
|         v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
 | |
|         v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
 | |
|         v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
 | |
| 
 | |
|         // Convert floats to integers
 | |
|         __m256i i0 = _mm256_cvtps_epi32( v0 );
 | |
|         __m256i i1 = _mm256_cvtps_epi32( v1 );
 | |
|         __m256i i2 = _mm256_cvtps_epi32( v2 );
 | |
|         __m256i i3 = _mm256_cvtps_epi32( v3 );
 | |
| 
 | |
| #if defined(__AVX2__)
 | |
|         // Compute the sum of the quants and set y[i].s
 | |
|         y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
 | |
| 
 | |
|         // Convert int32 to int16
 | |
|         i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
 | |
|         i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
 | |
|                                             // Convert int16 to int8
 | |
|         i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
 | |
| 
 | |
|         // We got our precious signed bytes, but the order is now wrong
 | |
|         // These AVX2 pack instructions process 16-byte pieces independently
 | |
|         // The following instruction is fixing the order
 | |
|         const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
 | |
|         i0 = _mm256_permutevar8x32_epi32( i0, perm );
 | |
| 
 | |
|         _mm256_storeu_si256((__m256i *)y[i].qs, i0);
 | |
| #else
 | |
|         // Since we don't have in AVX some necessary functions,
 | |
|         // we split the registers in half and call AVX2 analogs from SSE
 | |
|         __m128i ni0 = _mm256_castsi256_si128( i0 );
 | |
|         __m128i ni1 = _mm256_extractf128_si256( i0, 1);
 | |
|         __m128i ni2 = _mm256_castsi256_si128( i1 );
 | |
|         __m128i ni3 = _mm256_extractf128_si256( i1, 1);
 | |
|         __m128i ni4 = _mm256_castsi256_si128( i2 );
 | |
|         __m128i ni5 = _mm256_extractf128_si256( i2, 1);
 | |
|         __m128i ni6 = _mm256_castsi256_si128( i3 );
 | |
|         __m128i ni7 = _mm256_extractf128_si256( i3, 1);
 | |
| 
 | |
|         // Compute the sum of the quants and set y[i].s
 | |
|         const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
 | |
|         const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
 | |
|         y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
 | |
| 
 | |
|         // Convert int32 to int16
 | |
|         ni0 = _mm_packs_epi32( ni0, ni1 );
 | |
|         ni2 = _mm_packs_epi32( ni2, ni3 );
 | |
|         ni4 = _mm_packs_epi32( ni4, ni5 );
 | |
|         ni6 = _mm_packs_epi32( ni6, ni7 );
 | |
|         // Convert int16 to int8
 | |
|         ni0 = _mm_packs_epi16( ni0, ni2 );
 | |
|         ni4 = _mm_packs_epi16( ni4, ni6 );
 | |
| 
 | |
|         _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
 | |
|         _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
 | |
| #endif
 | |
|     }
 | |
| #else
 | |
|     // scalar
 | |
|     quantize_row_q8_1_reference(x, y, k);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
 | |
|     static const int qk = QK4_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const int x0 = (x[i].qs[j] & 0x0F) - 8;
 | |
|             const int x1 = (x[i].qs[j] >>   4) - 8;
 | |
| 
 | |
|             y[i*qk + j + 0   ] = x0*d;
 | |
|             y[i*qk + j + qk/2] = x1*d;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
 | |
|     static const int qk = QK4_1;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float m = GGML_FP16_TO_FP32(x[i].m);
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const int x0 = (x[i].qs[j] & 0x0F);
 | |
|             const int x1 = (x[i].qs[j] >>   4);
 | |
| 
 | |
|             y[i*qk + j + 0   ] = x0*d + m;
 | |
|             y[i*qk + j + qk/2] = x1*d + m;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
 | |
|     static const int qk = QK5_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         uint32_t qh;
 | |
|         memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
 | |
|             const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
 | |
| 
 | |
|             const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
 | |
|             const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;
 | |
| 
 | |
|             y[i*qk + j + 0   ] = x0*d;
 | |
|             y[i*qk + j + qk/2] = x1*d;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
 | |
|     static const int qk = QK5_1;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float m = GGML_FP16_TO_FP32(x[i].m);
 | |
| 
 | |
|         uint32_t qh;
 | |
|         memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
 | |
|             const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
 | |
| 
 | |
|             const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
 | |
|             const int x1 = (x[i].qs[j] >>   4) | xh_1;
 | |
| 
 | |
|             y[i*qk + j + 0   ] = x0*d + m;
 | |
|             y[i*qk + j + qk/2] = x1*d + m;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
 | |
|     static const int qk = QK8_0;
 | |
| 
 | |
|     assert(k % qk == 0);
 | |
| 
 | |
|     const int nb = k / qk;
 | |
| 
 | |
|     const block_q8_0 * restrict x = vx;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const float d = GGML_FP16_TO_FP32(x[i].d);
 | |
| 
 | |
|         for (int j = 0; j < qk; ++j) {
 | |
|             y[i*qk + j] = x[i].qs[j]*d;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
 | |
| static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
 | |
| static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
 | |
| static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
 | |
| static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
 | |
| static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
 | |
| static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
 | |
| 
 | |
| static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
 | |
|     [GGML_TYPE_F32] = {
 | |
|         .vec_dot                  = (ggml_vec_dot_t) ggml_vec_dot_f32,
 | |
|         .vec_dot_type             = GGML_TYPE_F32,
 | |
|     },
 | |
|     [GGML_TYPE_F16] = {
 | |
|         .to_float                 = (ggml_to_float_t) ggml_fp16_to_fp32_row,
 | |
|         .from_float               = (ggml_from_float_t) ggml_fp32_to_fp16_row,
 | |
|         .from_float_reference     = (ggml_from_float_t) ggml_fp32_to_fp16_row,
 | |
|         .vec_dot                  = (ggml_vec_dot_t) ggml_vec_dot_f16,
 | |
|         .vec_dot_type             = GGML_TYPE_F16,
 | |
|     },
 | |
|     [GGML_TYPE_Q4_0] = {
 | |
|         .to_float                 = (ggml_to_float_t) dequantize_row_q4_0,
 | |
|         .from_float               = quantize_row_q4_0,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q4_0_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q4_0_q8_0,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_0,
 | |
|     },
 | |
|     [GGML_TYPE_Q4_1] = {
 | |
|         .to_float                 = (ggml_to_float_t) dequantize_row_q4_1,
 | |
|         .from_float               = quantize_row_q4_1,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q4_1_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q4_1_q8_1,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_1,
 | |
|     },
 | |
|     [GGML_TYPE_Q5_0] = {
 | |
|         .to_float                 = (ggml_to_float_t) dequantize_row_q5_0,
 | |
|         .from_float               = quantize_row_q5_0,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q5_0_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q5_0_q8_0,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_0,
 | |
|     },
 | |
|     [GGML_TYPE_Q5_1] = {
 | |
|         .to_float                 = (ggml_to_float_t) dequantize_row_q5_1,
 | |
|         .from_float               = quantize_row_q5_1,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q5_1_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q5_1_q8_1,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_1,
 | |
|     },
 | |
|     [GGML_TYPE_Q8_0] = {
 | |
|         .to_float                 = dequantize_row_q8_0,
 | |
|         .from_float               = quantize_row_q8_0,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q8_0_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q8_0_q8_0,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_0,
 | |
|     },
 | |
|     [GGML_TYPE_Q8_1] = {
 | |
|         .from_float               = quantize_row_q8_1,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q8_1_reference,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_1,
 | |
|     },
 | |
| #ifdef GGML_USE_K_QUANTS
 | |
|     [GGML_TYPE_Q2_K] = {
 | |
|         .to_float                 = (ggml_to_float_t) dequantize_row_q2_K,
 | |
|         .from_float               = quantize_row_q2_K,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q2_K_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q2_K_q8_K,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_K,
 | |
|     },
 | |
|     [GGML_TYPE_Q3_K] = {
 | |
|         .to_float                 = (ggml_to_float_t) dequantize_row_q3_K,
 | |
|         .from_float               = quantize_row_q3_K,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q3_K_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q3_K_q8_K,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_K,
 | |
|     },
 | |
|     [GGML_TYPE_Q4_K] = {
 | |
|         .to_float                 = (ggml_to_float_t) dequantize_row_q4_K,
 | |
|         .from_float               = quantize_row_q4_K,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q4_K_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q4_K_q8_K,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_K,
 | |
|     },
 | |
|     [GGML_TYPE_Q5_K] = {
 | |
|         .to_float                 = (ggml_to_float_t) dequantize_row_q5_K,
 | |
|         .from_float               = quantize_row_q5_K,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q5_K_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q5_K_q8_K,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_K,
 | |
|     },
 | |
|     [GGML_TYPE_Q6_K] = {
 | |
|         .to_float                 = (ggml_to_float_t) dequantize_row_q6_K,
 | |
|         .from_float               = quantize_row_q6_K,
 | |
|         .from_float_reference     = (ggml_from_float_t) quantize_row_q6_K_reference,
 | |
|         .vec_dot                  = ggml_vec_dot_q6_K_q8_K,
 | |
|         .vec_dot_type             = GGML_TYPE_Q8_K,
 | |
|     },
 | |
|     [GGML_TYPE_Q8_K] = {
 | |
|         .from_float               = quantize_row_q8_K,
 | |
|     }
 | |
| #endif
 | |
| };
 | |
| 
 | |
| // For internal test use
 | |
| ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
 | |
|     GGML_ASSERT(i < GGML_TYPE_COUNT);
 | |
|     return type_traits[i];
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // simd mappings
 | |
| //
 | |
| 
 | |
| // we define a common set of C macros which map to specific intrinsics based on the current architecture
 | |
| // we then implement the fundamental computation operations below using only these macros
 | |
| // adding support for new architectures requires to define the corresponding SIMD macros
 | |
| //
 | |
| // GGML_F32_STEP / GGML_F16_STEP
 | |
| //   number of elements to process in a single step
 | |
| //
 | |
| // GGML_F32_EPR / GGML_F16_EPR
 | |
| //   number of elements to fit in a single register
 | |
| //
 | |
| 
 | |
| #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
 | |
| 
 | |
| #define GGML_SIMD
 | |
| 
 | |
| // F32 NEON
 | |
| 
 | |
| #define GGML_F32_STEP 16
 | |
| #define GGML_F32_EPR  4
 | |
| 
 | |
| #define GGML_F32x4              float32x4_t
 | |
| #define GGML_F32x4_ZERO         vdupq_n_f32(0.0f)
 | |
| #define GGML_F32x4_SET1(x)      vdupq_n_f32(x)
 | |
| #define GGML_F32x4_LOAD         vld1q_f32
 | |
| #define GGML_F32x4_STORE        vst1q_f32
 | |
| #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
 | |
| #define GGML_F32x4_ADD          vaddq_f32
 | |
| #define GGML_F32x4_MUL          vmulq_f32
 | |
| #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
 | |
| #define GGML_F32x4_REDUCE(res, x)              \
 | |
| {                                              \
 | |
|     int offset = GGML_F32_ARR >> 1;            \
 | |
|     for (int i = 0; i < offset; ++i) {         \
 | |
|         x[i] = vaddq_f32(x[i], x[offset+i]);   \
 | |
|     }                                          \
 | |
|     offset >>= 1;                              \
 | |
|     for (int i = 0; i < offset; ++i) {         \
 | |
|         x[i] = vaddq_f32(x[i], x[offset+i]);   \
 | |
|     }                                          \
 | |
|     offset >>= 1;                              \
 | |
|     for (int i = 0; i < offset; ++i) {         \
 | |
|         x[i] = vaddq_f32(x[i], x[offset+i]);   \
 | |
|     }                                          \
 | |
|     res = GGML_F32x4_REDUCE_ONE(x[0]);         \
 | |
| }
 | |
| 
 | |
| #define GGML_F32_VEC        GGML_F32x4
 | |
| #define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
 | |
| #define GGML_F32_VEC_SET1   GGML_F32x4_SET1
 | |
| #define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
 | |
| #define GGML_F32_VEC_STORE  GGML_F32x4_STORE
 | |
| #define GGML_F32_VEC_FMA    GGML_F32x4_FMA
 | |
| #define GGML_F32_VEC_ADD    GGML_F32x4_ADD
 | |
| #define GGML_F32_VEC_MUL    GGML_F32x4_MUL
 | |
| #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
 | |
| 
 | |
| // F16 NEON
 | |
| 
 | |
| #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
 | |
|     #define GGML_F16_STEP 32
 | |
|     #define GGML_F16_EPR  8
 | |
| 
 | |
|     #define GGML_F16x8              float16x8_t
 | |
|     #define GGML_F16x8_ZERO         vdupq_n_f16(0.0f)
 | |
|     #define GGML_F16x8_SET1(x)      vdupq_n_f16(x)
 | |
|     #define GGML_F16x8_LOAD         vld1q_f16
 | |
|     #define GGML_F16x8_STORE        vst1q_f16
 | |
|     #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
 | |
|     #define GGML_F16x8_ADD          vaddq_f16
 | |
|     #define GGML_F16x8_MUL          vmulq_f16
 | |
|     #define GGML_F16x8_REDUCE(res, x)                             \
 | |
|     {                                                             \
 | |
|         int offset = GGML_F16_ARR >> 1;                           \
 | |
|         for (int i = 0; i < offset; ++i) {                        \
 | |
|             x[i] = vaddq_f16(x[i], x[offset+i]);                  \
 | |
|         }                                                         \
 | |
|         offset >>= 1;                                             \
 | |
|         for (int i = 0; i < offset; ++i) {                        \
 | |
|             x[i] = vaddq_f16(x[i], x[offset+i]);                  \
 | |
|         }                                                         \
 | |
|         offset >>= 1;                                             \
 | |
|         for (int i = 0; i < offset; ++i) {                        \
 | |
|             x[i] = vaddq_f16(x[i], x[offset+i]);                  \
 | |
|         }                                                         \
 | |
|         const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
 | |
|         const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
 | |
|         res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1));         \
 | |
|     }
 | |
| 
 | |
|     #define GGML_F16_VEC                GGML_F16x8
 | |
|     #define GGML_F16_VEC_ZERO           GGML_F16x8_ZERO
 | |
|     #define GGML_F16_VEC_SET1           GGML_F16x8_SET1
 | |
|     #define GGML_F16_VEC_LOAD(p, i)     GGML_F16x8_LOAD(p)
 | |
|     #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
 | |
|     #define GGML_F16_VEC_FMA            GGML_F16x8_FMA
 | |
|     #define GGML_F16_VEC_ADD            GGML_F16x8_ADD
 | |
|     #define GGML_F16_VEC_MUL            GGML_F16x8_MUL
 | |
|     #define GGML_F16_VEC_REDUCE         GGML_F16x8_REDUCE
 | |
| #else
 | |
|     // if FP16 vector arithmetic is not supported, we use FP32 instead
 | |
|     // and take advantage of the vcvt_ functions to convert to/from FP16
 | |
| 
 | |
|     #define GGML_F16_STEP 16
 | |
|     #define GGML_F16_EPR  4
 | |
| 
 | |
|     #define GGML_F32Cx4              float32x4_t
 | |
|     #define GGML_F32Cx4_ZERO         vdupq_n_f32(0.0f)
 | |
|     #define GGML_F32Cx4_SET1(x)      vdupq_n_f32(x)
 | |
|     #define GGML_F32Cx4_LOAD(x)      vcvt_f32_f16(vld1_f16(x))
 | |
|     #define GGML_F32Cx4_STORE(x, y)  vst1_f16(x, vcvt_f16_f32(y))
 | |
|     #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
 | |
|     #define GGML_F32Cx4_ADD          vaddq_f32
 | |
|     #define GGML_F32Cx4_MUL          vmulq_f32
 | |
|     #define GGML_F32Cx4_REDUCE       GGML_F32x4_REDUCE
 | |
| 
 | |
|     #define GGML_F16_VEC                GGML_F32Cx4
 | |
|     #define GGML_F16_VEC_ZERO           GGML_F32Cx4_ZERO
 | |
|     #define GGML_F16_VEC_SET1           GGML_F32Cx4_SET1
 | |
|     #define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx4_LOAD(p)
 | |
|     #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
 | |
|     #define GGML_F16_VEC_FMA            GGML_F32Cx4_FMA
 | |
|     #define GGML_F16_VEC_ADD            GGML_F32Cx4_ADD
 | |
|     #define GGML_F16_VEC_MUL            GGML_F32Cx4_MUL
 | |
|     #define GGML_F16_VEC_REDUCE         GGML_F32Cx4_REDUCE
 | |
| #endif
 | |
| 
 | |
| #elif defined(__AVX__)
 | |
| 
 | |
| #define GGML_SIMD
 | |
| 
 | |
| // F32 AVX
 | |
| 
 | |
| #define GGML_F32_STEP 32
 | |
| #define GGML_F32_EPR  8
 | |
| 
 | |
| #define GGML_F32x8         __m256
 | |
| #define GGML_F32x8_ZERO    _mm256_setzero_ps()
 | |
| #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
 | |
| #define GGML_F32x8_LOAD    _mm256_loadu_ps
 | |
| #define GGML_F32x8_STORE   _mm256_storeu_ps
 | |
| #if defined(__FMA__)
 | |
|     #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
 | |
| #else
 | |
|     #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
 | |
| #endif
 | |
| #define GGML_F32x8_ADD     _mm256_add_ps
 | |
| #define GGML_F32x8_MUL     _mm256_mul_ps
 | |
| #define GGML_F32x8_REDUCE(res, x)                                 \
 | |
| {                                                                 \
 | |
|     int offset = GGML_F32_ARR >> 1;                               \
 | |
|     for (int i = 0; i < offset; ++i) {                            \
 | |
|         x[i] = _mm256_add_ps(x[i], x[offset+i]);                  \
 | |
|     }                                                             \
 | |
|     offset >>= 1;                                                 \
 | |
|     for (int i = 0; i < offset; ++i) {                            \
 | |
|         x[i] = _mm256_add_ps(x[i], x[offset+i]);                  \
 | |
|     }                                                             \
 | |
|     offset >>= 1;                                                 \
 | |
|     for (int i = 0; i < offset; ++i) {                            \
 | |
|         x[i] = _mm256_add_ps(x[i], x[offset+i]);                  \
 | |
|     }                                                             \
 | |
|     const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]),    \
 | |
|                                  _mm256_extractf128_ps(x[0], 1)); \
 | |
|     const __m128 t1 = _mm_hadd_ps(t0, t0);                        \
 | |
|     res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1));                     \
 | |
| }
 | |
| // TODO: is this optimal ?
 | |
| 
 | |
| #define GGML_F32_VEC        GGML_F32x8
 | |
| #define GGML_F32_VEC_ZERO   GGML_F32x8_ZERO
 | |
| #define GGML_F32_VEC_SET1   GGML_F32x8_SET1
 | |
| #define GGML_F32_VEC_LOAD   GGML_F32x8_LOAD
 | |
| #define GGML_F32_VEC_STORE  GGML_F32x8_STORE
 | |
| #define GGML_F32_VEC_FMA    GGML_F32x8_FMA
 | |
| #define GGML_F32_VEC_ADD    GGML_F32x8_ADD
 | |
| #define GGML_F32_VEC_MUL    GGML_F32x8_MUL
 | |
| #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
 | |
| 
 | |
| // F16 AVX
 | |
| 
 | |
| #define GGML_F16_STEP 32
 | |
| #define GGML_F16_EPR  8
 | |
| 
 | |
| // F16 arithmetic is not supported by AVX, so we use F32 instead
 | |
| 
 | |
| #define GGML_F32Cx8             __m256
 | |
| #define GGML_F32Cx8_ZERO        _mm256_setzero_ps()
 | |
| #define GGML_F32Cx8_SET1(x)     _mm256_set1_ps(x)
 | |
| 
 | |
| #if defined(__F16C__)
 | |
| // the  _mm256_cvt intrinsics require F16C
 | |
| #define GGML_F32Cx8_LOAD(x)     _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
 | |
| #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
 | |
| #else
 | |
| static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
 | |
|     float tmp[8];
 | |
| 
 | |
|     for (int i = 0; i < 8; i++) {
 | |
|         tmp[i] = GGML_FP16_TO_FP32(x[i]);
 | |
|     }
 | |
| 
 | |
|     return _mm256_loadu_ps(tmp);
 | |
| }
 | |
| static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
 | |
|     float arr[8];
 | |
| 
 | |
|     _mm256_storeu_ps(arr, y);
 | |
| 
 | |
|     for (int i = 0; i < 8; i++)
 | |
|         x[i] = GGML_FP32_TO_FP16(arr[i]);
 | |
| }
 | |
| #define GGML_F32Cx8_LOAD(x)     __avx_f32cx8_load(x)
 | |
| #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
 | |
| #endif
 | |
| 
 | |
| #define GGML_F32Cx8_FMA         GGML_F32x8_FMA
 | |
| #define GGML_F32Cx8_ADD         _mm256_add_ps
 | |
| #define GGML_F32Cx8_MUL         _mm256_mul_ps
 | |
| #define GGML_F32Cx8_REDUCE      GGML_F32x8_REDUCE
 | |
| 
 | |
| #define GGML_F16_VEC                GGML_F32Cx8
 | |
| #define GGML_F16_VEC_ZERO           GGML_F32Cx8_ZERO
 | |
| #define GGML_F16_VEC_SET1           GGML_F32Cx8_SET1
 | |
| #define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx8_LOAD(p)
 | |
| #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
 | |
| #define GGML_F16_VEC_FMA            GGML_F32Cx8_FMA
 | |
| #define GGML_F16_VEC_ADD            GGML_F32Cx8_ADD
 | |
| #define GGML_F16_VEC_MUL            GGML_F32Cx8_MUL
 | |
| #define GGML_F16_VEC_REDUCE         GGML_F32Cx8_REDUCE
 | |
| 
 | |
| #elif defined(__POWER9_VECTOR__)
 | |
| 
 | |
| #define GGML_SIMD
 | |
| 
 | |
| // F32 POWER9
 | |
| 
 | |
| #define GGML_F32_STEP 32
 | |
| #define GGML_F32_EPR  4
 | |
| 
 | |
| #define GGML_F32x4              vector float
 | |
| #define GGML_F32x4_ZERO         0.0f
 | |
| #define GGML_F32x4_SET1         vec_splats
 | |
| #define GGML_F32x4_LOAD(p)      vec_xl(0, p)
 | |
| #define GGML_F32x4_STORE(p, r)  vec_xst(r, 0, p)
 | |
| #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
 | |
| #define GGML_F32x4_ADD          vec_add
 | |
| #define GGML_F32x4_MUL          vec_mul
 | |
| #define GGML_F32x4_REDUCE(res, x)              \
 | |
| {                                              \
 | |
|     int offset = GGML_F32_ARR >> 1;            \
 | |
|     for (int i = 0; i < offset; ++i) {         \
 | |
|         x[i] = vec_add(x[i], x[offset+i]);     \
 | |
|     }                                          \
 | |
|     offset >>= 1;                              \
 | |
|     for (int i = 0; i < offset; ++i) {         \
 | |
|         x[i] = vec_add(x[i], x[offset+i]);     \
 | |
|     }                                          \
 | |
|     offset >>= 1;                              \
 | |
|     for (int i = 0; i < offset; ++i) {         \
 | |
|         x[i] = vec_add(x[i], x[offset+i]);     \
 | |
|     }                                          \
 | |
|     res = vec_extract(x[0], 0) +               \
 | |
|           vec_extract(x[0], 1) +               \
 | |
|           vec_extract(x[0], 2) +               \
 | |
|           vec_extract(x[0], 3);                \
 | |
| }
 | |
| 
 | |
| #define GGML_F32_VEC        GGML_F32x4
 | |
| #define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
 | |
| #define GGML_F32_VEC_SET1   GGML_F32x4_SET1
 | |
| #define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
 | |
| #define GGML_F32_VEC_STORE  GGML_F32x4_STORE
 | |
| #define GGML_F32_VEC_FMA    GGML_F32x4_FMA
 | |
| #define GGML_F32_VEC_ADD    GGML_F32x4_ADD
 | |
| #define GGML_F32_VEC_MUL    GGML_F32x4_MUL
 | |
| #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
 | |
| 
 | |
| // F16 POWER9
 | |
| #define GGML_F16_STEP       GGML_F32_STEP
 | |
| #define GGML_F16_EPR        GGML_F32_EPR
 | |
| #define GGML_F16_VEC        GGML_F32x4
 | |
| #define GGML_F16_VEC_ZERO   GGML_F32x4_ZERO
 | |
| #define GGML_F16_VEC_SET1   GGML_F32x4_SET1
 | |
| #define GGML_F16_VEC_FMA    GGML_F32x4_FMA
 | |
| #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
 | |
| // Use vec_xl, not vec_ld, in case the load address is not aligned.
 | |
| #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ?                   \
 | |
|   vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
 | |
|   vec_extract_fp32_from_shortl(vec_xl(0, p))
 | |
| #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
 | |
| #define GGML_F16_VEC_STORE(p, r, i)                             \
 | |
|   if (i & 0x1)                                                  \
 | |
|     vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)],  \
 | |
|                                    r[i - GGML_ENDIAN_BYTE(0)]), \
 | |
|             0, p - GGML_F16_EPR)
 | |
| 
 | |
| #elif defined(__wasm_simd128__)
 | |
| 
 | |
| #define GGML_SIMD
 | |
| 
 | |
| // F32 WASM
 | |
| 
 | |
| #define GGML_F32_STEP 16
 | |
| #define GGML_F32_EPR  4
 | |
| 
 | |
| #define GGML_F32x4              v128_t
 | |
| #define GGML_F32x4_ZERO         wasm_f32x4_splat(0.0f)
 | |
| #define GGML_F32x4_SET1(x)      wasm_f32x4_splat(x)
 | |
| #define GGML_F32x4_LOAD         wasm_v128_load
 | |
| #define GGML_F32x4_STORE        wasm_v128_store
 | |
| #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
 | |
| #define GGML_F32x4_ADD          wasm_f32x4_add
 | |
| #define GGML_F32x4_MUL          wasm_f32x4_mul
 | |
| #define GGML_F32x4_REDUCE(res, x)                  \
 | |
| {                                                  \
 | |
|     int offset = GGML_F32_ARR >> 1;                \
 | |
|     for (int i = 0; i < offset; ++i) {             \
 | |
|         x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
 | |
|     }                                              \
 | |
|     offset >>= 1;                                  \
 | |
|     for (int i = 0; i < offset; ++i) {             \
 | |
|         x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
 | |
|     }                                              \
 | |
|     offset >>= 1;                                  \
 | |
|     for (int i = 0; i < offset; ++i) {             \
 | |
|         x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
 | |
|     }                                              \
 | |
|     res = wasm_f32x4_extract_lane(x[0], 0) +       \
 | |
|           wasm_f32x4_extract_lane(x[0], 1) +       \
 | |
|           wasm_f32x4_extract_lane(x[0], 2) +       \
 | |
|           wasm_f32x4_extract_lane(x[0], 3);        \
 | |
| }
 | |
| 
 | |
| #define GGML_F32_VEC        GGML_F32x4
 | |
| #define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
 | |
| #define GGML_F32_VEC_SET1   GGML_F32x4_SET1
 | |
| #define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
 | |
| #define GGML_F32_VEC_STORE  GGML_F32x4_STORE
 | |
| #define GGML_F32_VEC_FMA    GGML_F32x4_FMA
 | |
| #define GGML_F32_VEC_ADD    GGML_F32x4_ADD
 | |
| #define GGML_F32_VEC_MUL    GGML_F32x4_MUL
 | |
| #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
 | |
| 
 | |
| // F16 WASM
 | |
| 
 | |
| #define GGML_F16_STEP 16
 | |
| #define GGML_F16_EPR  4
 | |
| 
 | |
| inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
 | |
|     float tmp[4];
 | |
| 
 | |
|     tmp[0] = GGML_FP16_TO_FP32(p[0]);
 | |
|     tmp[1] = GGML_FP16_TO_FP32(p[1]);
 | |
|     tmp[2] = GGML_FP16_TO_FP32(p[2]);
 | |
|     tmp[3] = GGML_FP16_TO_FP32(p[3]);
 | |
| 
 | |
|     return wasm_v128_load(tmp);
 | |
| }
 | |
| 
 | |
| inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
 | |
|     float tmp[4];
 | |
| 
 | |
|     wasm_v128_store(tmp, x);
 | |
| 
 | |
|     p[0] = GGML_FP32_TO_FP16(tmp[0]);
 | |
|     p[1] = GGML_FP32_TO_FP16(tmp[1]);
 | |
|     p[2] = GGML_FP32_TO_FP16(tmp[2]);
 | |
|     p[3] = GGML_FP32_TO_FP16(tmp[3]);
 | |
| }
 | |
| 
 | |
| #define GGML_F16x4             v128_t
 | |
| #define GGML_F16x4_ZERO        wasm_f32x4_splat(0.0f)
 | |
| #define GGML_F16x4_SET1(x)     wasm_f32x4_splat(x)
 | |
| #define GGML_F16x4_LOAD(x)     __wasm_f16x4_load(x)
 | |
| #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
 | |
| #define GGML_F16x4_FMA         GGML_F32x4_FMA
 | |
| #define GGML_F16x4_ADD         wasm_f32x4_add
 | |
| #define GGML_F16x4_MUL         wasm_f32x4_mul
 | |
| #define GGML_F16x4_REDUCE(res, x)                  \
 | |
| {                                                  \
 | |
|     int offset = GGML_F16_ARR >> 1;                \
 | |
|     for (int i = 0; i < offset; ++i) {             \
 | |
|         x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
 | |
|     }                                              \
 | |
|     offset >>= 1;                                  \
 | |
|     for (int i = 0; i < offset; ++i) {             \
 | |
|         x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
 | |
|     }                                              \
 | |
|     offset >>= 1;                                  \
 | |
|     for (int i = 0; i < offset; ++i) {             \
 | |
|         x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
 | |
|     }                                              \
 | |
|     res = wasm_f32x4_extract_lane(x[0], 0) +       \
 | |
|           wasm_f32x4_extract_lane(x[0], 1) +       \
 | |
|           wasm_f32x4_extract_lane(x[0], 2) +       \
 | |
|           wasm_f32x4_extract_lane(x[0], 3);        \
 | |
| }
 | |
| 
 | |
| #define GGML_F16_VEC                GGML_F16x4
 | |
| #define GGML_F16_VEC_ZERO           GGML_F16x4_ZERO
 | |
| #define GGML_F16_VEC_SET1           GGML_F16x4_SET1
 | |
| #define GGML_F16_VEC_LOAD(p, i)     GGML_F16x4_LOAD(p)
 | |
| #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
 | |
| #define GGML_F16_VEC_FMA            GGML_F16x4_FMA
 | |
| #define GGML_F16_VEC_ADD            GGML_F16x4_ADD
 | |
| #define GGML_F16_VEC_MUL            GGML_F16x4_MUL
 | |
| #define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
 | |
| 
 | |
| #elif defined(__SSE3__)
 | |
| 
 | |
| #define GGML_SIMD
 | |
| 
 | |
| // F32 SSE
 | |
| 
 | |
| #define GGML_F32_STEP 32
 | |
| #define GGML_F32_EPR  4
 | |
| 
 | |
| #define GGML_F32x4         __m128
 | |
| #define GGML_F32x4_ZERO    _mm_setzero_ps()
 | |
| #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
 | |
| #define GGML_F32x4_LOAD    _mm_loadu_ps
 | |
| #define GGML_F32x4_STORE   _mm_storeu_ps
 | |
| #if defined(__FMA__)
 | |
|     // TODO: Does this work?
 | |
|     #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
 | |
| #else
 | |
|     #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
 | |
| #endif
 | |
| #define GGML_F32x4_ADD     _mm_add_ps
 | |
| #define GGML_F32x4_MUL     _mm_mul_ps
 | |
| #define GGML_F32x4_REDUCE(res, x)                                 \
 | |
| {                                                                 \
 | |
|     int offset = GGML_F32_ARR >> 1;                               \
 | |
|     for (int i = 0; i < offset; ++i) {                            \
 | |
|         x[i] = _mm_add_ps(x[i], x[offset+i]);                     \
 | |
|     }                                                             \
 | |
|     offset >>= 1;                                                 \
 | |
|     for (int i = 0; i < offset; ++i) {                            \
 | |
|         x[i] = _mm_add_ps(x[i], x[offset+i]);                     \
 | |
|     }                                                             \
 | |
|     offset >>= 1;                                                 \
 | |
|     for (int i = 0; i < offset; ++i) {                            \
 | |
|         x[i] = _mm_add_ps(x[i], x[offset+i]);                     \
 | |
|     }                                                             \
 | |
|     const __m128 t0 = _mm_hadd_ps(x[0], x[0]);                    \
 | |
|     res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0));                     \
 | |
| }
 | |
| // TODO: is this optimal ?
 | |
| 
 | |
| #define GGML_F32_VEC        GGML_F32x4
 | |
| #define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
 | |
| #define GGML_F32_VEC_SET1   GGML_F32x4_SET1
 | |
| #define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
 | |
| #define GGML_F32_VEC_STORE  GGML_F32x4_STORE
 | |
| #define GGML_F32_VEC_FMA    GGML_F32x4_FMA
 | |
| #define GGML_F32_VEC_ADD    GGML_F32x4_ADD
 | |
| #define GGML_F32_VEC_MUL    GGML_F32x4_MUL
 | |
| #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
 | |
| 
 | |
| // F16 SSE
 | |
| 
 | |
| #define GGML_F16_STEP 32
 | |
| #define GGML_F16_EPR  4
 | |
| 
 | |
| static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
 | |
|     float tmp[4];
 | |
| 
 | |
|     tmp[0] = GGML_FP16_TO_FP32(x[0]);
 | |
|     tmp[1] = GGML_FP16_TO_FP32(x[1]);
 | |
|     tmp[2] = GGML_FP16_TO_FP32(x[2]);
 | |
|     tmp[3] = GGML_FP16_TO_FP32(x[3]);
 | |
| 
 | |
|     return _mm_loadu_ps(tmp);
 | |
| }
 | |
| 
 | |
| static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
 | |
|     float arr[4];
 | |
| 
 | |
|     _mm_storeu_ps(arr, y);
 | |
| 
 | |
|     x[0] = GGML_FP32_TO_FP16(arr[0]);
 | |
|     x[1] = GGML_FP32_TO_FP16(arr[1]);
 | |
|     x[2] = GGML_FP32_TO_FP16(arr[2]);
 | |
|     x[3] = GGML_FP32_TO_FP16(arr[3]);
 | |
| }
 | |
| 
 | |
| #define GGML_F32Cx4             __m128
 | |
| #define GGML_F32Cx4_ZERO        _mm_setzero_ps()
 | |
| #define GGML_F32Cx4_SET1(x)     _mm_set1_ps(x)
 | |
| #define GGML_F32Cx4_LOAD(x)     __sse_f16x4_load(x)
 | |
| #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
 | |
| #define GGML_F32Cx4_FMA         GGML_F32x4_FMA
 | |
| #define GGML_F32Cx4_ADD         _mm_add_ps
 | |
| #define GGML_F32Cx4_MUL         _mm_mul_ps
 | |
| #define GGML_F32Cx4_REDUCE      GGML_F32x4_REDUCE
 | |
| 
 | |
| #define GGML_F16_VEC                 GGML_F32Cx4
 | |
| #define GGML_F16_VEC_ZERO            GGML_F32Cx4_ZERO
 | |
| #define GGML_F16_VEC_SET1            GGML_F32Cx4_SET1
 | |
| #define GGML_F16_VEC_LOAD(p, i)      GGML_F32Cx4_LOAD(p)
 | |
| #define GGML_F16_VEC_STORE(p, r, i)  GGML_F32Cx4_STORE(p, r[i])
 | |
| #define GGML_F16_VEC_FMA             GGML_F32Cx4_FMA
 | |
| #define GGML_F16_VEC_ADD             GGML_F32Cx4_ADD
 | |
| #define GGML_F16_VEC_MUL             GGML_F32Cx4_MUL
 | |
| #define GGML_F16_VEC_REDUCE          GGML_F32Cx4_REDUCE
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // GGML_F32_ARR / GGML_F16_ARR
 | |
| //   number of registers to use per step
 | |
| #ifdef GGML_SIMD
 | |
| #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
 | |
| #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // fundamental operations
 | |
| //
 | |
| 
 | |
| inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
 | |
| 
 | |
| inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
 | |
| 
 | |
| inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
 | |
| 
 | |
| inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
 | |
| 
 | |
| inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i] + y[i]; }
 | |
| inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float   v) { for (int i = 0; i < n; ++i) z[i]  = x[i] + v;    }
 | |
| inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x)                  { for (int i = 0; i < n; ++i) y[i] += x[i];        }
 | |
| inline static void ggml_vec_acc1_f32(const int n, float * y, const float   v)                  { for (int i = 0; i < n; ++i) y[i] += v;           }
 | |
| inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i] - y[i]; }
 | |
| inline static void ggml_vec_set_f32 (const int n, float * x, const float   v)                  { for (int i = 0; i < n; ++i) x[i]  = v;           }
 | |
| inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x)                  { for (int i = 0; i < n; ++i) y[i]  = x[i];        }
 | |
| inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x)                  { for (int i = 0; i < n; ++i) y[i]  = -x[i];       }
 | |
| inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i]*y[i];   }
 | |
| inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i]/y[i];   }
 | |
| 
 | |
| static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
 | |
| #ifdef GGML_SIMD
 | |
|     float sumf = 0.0f;
 | |
|     const int np = (n & ~(GGML_F32_STEP - 1));
 | |
| 
 | |
|     GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
 | |
| 
 | |
|     GGML_F32_VEC ax[GGML_F32_ARR];
 | |
|     GGML_F32_VEC ay[GGML_F32_ARR];
 | |
| 
 | |
|     for (int i = 0; i < np; i += GGML_F32_STEP) {
 | |
|         for (int j = 0; j < GGML_F32_ARR; j++) {
 | |
|             ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
 | |
|             ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
 | |
| 
 | |
|             sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // reduce sum0..sum3 to sum0
 | |
|     GGML_F32_VEC_REDUCE(sumf, sum);
 | |
| 
 | |
|     // leftovers
 | |
|     for (int i = np; i < n; ++i) {
 | |
|         sumf += x[i]*y[i];
 | |
|     }
 | |
| #else
 | |
|     // scalar
 | |
|     ggml_float sumf = 0.0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         sumf += (ggml_float)(x[i]*y[i]);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     *s = sumf;
 | |
| }
 | |
| 
 | |
| static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
 | |
|     ggml_float sumf = 0.0;
 | |
| 
 | |
| #if defined(GGML_SIMD)
 | |
|     const int np = (n & ~(GGML_F16_STEP - 1));
 | |
| 
 | |
|     GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
 | |
| 
 | |
|     GGML_F16_VEC ax[GGML_F16_ARR];
 | |
|     GGML_F16_VEC ay[GGML_F16_ARR];
 | |
| 
 | |
|     for (int i = 0; i < np; i += GGML_F16_STEP) {
 | |
|         for (int j = 0; j < GGML_F16_ARR; j++) {
 | |
|             ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
 | |
|             ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
 | |
| 
 | |
|             sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // reduce sum0..sum3 to sum0
 | |
|     GGML_F16_VEC_REDUCE(sumf, sum);
 | |
| 
 | |
|     // leftovers
 | |
|     for (int i = np; i < n; ++i) {
 | |
|         sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
 | |
|     }
 | |
| #else
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     *s = sumf;
 | |
| }
 | |
| 
 | |
| static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
 | |
|     const int qk = QK8_0;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
|     assert(nb % 2 == 0);
 | |
| 
 | |
|     const block_q4_0 * restrict x = vx;
 | |
|     const block_q8_0 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q4_0 * restrict x0 = &x[i + 0];
 | |
|         const block_q4_0 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_0 * restrict y0 = &y[i + 0];
 | |
|         const block_q8_0 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
|         const int8x16_t  s8b = vdupq_n_s8(0x8);
 | |
| 
 | |
|         const uint8x16_t v0_0 = vld1q_u8(x0->qs);
 | |
|         const uint8x16_t v0_1 = vld1q_u8(x1->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|         const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|         const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|         const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|         // sub 8
 | |
|         const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
 | |
|         const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
 | |
|         const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
 | |
|         const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t v1_0l = vld1q_s8(y0->qs);
 | |
|         const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t v1_1l = vld1q_s8(y1->qs);
 | |
|         const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
| #if defined(__ARM_FEATURE_DOTPROD)
 | |
|         // dot product into int32x4_t
 | |
|         const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
 | |
|         const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
 | |
| #else
 | |
|         const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
 | |
|         const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
 | |
|         const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
 | |
|         const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
 | |
| 
 | |
|         const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
 | |
|         const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
 | |
|         const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
 | |
|         const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
 | |
| 
 | |
|         const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
 | |
|         const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
 | |
|         const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
 | |
|         const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
 | |
| #elif defined(__AVX2__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         /* Compute combined scale for the block */
 | |
|         const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
 | |
| 
 | |
|         __m256i bx = bytes_from_nibbles_32(x[i].qs);
 | |
| 
 | |
|         // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
 | |
|         const __m256i off = _mm256_set1_epi8( 8 );
 | |
|         bx = _mm256_sub_epi8( bx, off );
 | |
| 
 | |
|         __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_i8_pairs_float(bx, by);
 | |
| 
 | |
|         /* Multiply q with scale and accumulate */
 | |
|         acc = _mm256_fmadd_ps( d, q, acc );
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #elif defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         // Compute combined scale for the block
 | |
|         const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
 | |
| 
 | |
|         const __m128i lowMask = _mm_set1_epi8(0xF);
 | |
|         const __m128i off = _mm_set1_epi8(8);
 | |
| 
 | |
|         const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
 | |
| 
 | |
|         __m128i bx = _mm_and_si128(lowMask, tmp);
 | |
|         __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
 | |
|         bx = _mm_sub_epi8(bx, off);
 | |
|         const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
 | |
| 
 | |
|         bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
 | |
|         by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
 | |
|         bx = _mm_sub_epi8(bx, off);
 | |
|         const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
 | |
| 
 | |
|         // Convert int32_t to float
 | |
|         __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
 | |
| 
 | |
|         // Apply the scale, and accumulate
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #elif defined(__SSSE3__)
 | |
|     // set constants
 | |
|     const __m128i lowMask = _mm_set1_epi8(0xF);
 | |
|     const __m128i off = _mm_set1_epi8(8);
 | |
| 
 | |
|     // Initialize accumulator with zeros
 | |
|     __m128 acc_0 = _mm_setzero_ps();
 | |
|     __m128 acc_1 = _mm_setzero_ps();
 | |
|     __m128 acc_2 = _mm_setzero_ps();
 | |
|     __m128 acc_3 = _mm_setzero_ps();
 | |
| 
 | |
|     // First round without accumulation
 | |
|     {
 | |
|         _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
 | |
|         _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
 | |
| 
 | |
|         // Compute combined scale for the block 0 and 1
 | |
|         const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
 | |
| 
 | |
|         const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
 | |
| 
 | |
|         __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
 | |
|         __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
 | |
|         bx_0 = _mm_sub_epi8(bx_0, off);
 | |
|         const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
 | |
| 
 | |
|         __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
 | |
|         __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
 | |
|         bx_1 = _mm_sub_epi8(bx_1, off);
 | |
|         const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
 | |
| 
 | |
|         _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
 | |
|         _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
 | |
| 
 | |
|         // Compute combined scale for the block 2 and 3
 | |
|         const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
 | |
| 
 | |
|         const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
 | |
| 
 | |
|         __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
 | |
|         __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
 | |
|         bx_2 = _mm_sub_epi8(bx_2, off);
 | |
|         const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
 | |
| 
 | |
|         __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
 | |
|         __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
 | |
|         bx_3 = _mm_sub_epi8(bx_3, off);
 | |
|         const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
 | |
| 
 | |
|         // Convert int32_t to float
 | |
|         __m128 p0 = _mm_cvtepi32_ps(i32_0);
 | |
|         __m128 p1 = _mm_cvtepi32_ps(i32_1);
 | |
|         __m128 p2 = _mm_cvtepi32_ps(i32_2);
 | |
|         __m128 p3 = _mm_cvtepi32_ps(i32_3);
 | |
| 
 | |
|         // Apply the scale
 | |
|         acc_0 = _mm_mul_ps( d_0_1, p0 );
 | |
|         acc_1 = _mm_mul_ps( d_0_1, p1 );
 | |
|         acc_2 = _mm_mul_ps( d_2_3, p2 );
 | |
|         acc_3 = _mm_mul_ps( d_2_3, p3 );
 | |
|     }
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 2; i < nb; i+=2) {
 | |
|         _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
 | |
|         _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
 | |
| 
 | |
|         // Compute combined scale for the block 0 and 1
 | |
|         const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
 | |
| 
 | |
|         const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
 | |
| 
 | |
|         __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
 | |
|         __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
 | |
|         bx_0 = _mm_sub_epi8(bx_0, off);
 | |
|         const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
 | |
| 
 | |
|         __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
 | |
|         __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
 | |
|         bx_1 = _mm_sub_epi8(bx_1, off);
 | |
|         const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
 | |
| 
 | |
|         _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
 | |
|         _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
 | |
| 
 | |
|         // Compute combined scale for the block 2 and 3
 | |
|         const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
 | |
| 
 | |
|         const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
 | |
| 
 | |
|         __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
 | |
|         __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
 | |
|         bx_2 = _mm_sub_epi8(bx_2, off);
 | |
|         const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
 | |
| 
 | |
|         __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
 | |
|         __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
 | |
|         bx_3 = _mm_sub_epi8(bx_3, off);
 | |
|         const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
 | |
| 
 | |
|         // Convert int32_t to float
 | |
|         __m128 p0 = _mm_cvtepi32_ps(i32_0);
 | |
|         __m128 p1 = _mm_cvtepi32_ps(i32_1);
 | |
|         __m128 p2 = _mm_cvtepi32_ps(i32_2);
 | |
|         __m128 p3 = _mm_cvtepi32_ps(i32_3);
 | |
| 
 | |
|         // Apply the scale
 | |
|         __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
 | |
|         __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
 | |
|         __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
 | |
|         __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
 | |
| 
 | |
|         // Acummulate
 | |
|         acc_0 = _mm_add_ps(p0_d, acc_0);
 | |
|         acc_1 = _mm_add_ps(p1_d, acc_1);
 | |
|         acc_2 = _mm_add_ps(p2_d, acc_2);
 | |
|         acc_3 = _mm_add_ps(p3_d, acc_3);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const int v0 = (x[i].qs[j] & 0x0F) - 8;
 | |
|             const int v1 = (x[i].qs[j] >>   4) - 8;
 | |
| 
 | |
|             sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
 | |
|         }
 | |
| 
 | |
|         sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
 | |
|     const int qk = QK8_1;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
|     assert(nb % 2 == 0);
 | |
| 
 | |
|     const block_q4_1 * restrict x = vx;
 | |
|     const block_q8_1 * restrict y = vy;
 | |
| 
 | |
|     // TODO: add WASM SIMD
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     float summs = 0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q4_1 * restrict x0 = &x[i + 0];
 | |
|         const block_q4_1 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_1 * restrict y0 = &y[i + 0];
 | |
|         const block_q8_1 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
 | |
| 
 | |
|         const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
| 
 | |
|         const uint8x16_t v0_0 = vld1q_u8(x0->qs);
 | |
|         const uint8x16_t v0_1 = vld1q_u8(x1->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|         const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|         const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|         const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t v1_0l = vld1q_s8(y0->qs);
 | |
|         const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t v1_1l = vld1q_s8(y1->qs);
 | |
|         const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
| #if defined(__ARM_FEATURE_DOTPROD)
 | |
|         // dot product into int32x4_t
 | |
|         const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
 | |
|         const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
 | |
| #else
 | |
|         const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
 | |
|         const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
 | |
|         const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
 | |
|         const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
 | |
| 
 | |
|         const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
 | |
|         const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
 | |
|         const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
 | |
|         const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
 | |
| 
 | |
|         const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
 | |
|         const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
 | |
|         const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
 | |
|         const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
 | |
| #elif defined(__AVX2__) || defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     float summs = 0;
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const float d0 = GGML_FP16_TO_FP32(x[i].d);
 | |
|         const float d1 = y[i].d;
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
 | |
| 
 | |
|         const __m256 d0v = _mm256_set1_ps( d0 );
 | |
|         const __m256 d1v = _mm256_set1_ps( d1 );
 | |
| 
 | |
|         // Compute combined scales
 | |
|         const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
 | |
| 
 | |
|         // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
 | |
|         const __m256i bx = bytes_from_nibbles_32(x[i].qs);
 | |
|         const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
 | |
| 
 | |
|         const __m256 xy = mul_sum_us8_pairs_float(bx, by);
 | |
| 
 | |
|         // Accumulate d0*d1*x*y
 | |
| #if defined(__AVX2__)
 | |
|         acc = _mm256_fmadd_ps( d0d1, xy, acc );
 | |
| #else
 | |
|         acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const int v0 = (x[i].qs[j] & 0x0F);
 | |
|             const int v1 = (x[i].qs[j] >>   4);
 | |
| 
 | |
|             sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
 | |
|         }
 | |
| 
 | |
|         sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
 | |
|     const int qk = QK8_0;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
|     assert(nb % 2 == 0);
 | |
|     assert(qk == QK5_0);
 | |
| 
 | |
|     const block_q5_0 * restrict x = vx;
 | |
|     const block_q8_0 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     uint32_t qh0;
 | |
|     uint32_t qh1;
 | |
| 
 | |
|     uint64_t tmp0[4];
 | |
|     uint64_t tmp1[4];
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q5_0 * restrict x0 = &x[i];
 | |
|         const block_q5_0 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_0 * restrict y0 = &y[i];
 | |
|         const block_q8_0 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
| 
 | |
|         // extract the 5th bit via lookup table ((!b) << 4)
 | |
|         memcpy(&qh0, x0->qh, sizeof(qh0));
 | |
|         memcpy(&qh1, x1->qh, sizeof(qh1));
 | |
| 
 | |
|         tmp0[0] = table_b2b_1[(qh0 >>  0) & 0xFF];
 | |
|         tmp0[1] = table_b2b_1[(qh0 >>  8) & 0xFF];
 | |
|         tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
 | |
|         tmp0[3] = table_b2b_1[(qh0 >> 24)       ];
 | |
| 
 | |
|         tmp1[0] = table_b2b_1[(qh1 >>  0) & 0xFF];
 | |
|         tmp1[1] = table_b2b_1[(qh1 >>  8) & 0xFF];
 | |
|         tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
 | |
|         tmp1[3] = table_b2b_1[(qh1 >> 24)       ];
 | |
| 
 | |
|         const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
 | |
|         const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
 | |
|         const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
 | |
|         const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
 | |
| 
 | |
|         const uint8x16_t v0_0 = vld1q_u8(x0->qs);
 | |
|         const uint8x16_t v0_1 = vld1q_u8(x1->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|         int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|         int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|         int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|         // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
 | |
|         const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
 | |
|         const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
 | |
|         const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
 | |
|         const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t v1_0l = vld1q_s8(y0->qs);
 | |
|         const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t v1_1l = vld1q_s8(y1->qs);
 | |
|         const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
| #if defined(__ARM_FEATURE_DOTPROD)
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
 | |
|                         vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
 | |
|                         vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
 | |
|                         vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
 | |
|                         vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
 | |
| #else
 | |
|         const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
 | |
|         const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
 | |
|         const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
 | |
|         const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
 | |
| 
 | |
|         const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
 | |
|         const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
 | |
|         const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
 | |
|         const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
 | |
| 
 | |
|         const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
 | |
|         const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
 | |
|         const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
 | |
|         const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
 | |
| #elif defined(__wasm_simd128__)
 | |
|     v128_t sumv = wasm_f32x4_splat(0.0f);
 | |
| 
 | |
|     uint32_t qh;
 | |
|     uint64_t tmp[4];
 | |
| 
 | |
|     // TODO: check if unrolling this is better
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const block_q5_0 * restrict x0 = &x[i];
 | |
|         const block_q8_0 * restrict y0 = &y[i];
 | |
| 
 | |
|         const v128_t m4b  = wasm_i8x16_splat(0x0F);
 | |
| 
 | |
|         // extract the 5th bit
 | |
|         memcpy(&qh, x0->qh, sizeof(qh));
 | |
| 
 | |
|         tmp[0] = table_b2b_1[(qh >>  0) & 0xFF];
 | |
|         tmp[1] = table_b2b_1[(qh >>  8) & 0xFF];
 | |
|         tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
 | |
|         tmp[3] = table_b2b_1[(qh >> 24)       ];
 | |
| 
 | |
|         const v128_t qhl = wasm_v128_load(tmp + 0);
 | |
|         const v128_t qhh = wasm_v128_load(tmp + 2);
 | |
| 
 | |
|         const v128_t v0 = wasm_v128_load(x0->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const v128_t v0l = wasm_v128_and (v0, m4b);
 | |
|         const v128_t v0h = wasm_u8x16_shr(v0, 4);
 | |
| 
 | |
|         // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
 | |
|         const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
 | |
|         const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
 | |
| 
 | |
|         // load y
 | |
|         const v128_t v1l = wasm_v128_load(y0->qs);
 | |
|         const v128_t v1h = wasm_v128_load(y0->qs + 16);
 | |
| 
 | |
|         // int8x16 -> int16x8
 | |
|         const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
 | |
|         const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
 | |
|         const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
 | |
|         const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
 | |
| 
 | |
|         const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
 | |
|         const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
 | |
|         const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
 | |
|         const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
 | |
| 
 | |
|         // dot product
 | |
|         sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
 | |
|                         wasm_i32x4_add(
 | |
|                             wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
 | |
|                                            wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
 | |
|                             wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
 | |
|                                            wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
 | |
|                     wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
 | |
|     }
 | |
| 
 | |
|     *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
 | |
|          wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
 | |
| #elif defined(__AVX2__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         /* Compute combined scale for the block */
 | |
|         const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
 | |
| 
 | |
|         __m256i bx = bytes_from_nibbles_32(x[i].qs);
 | |
|         __m256i bxhi = bytes_from_bits_32(x[i].qh);
 | |
|         bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
 | |
|         bx = _mm256_or_si256(bx, bxhi);
 | |
| 
 | |
|         __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_i8_pairs_float(bx, by);
 | |
| 
 | |
|         /* Multiply q with scale and accumulate */
 | |
|         acc = _mm256_fmadd_ps(d, q, acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #elif defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
|     __m128i mask = _mm_set1_epi8((char)0xF0);
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         /* Compute combined scale for the block */
 | |
|         const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
 | |
| 
 | |
|         __m256i bx = bytes_from_nibbles_32(x[i].qs);
 | |
|         const __m256i bxhi = bytes_from_bits_32(x[i].qh);
 | |
|         __m128i bxhil = _mm256_castsi256_si128(bxhi);
 | |
|         __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
 | |
|         bxhil = _mm_andnot_si128(bxhil, mask);
 | |
|         bxhih = _mm_andnot_si128(bxhih, mask);
 | |
|         __m128i bxl = _mm256_castsi256_si128(bx);
 | |
|         __m128i bxh = _mm256_extractf128_si256(bx, 1);
 | |
|         bxl = _mm_or_si128(bxl, bxhil);
 | |
|         bxh = _mm_or_si128(bxh, bxhih);
 | |
|         bx = MM256_SET_M128I(bxh, bxl);
 | |
| 
 | |
|         const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_i8_pairs_float(bx, by);
 | |
| 
 | |
|         /* Multiply q with scale and accumulate */
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         uint32_t qh;
 | |
|         memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
 | |
|             const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
 | |
| 
 | |
|             const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
 | |
|             const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;
 | |
| 
 | |
|             sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
 | |
|         }
 | |
| 
 | |
|         sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
 | |
|     const int qk = QK8_1;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
|     assert(nb % 2 == 0);
 | |
|     assert(qk == QK5_1);
 | |
| 
 | |
|     const block_q5_1 * restrict x = vx;
 | |
|     const block_q8_1 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     float summs0 = 0.0f;
 | |
|     float summs1 = 0.0f;
 | |
| 
 | |
|     uint32_t qh0;
 | |
|     uint32_t qh1;
 | |
| 
 | |
|     uint64_t tmp0[4];
 | |
|     uint64_t tmp1[4];
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q5_1 * restrict x0 = &x[i];
 | |
|         const block_q5_1 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_1 * restrict y0 = &y[i];
 | |
|         const block_q8_1 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         const uint8x16_t m4b = vdupq_n_u8(0x0F);
 | |
| 
 | |
|         summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
 | |
|         summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
 | |
| 
 | |
|         // extract the 5th bit via lookup table ((b) << 4)
 | |
|         memcpy(&qh0, x0->qh, sizeof(qh0));
 | |
|         memcpy(&qh1, x1->qh, sizeof(qh1));
 | |
| 
 | |
|         tmp0[0] = table_b2b_0[(qh0 >>  0) & 0xFF];
 | |
|         tmp0[1] = table_b2b_0[(qh0 >>  8) & 0xFF];
 | |
|         tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
 | |
|         tmp0[3] = table_b2b_0[(qh0 >> 24)       ];
 | |
| 
 | |
|         tmp1[0] = table_b2b_0[(qh1 >>  0) & 0xFF];
 | |
|         tmp1[1] = table_b2b_0[(qh1 >>  8) & 0xFF];
 | |
|         tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
 | |
|         tmp1[3] = table_b2b_0[(qh1 >> 24)       ];
 | |
| 
 | |
|         const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
 | |
|         const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
 | |
|         const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
 | |
|         const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
 | |
| 
 | |
|         const uint8x16_t v0_0 = vld1q_u8(x0->qs);
 | |
|         const uint8x16_t v0_1 = vld1q_u8(x1->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
 | |
|         const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
 | |
|         const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
 | |
|         const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
 | |
| 
 | |
|         // add high bit
 | |
|         const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
 | |
|         const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
 | |
|         const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
 | |
|         const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t v1_0l = vld1q_s8(y0->qs);
 | |
|         const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t v1_1l = vld1q_s8(y1->qs);
 | |
|         const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
| #if defined(__ARM_FEATURE_DOTPROD)
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
 | |
|                         vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
 | |
|                         vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
 | |
|                         vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
 | |
|                         vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
 | |
| #else
 | |
|         const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
 | |
|         const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
 | |
|         const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
 | |
|         const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
 | |
| 
 | |
|         const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
 | |
|         const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
 | |
|         const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
 | |
|         const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
 | |
| 
 | |
|         const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
 | |
|         const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
 | |
|         const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
 | |
|         const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
 | |
| #elif defined(__wasm_simd128__)
 | |
|     v128_t sumv = wasm_f32x4_splat(0.0f);
 | |
| 
 | |
|     float summs = 0.0f;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     uint64_t tmp[4];
 | |
| 
 | |
|     // TODO: check if unrolling this is better
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         const block_q5_1 * restrict x0 = &x[i];
 | |
|         const block_q8_1 * restrict y0 = &y[i];
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
 | |
| 
 | |
|         const v128_t m4b = wasm_i8x16_splat(0x0F);
 | |
| 
 | |
|         // extract the 5th bit
 | |
|         memcpy(&qh, x0->qh, sizeof(qh));
 | |
| 
 | |
|         tmp[0] = table_b2b_0[(qh >>  0) & 0xFF];
 | |
|         tmp[1] = table_b2b_0[(qh >>  8) & 0xFF];
 | |
|         tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
 | |
|         tmp[3] = table_b2b_0[(qh >> 24)       ];
 | |
| 
 | |
|         const v128_t qhl = wasm_v128_load(tmp + 0);
 | |
|         const v128_t qhh = wasm_v128_load(tmp + 2);
 | |
| 
 | |
|         const v128_t v0 = wasm_v128_load(x0->qs);
 | |
| 
 | |
|         // 4-bit -> 8-bit
 | |
|         const v128_t v0l = wasm_v128_and (v0, m4b);
 | |
|         const v128_t v0h = wasm_u8x16_shr(v0, 4);
 | |
| 
 | |
|         // add high bit
 | |
|         const v128_t v0lf = wasm_v128_or(v0l, qhl);
 | |
|         const v128_t v0hf = wasm_v128_or(v0h, qhh);
 | |
| 
 | |
|         // load y
 | |
|         const v128_t v1l = wasm_v128_load(y0->qs);
 | |
|         const v128_t v1h = wasm_v128_load(y0->qs + 16);
 | |
| 
 | |
|         // int8x16 -> int16x8
 | |
|         const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
 | |
|         const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
 | |
|         const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
 | |
|         const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
 | |
| 
 | |
|         const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
 | |
|         const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
 | |
|         const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
 | |
|         const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
 | |
| 
 | |
|         // dot product
 | |
|         sumv = wasm_f32x4_add(sumv,
 | |
|                 wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
 | |
|                             wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
 | |
|                                            wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
 | |
|                             wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
 | |
|                                            wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
 | |
|                     wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
 | |
|     }
 | |
| 
 | |
|     *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
 | |
|          wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
 | |
| #elif defined(__AVX2__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     float summs = 0.0f;
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
 | |
| 
 | |
|         __m256i bx = bytes_from_nibbles_32(x[i].qs);
 | |
|         __m256i bxhi = bytes_from_bits_32(x[i].qh);
 | |
|         bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
 | |
|         bx = _mm256_or_si256(bx, bxhi);
 | |
| 
 | |
|         const __m256 dy = _mm256_set1_ps(y[i].d);
 | |
|         const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_us8_pairs_float(bx, by);
 | |
| 
 | |
|         acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| #elif defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
|     __m128i mask = _mm_set1_epi8(0x10);
 | |
| 
 | |
|     float summs = 0.0f;
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
 | |
| 
 | |
|         summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
 | |
| 
 | |
|         __m256i bx = bytes_from_nibbles_32(x[i].qs);
 | |
|         const __m256i bxhi = bytes_from_bits_32(x[i].qh);
 | |
|         __m128i bxhil = _mm256_castsi256_si128(bxhi);
 | |
|         __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
 | |
|         bxhil = _mm_and_si128(bxhil, mask);
 | |
|         bxhih = _mm_and_si128(bxhih, mask);
 | |
|         __m128i bxl = _mm256_castsi256_si128(bx);
 | |
|         __m128i bxh = _mm256_extractf128_si256(bx, 1);
 | |
|         bxl = _mm_or_si128(bxl, bxhil);
 | |
|         bxh = _mm_or_si128(bxh, bxhih);
 | |
|         bx = MM256_SET_M128I(bxh, bxl);
 | |
| 
 | |
|         const __m256 dy = _mm256_set1_ps(y[i].d);
 | |
|         const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_us8_pairs_float(bx, by);
 | |
| 
 | |
|         acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc) + summs;
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         uint32_t qh;
 | |
|         memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk/2; ++j) {
 | |
|             const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
 | |
|             const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
 | |
| 
 | |
|             const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
 | |
|             const int32_t x1 = (x[i].qs[j] >>  4) | xh_1;
 | |
| 
 | |
|             sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
 | |
|         }
 | |
| 
 | |
|         sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
 | |
|     const int qk = QK8_0;
 | |
|     const int nb = n / qk;
 | |
| 
 | |
|     assert(n % qk == 0);
 | |
|     assert(nb % 2 == 0);
 | |
| 
 | |
|     const block_q8_0 * restrict x = vx;
 | |
|     const block_q8_0 * restrict y = vy;
 | |
| 
 | |
| #if defined(__ARM_NEON)
 | |
|     float32x4_t sumv0 = vdupq_n_f32(0.0f);
 | |
|     float32x4_t sumv1 = vdupq_n_f32(0.0f);
 | |
| 
 | |
|     for (int i = 0; i < nb; i += 2) {
 | |
|         const block_q8_0 * restrict x0 = &x[i + 0];
 | |
|         const block_q8_0 * restrict x1 = &x[i + 1];
 | |
|         const block_q8_0 * restrict y0 = &y[i + 0];
 | |
|         const block_q8_0 * restrict y1 = &y[i + 1];
 | |
| 
 | |
|         const int8x16_t x0_0 = vld1q_s8(x0->qs);
 | |
|         const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
 | |
|         const int8x16_t x1_0 = vld1q_s8(x1->qs);
 | |
|         const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
 | |
| 
 | |
|         // load y
 | |
|         const int8x16_t y0_0 = vld1q_s8(y0->qs);
 | |
|         const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
 | |
|         const int8x16_t y1_0 = vld1q_s8(y1->qs);
 | |
|         const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
 | |
| 
 | |
| #if defined(__ARM_FEATURE_DOTPROD)
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
 | |
|                         vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
 | |
|                         vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
 | |
| 
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
 | |
|                         vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
 | |
|                         vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
 | |
| 
 | |
| #else
 | |
|         const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
 | |
|         const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
 | |
|         const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
 | |
|         const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
 | |
| 
 | |
|         const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
 | |
|         const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
 | |
|         const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
 | |
|         const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
 | |
| 
 | |
|         const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
 | |
|         const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
 | |
|         const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
 | |
|         const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
 | |
| 
 | |
|         sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
 | |
|         sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
 | |
| #elif defined(__AVX2__) || defined(__AVX__)
 | |
|     // Initialize accumulator with zeros
 | |
|     __m256 acc = _mm256_setzero_ps();
 | |
| 
 | |
|     // Main loop
 | |
|     for (int i = 0; i < nb; ++i) {
 | |
|         // Compute combined scale for the block
 | |
|         const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
 | |
|         __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
 | |
|         __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
 | |
| 
 | |
|         const __m256 q = mul_sum_i8_pairs_float(bx, by);
 | |
| 
 | |
|         // Multiply q with scale and accumulate
 | |
| #if defined(__AVX2__)
 | |
|         acc = _mm256_fmadd_ps( d, q, acc );
 | |
| #else
 | |
|         acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *s = hsum_float_8(acc);
 | |
| #else
 | |
|     // scalar
 | |
|     float sumf = 0.0;
 | |
| 
 | |
|     for (int i = 0; i < nb; i++) {
 | |
|         int sumi = 0;
 | |
| 
 | |
|         for (int j = 0; j < qk; j++) {
 | |
|             sumi += x[i].qs[j]*y[i].qs[j];
 | |
|         }
 | |
| 
 | |
|         sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
 | |
|     }
 | |
| 
 | |
|     *s = sumf;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // compute GGML_VEC_DOT_UNROLL dot products at once
 | |
| // xs - x row stride in bytes
 | |
| inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
 | |
|     ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
 | |
| 
 | |
|     ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
 | |
| 
 | |
|     for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
 | |
|         x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
 | |
|     }
 | |
| 
 | |
| #if defined(GGML_SIMD)
 | |
|     const int np = (n & ~(GGML_F16_STEP - 1));
 | |
| 
 | |
|     GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
 | |
| 
 | |
|     GGML_F16_VEC ax[GGML_F16_ARR];
 | |
|     GGML_F16_VEC ay[GGML_F16_ARR];
 | |
| 
 | |
|     for (int i = 0; i < np; i += GGML_F16_STEP) {
 | |
|         for (int j = 0; j < GGML_F16_ARR; j++) {
 | |
|             ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
 | |
| 
 | |
|             for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
 | |
|                 ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
 | |
| 
 | |
|                 sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // reduce sum0..sum3 to sum0
 | |
|     for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
 | |
|         GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
 | |
|     }
 | |
| 
 | |
|     // leftovers
 | |
|     for (int i = np; i < n; ++i) {
 | |
|         for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
 | |
|             sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
 | |
|             sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
 | |
|         s[i] = sumf[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
 | |
| #if defined(GGML_SIMD)
 | |
|     const int np = (n & ~(GGML_F32_STEP - 1));
 | |
| 
 | |
|     GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
 | |
| 
 | |
|     GGML_F32_VEC ax[GGML_F32_ARR];
 | |
|     GGML_F32_VEC ay[GGML_F32_ARR];
 | |
| 
 | |
|     for (int i = 0; i < np; i += GGML_F32_STEP) {
 | |
|         for (int j = 0; j < GGML_F32_ARR; j++) {
 | |
|             ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
 | |
|             ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
 | |
|             ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
 | |
| 
 | |
|             GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // leftovers
 | |
|     for (int i = np; i < n; ++i) {
 | |
|         y[i] += x[i]*v;
 | |
|     }
 | |
| #else
 | |
|     // scalar
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         y[i] += x[i]*v;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //inline static void ggml_vec_scale_f32(const int n, float * y, const float   v) { for (int i = 0; i < n; ++i) y[i] *= v;          }
 | |
| inline static void ggml_vec_scale_f32(const int n, float * y, const float   v) {
 | |
| #if defined(GGML_SIMD)
 | |
|     const int np = (n & ~(GGML_F32_STEP - 1));
 | |
| 
 | |
|     GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
 | |
| 
 | |
|     GGML_F32_VEC ay[GGML_F32_ARR];
 | |
| 
 | |
|     for (int i = 0; i < np; i += GGML_F32_STEP) {
 | |
|         for (int j = 0; j < GGML_F32_ARR; j++) {
 | |
|             ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
 | |
|             ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
 | |
| 
 | |
|             GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // leftovers
 | |
|     for (int i = np; i < n; ++i) {
 | |
|         y[i] *= v;
 | |
|     }
 | |
| #else
 | |
|     // scalar
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         y[i] *= v;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s);   }
 | |
| inline static void ggml_vec_sqr_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i];   }
 | |
| inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
 | |
| inline static void ggml_vec_log_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]);   }
 | |
| inline static void ggml_vec_abs_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
 | |
| inline static void ggml_vec_sgn_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
 | |
| inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
 | |
| inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]);  }
 | |
| inline static void ggml_vec_elu_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
 | |
| inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
 | |
| 
 | |
| static const float GELU_COEF_A    = 0.044715f;
 | |
| static const float GELU_QUICK_COEF    = -1.702f;
 | |
| static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
 | |
| 
 | |
| inline static float ggml_gelu_f32(float x) {
 | |
|     return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
 | |
| }
 | |
| 
 | |
| inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
 | |
|     const uint16_t * i16 = (const uint16_t *) x;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         y[i] = table_gelu_f16[i16[i]];
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef GGML_GELU_FP16
 | |
| inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
 | |
|     uint16_t t;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
 | |
|         memcpy(&t, &fp16, sizeof(uint16_t));
 | |
|         y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
 | |
|     }
 | |
| }
 | |
| #else
 | |
| inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         y[i] = ggml_gelu_f32(x[i]);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static float ggml_gelu_quick_f32(float x) {
 | |
|     return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
 | |
| }
 | |
| 
 | |
| //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
 | |
| //    const uint16_t * i16 = (const uint16_t *) x;
 | |
| //    for (int i = 0; i < n; ++i) {
 | |
| //        y[i] = table_gelu_quick_f16[i16[i]];
 | |
| //    }
 | |
| //}
 | |
| 
 | |
| #ifdef GGML_GELU_QUICK_FP16
 | |
| inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
 | |
|     uint16_t t;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
 | |
|         memcpy(&t, &fp16, sizeof(uint16_t));
 | |
|         y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
 | |
|     }
 | |
| }
 | |
| #else
 | |
| inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         y[i] = ggml_gelu_quick_f32(x[i]);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Sigmoid Linear Unit (SiLU) function
 | |
| inline static float ggml_silu_f32(float x) {
 | |
|     return x/(1.0f + expf(-x));
 | |
| }
 | |
| 
 | |
| //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
 | |
| //    const uint16_t * i16 = (const uint16_t *) x;
 | |
| //    for (int i = 0; i < n; ++i) {
 | |
| //        y[i] = table_silu_f16[i16[i]];
 | |
| //    }
 | |
| //}
 | |
| 
 | |
| #ifdef GGML_SILU_FP16
 | |
| inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
 | |
|     uint16_t t;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
 | |
|         memcpy(&t, &fp16, sizeof(uint16_t));
 | |
|         y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
 | |
|     }
 | |
| }
 | |
| #else
 | |
| inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         y[i] = ggml_silu_f32(x[i]);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static float ggml_silu_backward_f32(float x, float dy) {
 | |
|     const float s = 1.0f/(1.0f + expf(-x));
 | |
|     return dy*s*(1.0f + x*(1.0f - s));
 | |
| }
 | |
| 
 | |
| #ifdef GGML_SILU_FP16
 | |
| inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         // we did not use x[i] to compute forward silu but its f16 equivalent
 | |
|         // take derivative at f16 of x[i]:
 | |
|         ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
 | |
|         float usedx = GGML_FP16_TO_FP32(fp16);
 | |
|         dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
 | |
|     }
 | |
| }
 | |
| #else
 | |
| inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
 | |
| #ifndef GGML_USE_ACCELERATE
 | |
|     ggml_float sum = 0.0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         sum += (ggml_float)x[i];
 | |
|     }
 | |
|     *s = sum;
 | |
| #else
 | |
|     vDSP_sve(x, 1, s, n);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
 | |
|     ggml_float sum = 0.0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         sum += (ggml_float)x[i];
 | |
|     }
 | |
|     *s = sum;
 | |
| }
 | |
| 
 | |
| inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
 | |
| #ifndef GGML_USE_ACCELERATE
 | |
|     float max = -INFINITY;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         max = MAX(max, x[i]);
 | |
|     }
 | |
|     *s = max;
 | |
| #else
 | |
|     vDSP_maxv(x, 1, s, n);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
 | |
|     ggml_vec_norm_f32(n, s, x);
 | |
|     *s = 1.f/(*s);
 | |
| }
 | |
| 
 | |
| inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
 | |
|     float max = -INFINITY;
 | |
|     int idx = 0;
 | |
|     for (int i = 0; i < n; ++i) {
 | |
|         max = MAX(max, x[i]);
 | |
|         if (max == x[i]) { idx = i; }
 | |
|     }
 | |
|     *s = idx;
 | |
| }
 | |
| 
 | |
| //
 | |
| // data types
 | |
| //
 | |
| 
 | |
| static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
 | |
|     [GGML_TYPE_F32]  = 1,
 | |
|     [GGML_TYPE_F16]  = 1,
 | |
|     [GGML_TYPE_Q4_0] = QK4_0,
 | |
|     [GGML_TYPE_Q4_1] = QK4_1,
 | |
|     [GGML_TYPE_Q5_0] = QK5_0,
 | |
|     [GGML_TYPE_Q5_1] = QK5_1,
 | |
|     [GGML_TYPE_Q8_0] = QK8_0,
 | |
|     [GGML_TYPE_Q8_1] = QK8_1,
 | |
| #ifdef GGML_USE_K_QUANTS
 | |
|     [GGML_TYPE_Q2_K] = QK_K,
 | |
|     [GGML_TYPE_Q3_K] = QK_K,
 | |
|     [GGML_TYPE_Q4_K] = QK_K,
 | |
|     [GGML_TYPE_Q5_K] = QK_K,
 | |
|     [GGML_TYPE_Q6_K] = QK_K,
 | |
|     [GGML_TYPE_Q8_K] = QK_K,
 | |
| #endif
 | |
|     [GGML_TYPE_I8]   = 1,
 | |
|     [GGML_TYPE_I16]  = 1,
 | |
|     [GGML_TYPE_I32]  = 1,
 | |
| };
 | |
| static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
 | |
| 
 | |
| static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
 | |
|     [GGML_TYPE_F32]  = sizeof(float),
 | |
|     [GGML_TYPE_F16]  = sizeof(ggml_fp16_t),
 | |
|     [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
 | |
|     [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
 | |
|     [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
 | |
|     [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
 | |
|     [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
 | |
|     [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
 | |
| #ifdef GGML_USE_K_QUANTS
 | |
|     [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
 | |
|     [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
 | |
|     [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
 | |
|     [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
 | |
|     [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
 | |
|     [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
 | |
| #endif
 | |
|     [GGML_TYPE_I8]   = sizeof(int8_t),
 | |
|     [GGML_TYPE_I16]  = sizeof(int16_t),
 | |
|     [GGML_TYPE_I32]  = sizeof(int32_t),
 | |
| };
 | |
| static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
 | |
| 
 | |
| 
 | |
| static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
 | |
|     [GGML_TYPE_F32]  = "f32",
 | |
|     [GGML_TYPE_F16]  = "f16",
 | |
|     [GGML_TYPE_Q4_0] = "q4_0",
 | |
|     [GGML_TYPE_Q4_1] = "q4_1",
 | |
|     [GGML_TYPE_Q5_0] = "q5_0",
 | |
|     [GGML_TYPE_Q5_1] = "q5_1",
 | |
|     [GGML_TYPE_Q8_0] = "q8_0",
 | |
|     [GGML_TYPE_Q8_1] = "q8_1",
 | |
|     [GGML_TYPE_Q2_K] = "q2_K",
 | |
|     [GGML_TYPE_Q3_K] = "q3_K",
 | |
|     [GGML_TYPE_Q4_K] = "q4_K",
 | |
|     [GGML_TYPE_Q5_K] = "q5_K",
 | |
|     [GGML_TYPE_Q6_K] = "q6_K",
 | |
|     [GGML_TYPE_Q8_K] = "q8_K",
 | |
|     [GGML_TYPE_I8]   = "i8",
 | |
|     [GGML_TYPE_I16]  = "i16",
 | |
|     [GGML_TYPE_I32]  = "i32",
 | |
| };
 | |
| static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
 | |
| 
 | |
| static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
 | |
|     [GGML_TYPE_F32]  = false,
 | |
|     [GGML_TYPE_F16]  = false,
 | |
|     [GGML_TYPE_Q4_0] = true,
 | |
|     [GGML_TYPE_Q4_1] = true,
 | |
|     [GGML_TYPE_Q5_0] = true,
 | |
|     [GGML_TYPE_Q5_1] = true,
 | |
|     [GGML_TYPE_Q8_0] = true,
 | |
|     [GGML_TYPE_Q8_1] = true,
 | |
|     [GGML_TYPE_Q2_K] = true,
 | |
|     [GGML_TYPE_Q3_K] = true,
 | |
|     [GGML_TYPE_Q4_K] = true,
 | |
|     [GGML_TYPE_Q5_K] = true,
 | |
|     [GGML_TYPE_Q6_K] = true,
 | |
|     [GGML_TYPE_Q8_K] = true,
 | |
|     [GGML_TYPE_I8]   = false,
 | |
|     [GGML_TYPE_I16]  = false,
 | |
|     [GGML_TYPE_I32]  = false,
 | |
| };
 | |
| static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
 | |
| 
 | |
| static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
 | |
|     "NONE",
 | |
| 
 | |
|     "DUP",
 | |
|     "ADD",
 | |
|     "ADD1",
 | |
|     "ACC",
 | |
|     "SUB",
 | |
|     "MUL",
 | |
|     "DIV",
 | |
|     "SQR",
 | |
|     "SQRT",
 | |
|     "LOG",
 | |
|     "SUM",
 | |
|     "SUM_ROWS",
 | |
|     "MEAN",
 | |
|     "ARGMAX",
 | |
|     "REPEAT",
 | |
|     "REPEAT_BACK",
 | |
|     "ABS",
 | |
|     "SGN",
 | |
|     "NEG",
 | |
|     "STEP",
 | |
|     "TANH",
 | |
|     "ELU",
 | |
|     "RELU",
 | |
|     "GELU",
 | |
|     "GELU_QUICK",
 | |
|     "SILU",
 | |
|     "SILU_BACK",
 | |
|     "NORM",
 | |
|     "RMS_NORM",
 | |
|     "RMS_NORM_BACK",
 | |
| 
 | |
|     "MUL_MAT",
 | |
|     "OUT_PROD",
 | |
| 
 | |
|     "SCALE",
 | |
|     "SET",
 | |
|     "CPY",
 | |
|     "CONT",
 | |
|     "RESHAPE",
 | |
|     "VIEW",
 | |
|     "PERMUTE",
 | |
|     "TRANSPOSE",
 | |
|     "GET_ROWS",
 | |
|     "GET_ROWS_BACK",
 | |
|     "DIAG",
 | |
|     "DIAG_MASK_INF",
 | |
|     "DIAG_MASK_ZERO",
 | |
|     "SOFT_MAX",
 | |
|     "SOFT_MAX_BACK",
 | |
|     "ROPE",
 | |
|     "ROPE_BACK",
 | |
|     "ALIBI",
 | |
|     "CLAMP",
 | |
|     "CONV_1D",
 | |
|     "CONV_2D",
 | |
|     "POOL_1D",
 | |
|     "POOL_2D",
 | |
| 
 | |
|     "FLASH_ATTN",
 | |
|     "FLASH_FF",
 | |
|     "FLASH_ATTN_BACK",
 | |
|     "WIN_PART",
 | |
|     "WIN_UNPART",
 | |
| 
 | |
|     "MAP_UNARY",
 | |
|     "MAP_BINARY",
 | |
| 
 | |
|     "MAP_CUSTOM1",
 | |
|     "MAP_CUSTOM2",
 | |
|     "MAP_CUSTOM3",
 | |
| 
 | |
|     "CROSS_ENTROPY_LOSS",
 | |
|     "CROSS_ENTROPY_LOSS_BACK",
 | |
| };
 | |
| 
 | |
| static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
 | |
| 
 | |
| static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
 | |
|     "none",
 | |
| 
 | |
|     "x",
 | |
|     "x+y",
 | |
|     "x+y",
 | |
|     "view(x,nb,offset)+=y->x",
 | |
|     "x-y",
 | |
|     "x*y",
 | |
|     "x/y",
 | |
|     "x^2",
 | |
|     "√x",
 | |
|     "log(x)",
 | |
|     "Σx",
 | |
|     "Σx_k",
 | |
|     "Σx/n",
 | |
|     "argmax(x)",
 | |
|     "repeat(x)",
 | |
|     "repeat_back(x)",
 | |
|     "abs(x)",
 | |
|     "sgn(x)",
 | |
|     "-x",
 | |
|     "step(x)",
 | |
|     "tanh(x)",
 | |
|     "elu(x)",
 | |
|     "relu(x)",
 | |
|     "gelu(x)",
 | |
|     "gelu_quick(x)",
 | |
|     "silu(x)",
 | |
|     "silu_back(x)",
 | |
|     "norm(x)",
 | |
|     "rms_norm(x)",
 | |
|     "rms_norm_back(x)",
 | |
| 
 | |
|     "X*Y",
 | |
|     "X*Y",
 | |
| 
 | |
|     "x*v",
 | |
|     "y-\\>view(x)",
 | |
|     "x-\\>y",
 | |
|     "cont(x)",
 | |
|     "reshape(x)",
 | |
|     "view(x)",
 | |
|     "permute(x)",
 | |
|     "transpose(x)",
 | |
|     "get_rows(x)",
 | |
|     "get_rows_back(x)",
 | |
|     "diag(x)",
 | |
|     "diag_mask_inf(x)",
 | |
|     "diag_mask_zero(x)",
 | |
|     "soft_max(x)",
 | |
|     "soft_max_back(x)",
 | |
|     "rope(x)",
 | |
|     "rope_back(x)",
 | |
|     "alibi(x)",
 | |
|     "clamp(x)",
 | |
|     "conv_1d(x)",
 | |
|     "conv_2d(x)",
 | |
|     "pool_1d(x)",
 | |
|     "pool_2d(x)",
 | |
| 
 | |
|     "flash_attn(x)",
 | |
|     "flash_ff(x)",
 | |
|     "flash_attn_back(x)",
 | |
|     "win_part(x)",
 | |
|     "win_unpart(x)",
 | |
| 
 | |
|     "f(x)",
 | |
|     "f(x,y)",
 | |
| 
 | |
|     "custom(x)",
 | |
|     "custom(x,y)",
 | |
|     "custom(x,y,z)",
 | |
| 
 | |
|     "cross_entropy_loss(x,y)",
 | |
|     "cross_entropy_loss_back(x,y)",
 | |
| };
 | |
| 
 | |
| static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
 | |
| 
 | |
| static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
 | |
| 
 | |
| static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
 | |
| static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
 | |
| 
 | |
| // WARN:
 | |
| // Mis-confguration can lead to problem that's hard to reason about:
 | |
| // * At best  it crash or talks nosense.
 | |
| // * At worst it talks slightly difference but hard to perceive.
 | |
| //
 | |
| // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
 | |
| // Take care about compile options (e.g., GGML_USE_xxx).
 | |
| static bool GGML_OP_HAS_INIT    [GGML_OP_COUNT] = { 0 };
 | |
| static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
 | |
| 
 | |
| static void ggml_setup_op_has_task_pass(void) {
 | |
|     {   // INIT
 | |
|         bool * p = GGML_OP_HAS_INIT;
 | |
| 
 | |
|         p[GGML_OP_ACC                    ] = true;
 | |
|         p[GGML_OP_MUL_MAT                ] = true;
 | |
|         p[GGML_OP_OUT_PROD               ] = true;
 | |
|         p[GGML_OP_SET                    ] = true;
 | |
|         p[GGML_OP_GET_ROWS_BACK          ] = true;
 | |
|         p[GGML_OP_DIAG_MASK_INF          ] = true;
 | |
|         p[GGML_OP_DIAG_MASK_ZERO         ] = true;
 | |
|         p[GGML_OP_CONV_1D                ] = true;
 | |
|         p[GGML_OP_CONV_2D                ] = true;
 | |
|         p[GGML_OP_FLASH_ATTN_BACK        ] = true;
 | |
|         p[GGML_OP_CROSS_ENTROPY_LOSS     ] = true;
 | |
|     }
 | |
| 
 | |
|     {   // FINALIZE
 | |
|         bool * p = GGML_OP_HAS_FINALIZE;
 | |
| 
 | |
|         p[GGML_OP_CROSS_ENTROPY_LOSS     ] = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // ggml context
 | |
| //
 | |
| 
 | |
| struct ggml_context {
 | |
|     size_t mem_size;
 | |
|     void * mem_buffer;
 | |
|     bool   mem_buffer_owned;
 | |
|     bool   no_alloc;
 | |
|     bool   no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
 | |
| 
 | |
|     int    n_objects;
 | |
| 
 | |
|     struct ggml_object * objects_begin;
 | |
|     struct ggml_object * objects_end;
 | |
| 
 | |
|     struct ggml_scratch scratch;
 | |
|     struct ggml_scratch scratch_save;
 | |
| };
 | |
| 
 | |
| struct ggml_context_container {
 | |
|     bool used;
 | |
| 
 | |
|     struct ggml_context context;
 | |
| };
 | |
| 
 | |
| //
 | |
| // NUMA support
 | |
| //
 | |
| 
 | |
| #define GGML_NUMA_MAX_NODES 8
 | |
| #define GGML_NUMA_MAX_CPUS 512
 | |
| 
 | |
| struct ggml_numa_node {
 | |
|     uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
 | |
|     uint32_t n_cpus;
 | |
| };
 | |
| 
 | |
| struct ggml_numa_nodes {
 | |
|     struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
 | |
|     uint32_t n_nodes;
 | |
|     uint32_t total_cpus; // hardware threads on system
 | |
| };
 | |
| 
 | |
| //
 | |
| // ggml state
 | |
| //
 | |
| 
 | |
| struct ggml_state {
 | |
|     struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
 | |
|     struct ggml_numa_nodes numa;
 | |
| };
 | |
| 
 | |
| // global state
 | |
| static struct ggml_state g_state;
 | |
| static atomic_int g_state_barrier = 0;
 | |
| 
 | |
| // barrier via spin lock
 | |
| inline static void ggml_critical_section_start(void) {
 | |
|     int processing = atomic_fetch_add(&g_state_barrier, 1);
 | |
| 
 | |
|     while (processing > 0) {
 | |
|         // wait for other threads to finish
 | |
|         atomic_fetch_sub(&g_state_barrier, 1);
 | |
|         sched_yield(); // TODO: reconsider this
 | |
|         processing = atomic_fetch_add(&g_state_barrier, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // TODO: make this somehow automatically executed
 | |
| //       some sort of "sentry" mechanism
 | |
| inline static void ggml_critical_section_end(void) {
 | |
|     atomic_fetch_sub(&g_state_barrier, 1);
 | |
| }
 | |
| 
 | |
| void ggml_numa_init(void) {
 | |
|     if (g_state.numa.n_nodes > 0) {
 | |
|         fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| #ifdef __linux__
 | |
|     struct stat st;
 | |
|     char path[256];
 | |
|     int rv;
 | |
| 
 | |
|     // enumerate nodes
 | |
|     while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
 | |
|         rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
 | |
|         GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
 | |
|         if (stat(path, &st) != 0) { break; }
 | |
|         ++g_state.numa.n_nodes;
 | |
|     }
 | |
| 
 | |
|     // enumerate CPUs
 | |
|     while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
 | |
|         rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
 | |
|         GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
 | |
|         if (stat(path, &st) != 0) { break; }
 | |
|         ++g_state.numa.total_cpus;
 | |
|     }
 | |
| 
 | |
|     GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
 | |
| 
 | |
|     if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
 | |
|         g_state.numa.n_nodes = 0;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
 | |
|         struct ggml_numa_node * node = &g_state.numa.nodes[n];
 | |
|         GGML_PRINT_DEBUG("CPUs on node %u:", n);
 | |
|         node->n_cpus = 0;
 | |
|         for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
 | |
|             rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
 | |
|             GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
 | |
|             if (stat(path, &st) == 0) {
 | |
|                 node->cpus[node->n_cpus++] = c;
 | |
|                 GGML_PRINT_DEBUG(" %u", c);
 | |
|             }
 | |
|         }
 | |
|         GGML_PRINT_DEBUG("\n");
 | |
|     }
 | |
| 
 | |
|     if (ggml_is_numa()) {
 | |
|         FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
 | |
|         if (fptr != NULL) {
 | |
|             char buf[42];
 | |
|             if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
 | |
|                 GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
 | |
|             }
 | |
|             fclose(fptr);
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     // TODO
 | |
| #endif
 | |
| }
 | |
| 
 | |
| bool ggml_is_numa(void) {
 | |
|     return g_state.numa.n_nodes > 1;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| void ggml_print_object(const struct ggml_object * obj) {
 | |
|     GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
 | |
|             obj->offs, obj->size, (const void *) obj->next);
 | |
| }
 | |
| 
 | |
| void ggml_print_objects(const struct ggml_context * ctx) {
 | |
|     struct ggml_object * obj = ctx->objects_begin;
 | |
| 
 | |
|     GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
 | |
| 
 | |
|     while (obj != NULL) {
 | |
|         ggml_print_object(obj);
 | |
|         obj = obj->next;
 | |
|     }
 | |
| 
 | |
|     GGML_PRINT("%s: --- end ---\n", __func__);
 | |
| }
 | |
| 
 | |
| int64_t ggml_nelements(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
 | |
| }
 | |
| 
 | |
| int64_t ggml_nrows(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
 | |
| }
 | |
| 
 | |
| size_t ggml_nbytes(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     // this should handle cases where the tensor is not contiguous in memory
 | |
|     // probaby just:
 | |
|     //
 | |
|     //     return tensor->ne[3]*tensor->nb[3]
 | |
|     //
 | |
|     // is enough, but just in case, adding the second part
 | |
| 
 | |
|     return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
 | |
| }
 | |
| 
 | |
| size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
 | |
| }
 | |
| 
 | |
| int ggml_blck_size(enum ggml_type type) {
 | |
|     return GGML_BLCK_SIZE[type];
 | |
| }
 | |
| 
 | |
| size_t ggml_type_size(enum ggml_type type) {
 | |
|     return GGML_TYPE_SIZE[type];
 | |
| }
 | |
| 
 | |
| float ggml_type_sizef(enum ggml_type type) {
 | |
|     return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
 | |
| }
 | |
| 
 | |
| const char * ggml_type_name(enum ggml_type type) {
 | |
|     return GGML_TYPE_NAME[type];
 | |
| }
 | |
| 
 | |
| const char * ggml_op_name(enum ggml_op op) {
 | |
|     return GGML_OP_NAME[op];
 | |
| }
 | |
| 
 | |
| size_t ggml_element_size(const struct ggml_tensor * tensor) {
 | |
|     return GGML_TYPE_SIZE[tensor->type];
 | |
| }
 | |
| 
 | |
| static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
 | |
| }
 | |
| 
 | |
| static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
 | |
| }
 | |
| 
 | |
| static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return tensor->ne[2] == 1 && tensor->ne[3] == 1;
 | |
| }
 | |
| 
 | |
| static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return (t0->ne[0]           == t1->ne[0])  &&
 | |
|            (t1->ne[2]%t0->ne[2] == 0)          && // verify t0 is broadcastable
 | |
|            (t1->ne[3]%t0->ne[3] == 0);
 | |
| }
 | |
| 
 | |
| static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return
 | |
|         (t0->ne[1] == t1->ne[1])  &&
 | |
|         (t0->ne[2] == t1->ne[2])  &&
 | |
|         (t0->ne[3] == t1->ne[3]);
 | |
| }
 | |
| 
 | |
| bool ggml_is_quantized(enum ggml_type type) {
 | |
|     return GGML_IS_QUANTIZED[type];
 | |
| }
 | |
| 
 | |
| enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
 | |
|     enum ggml_type wtype = GGML_TYPE_COUNT;
 | |
| 
 | |
|     switch (ftype) {
 | |
|         case GGML_FTYPE_ALL_F32:              wtype = GGML_TYPE_F32;   break;
 | |
|         case GGML_FTYPE_MOSTLY_F16:           wtype = GGML_TYPE_F16;   break;
 | |
|         case GGML_FTYPE_MOSTLY_Q4_0:          wtype = GGML_TYPE_Q4_0;  break;
 | |
|         case GGML_FTYPE_MOSTLY_Q4_1:          wtype = GGML_TYPE_Q4_1;  break;
 | |
|         case GGML_FTYPE_MOSTLY_Q5_0:          wtype = GGML_TYPE_Q5_0;  break;
 | |
|         case GGML_FTYPE_MOSTLY_Q5_1:          wtype = GGML_TYPE_Q5_1;  break;
 | |
|         case GGML_FTYPE_MOSTLY_Q8_0:          wtype = GGML_TYPE_Q8_0;  break;
 | |
|         case GGML_FTYPE_MOSTLY_Q2_K:          wtype = GGML_TYPE_Q2_K;  break;
 | |
|         case GGML_FTYPE_MOSTLY_Q3_K:          wtype = GGML_TYPE_Q3_K;  break;
 | |
|         case GGML_FTYPE_MOSTLY_Q4_K:          wtype = GGML_TYPE_Q4_K;  break;
 | |
|         case GGML_FTYPE_MOSTLY_Q5_K:          wtype = GGML_TYPE_Q5_K;  break;
 | |
|         case GGML_FTYPE_MOSTLY_Q6_K:          wtype = GGML_TYPE_Q6_K;  break;
 | |
|         case GGML_FTYPE_UNKNOWN:              wtype = GGML_TYPE_COUNT; break;
 | |
|         case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(wtype != GGML_TYPE_COUNT);
 | |
| 
 | |
|     return wtype;
 | |
| }
 | |
| 
 | |
| size_t ggml_tensor_overhead(void) {
 | |
|     return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
 | |
| }
 | |
| 
 | |
| bool ggml_is_transposed(const struct ggml_tensor * tensor) {
 | |
|     return tensor->nb[0] > tensor->nb[1];
 | |
| }
 | |
| 
 | |
| bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return
 | |
|         tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
 | |
|         tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
 | |
|         tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
 | |
|         tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
 | |
| }
 | |
| 
 | |
| bool ggml_is_permuted(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
 | |
| }
 | |
| 
 | |
| static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return
 | |
|         tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
 | |
|         tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
 | |
|         tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
 | |
| }
 | |
| 
 | |
| static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return
 | |
|         (t0->ne[0] == t1->ne[0] ) &&
 | |
|         (t0->ne[1] == t1->ne[1] ) &&
 | |
|         (t0->ne[2] == t1->ne[2] ) &&
 | |
|         (t0->ne[3] == t1->ne[3] );
 | |
| }
 | |
| 
 | |
| // check if t1 can be represented as a repeatition of t0
 | |
| static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return
 | |
|         (t1->ne[0]%t0->ne[0] == 0) &&
 | |
|         (t1->ne[1]%t0->ne[1] == 0) &&
 | |
|         (t1->ne[2]%t0->ne[2] == 0) &&
 | |
|         (t1->ne[3]%t0->ne[3] == 0);
 | |
| }
 | |
| 
 | |
| static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
 | |
| }
 | |
| 
 | |
| static inline int ggml_up32(int n) {
 | |
|     return (n + 31) & ~31;
 | |
| }
 | |
| 
 | |
| //static inline int ggml_up64(int n) {
 | |
| //    return (n + 63) & ~63;
 | |
| //}
 | |
| 
 | |
| static inline int ggml_up(int n, int m) {
 | |
|     // assert m is a power of 2
 | |
|     GGML_ASSERT((m & (m - 1)) == 0);
 | |
|     return (n + m - 1) & ~(m - 1);
 | |
| }
 | |
| 
 | |
| // assert that pointer is aligned to GGML_MEM_ALIGN
 | |
| #define ggml_assert_aligned(ptr) \
 | |
|     GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| struct ggml_context * ggml_init(struct ggml_init_params params) {
 | |
|     // make this function thread safe
 | |
|     ggml_critical_section_start();
 | |
| 
 | |
|     static bool is_first_call = true;
 | |
| 
 | |
|     if (is_first_call) {
 | |
|         // initialize time system (required on Windows)
 | |
|         ggml_time_init();
 | |
| 
 | |
|         // initialize GELU, Quick GELU, SILU and EXP F32 tables
 | |
|         {
 | |
|             const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
 | |
| 
 | |
|             ggml_fp16_t ii;
 | |
|             for (int i = 0; i < (1 << 16); ++i) {
 | |
|                 uint16_t ui = i;
 | |
|                 memcpy(&ii, &ui, sizeof(ii));
 | |
|                 const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
 | |
|                 table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
 | |
|                 table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
 | |
|                 table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
 | |
|                 table_exp_f16[i]  = GGML_FP32_TO_FP16(expf(f));
 | |
|             }
 | |
| 
 | |
|             const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
 | |
| 
 | |
|             GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
 | |
|         }
 | |
| 
 | |
|         // initialize g_state
 | |
|         {
 | |
|             const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
 | |
| 
 | |
|             g_state = (struct ggml_state) {
 | |
|                 /*.contexts =*/ { { 0 } },
 | |
|                 /*.numa =*/ {
 | |
|                     .n_nodes = 0,
 | |
|                     .total_cpus = 0,
 | |
|                 },
 | |
|             };
 | |
| 
 | |
|             for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
 | |
|                 g_state.contexts[i].used = false;
 | |
|             }
 | |
| 
 | |
|             const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
 | |
| 
 | |
|             GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
 | |
|         }
 | |
| 
 | |
| #if defined(GGML_USE_CUBLAS)
 | |
|         ggml_init_cublas();
 | |
| #elif defined(GGML_USE_CLBLAST)
 | |
|         ggml_cl_init();
 | |
| #endif
 | |
| 
 | |
|         ggml_setup_op_has_task_pass();
 | |
| 
 | |
|         is_first_call = false;
 | |
|     }
 | |
| 
 | |
|     // find non-used context in g_state
 | |
|     struct ggml_context * ctx = NULL;
 | |
| 
 | |
|     for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
 | |
|         if (!g_state.contexts[i].used) {
 | |
|             g_state.contexts[i].used = true;
 | |
|             ctx = &g_state.contexts[i].context;
 | |
| 
 | |
|             GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ctx == NULL) {
 | |
|         GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
 | |
| 
 | |
|         ggml_critical_section_end();
 | |
| 
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
 | |
| 
 | |
|     *ctx = (struct ggml_context) {
 | |
|         /*.mem_size           =*/ mem_size,
 | |
|         /*.mem_buffer         =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
 | |
|         /*.mem_buffer_owned   =*/ params.mem_buffer ? false : true,
 | |
|         /*.no_alloc           =*/ params.no_alloc,
 | |
|         /*.no_alloc_save      =*/ params.no_alloc,
 | |
|         /*.n_objects          =*/ 0,
 | |
|         /*.objects_begin      =*/ NULL,
 | |
|         /*.objects_end        =*/ NULL,
 | |
|         /*.scratch            =*/ { 0, 0, NULL, },
 | |
|         /*.scratch_save       =*/ { 0, 0, NULL, },
 | |
|     };
 | |
| 
 | |
|     GGML_ASSERT(ctx->mem_buffer != NULL);
 | |
| 
 | |
|     ggml_assert_aligned(ctx->mem_buffer);
 | |
| 
 | |
|     GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
 | |
| 
 | |
|     ggml_critical_section_end();
 | |
| 
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| void ggml_free(struct ggml_context * ctx) {
 | |
|     // make this function thread safe
 | |
|     ggml_critical_section_start();
 | |
| 
 | |
|     bool found = false;
 | |
| 
 | |
|     for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
 | |
|         if (&g_state.contexts[i].context == ctx) {
 | |
|             g_state.contexts[i].used = false;
 | |
| 
 | |
|             GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
 | |
|                     __func__, i, ggml_used_mem(ctx));
 | |
| 
 | |
|             if (ctx->mem_buffer_owned) {
 | |
|                 GGML_ALIGNED_FREE(ctx->mem_buffer);
 | |
|             }
 | |
| 
 | |
|             found = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!found) {
 | |
|         GGML_PRINT_DEBUG("%s: context not found\n", __func__);
 | |
|     }
 | |
| 
 | |
|     ggml_critical_section_end();
 | |
| }
 | |
| 
 | |
| size_t ggml_used_mem(const struct ggml_context * ctx) {
 | |
|     return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
 | |
| }
 | |
| 
 | |
| size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
 | |
|     const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
 | |
| 
 | |
|     ctx->scratch = scratch;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
 | |
|     ctx->no_alloc = no_alloc;
 | |
| }
 | |
| 
 | |
| void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
 | |
|     return ctx->mem_buffer;
 | |
| }
 | |
| 
 | |
| size_t ggml_get_mem_size(const struct ggml_context * ctx) {
 | |
|     return ctx->mem_size;
 | |
| }
 | |
| 
 | |
| size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
 | |
|     size_t max_size = 0;
 | |
| 
 | |
|     struct ggml_object * obj = ctx->objects_begin;
 | |
| 
 | |
|     while (obj != NULL) {
 | |
|         struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
 | |
| 
 | |
|         const size_t size = ggml_nbytes(tensor);
 | |
| 
 | |
|         if (max_size < size) {
 | |
|             max_size = size;
 | |
|         }
 | |
| 
 | |
|         obj = obj->next;
 | |
|     }
 | |
| 
 | |
|     return max_size;
 | |
| }
 | |
| 
 | |
| // IMPORTANT:
 | |
| // when creating "opt" tensors, always save and load the scratch buffer
 | |
| // this is an error prone process, but it is necessary to support inplace
 | |
| // operators when using scratch buffers
 | |
| // TODO: implement a better way
 | |
| void ggml_scratch_save(struct ggml_context * ctx) {
 | |
|     // this is needed to allow opt tensors to store their data
 | |
|     // TODO: again, need to find a better way
 | |
|     ctx->no_alloc_save = ctx->no_alloc;
 | |
|     ctx->no_alloc      = false;
 | |
| 
 | |
|     ctx->scratch_save = ctx->scratch;
 | |
|     ctx->scratch.data = NULL;
 | |
| }
 | |
| 
 | |
| void ggml_scratch_load(struct ggml_context * ctx) {
 | |
|     ctx->no_alloc = ctx->no_alloc_save;
 | |
| 
 | |
|     ctx->scratch = ctx->scratch_save;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| struct ggml_tensor * ggml_new_tensor_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         enum   ggml_type type,
 | |
|         int    n_dims,
 | |
|         const int64_t* ne,
 | |
|         void*  data) {
 | |
|     // always insert objects at the end of the context's memory pool
 | |
|     struct ggml_object * obj_cur = ctx->objects_end;
 | |
| 
 | |
|     const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
 | |
|     const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
 | |
|     const size_t cur_end  = cur_offs + cur_size;
 | |
| 
 | |
|     size_t size_needed = 0;
 | |
| 
 | |
|     if (data == NULL && !ctx->no_alloc) {
 | |
|         size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
 | |
|         for (int i = 1; i < n_dims; i++) {
 | |
|             size_needed *= ne[i];
 | |
|         }
 | |
|         // align to GGML_MEM_ALIGN
 | |
|         size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
 | |
|     }
 | |
| 
 | |
|     char * const mem_buffer = ctx->mem_buffer;
 | |
|     struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
 | |
| 
 | |
|     if (ctx->scratch.data == NULL || data != NULL) {
 | |
|         size_needed += GGML_TENSOR_SIZE;
 | |
| 
 | |
|         if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
 | |
|             GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
 | |
|                     __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
 | |
|             assert(false);
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         *obj_new = (struct ggml_object) {
 | |
|             .offs = cur_end + GGML_OBJECT_SIZE,
 | |
|             .size = size_needed,
 | |
|             .next = NULL,
 | |
|         };
 | |
|     } else {
 | |
|         if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
 | |
|             GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
 | |
|                     __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
 | |
|             assert(false);
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
 | |
|             GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
 | |
|                     __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
 | |
|             assert(false);
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         data = (char * const) ctx->scratch.data + ctx->scratch.offs;
 | |
| 
 | |
|         *obj_new = (struct ggml_object) {
 | |
|             .offs = cur_end + GGML_OBJECT_SIZE,
 | |
|             .size = GGML_TENSOR_SIZE,
 | |
|             .next = NULL,
 | |
|         };
 | |
| 
 | |
|         //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
 | |
| 
 | |
|         ctx->scratch.offs += size_needed;
 | |
|     }
 | |
| 
 | |
|     if (obj_cur != NULL) {
 | |
|         obj_cur->next = obj_new;
 | |
|     } else {
 | |
|         // this is the first object in this context
 | |
|         ctx->objects_begin = obj_new;
 | |
|     }
 | |
| 
 | |
|     ctx->objects_end = obj_new;
 | |
| 
 | |
|     //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
 | |
| 
 | |
|     struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
 | |
| 
 | |
|     ggml_assert_aligned(result);
 | |
| 
 | |
|     *result = (struct ggml_tensor) {
 | |
|         /*.type         =*/ type,
 | |
|         /*.backend      =*/ GGML_BACKEND_CPU,
 | |
|         /*.n_dims       =*/ n_dims,
 | |
|         /*.ne           =*/ { 1, 1, 1, 1 },
 | |
|         /*.nb           =*/ { 0, 0, 0, 0 },
 | |
|         /*.op           =*/ GGML_OP_NONE,
 | |
|         /*.is_param     =*/ false,
 | |
|         /*.grad         =*/ NULL,
 | |
|         /*.src          =*/ { NULL },
 | |
|         /*.perf_runs    =*/ 0,
 | |
|         /*.perf_cycles  =*/ 0,
 | |
|         /*.perf_time_us =*/ 0,
 | |
|         /*.data         =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
 | |
|         /*.name         =*/ { 0 },
 | |
|         /*.extra        =*/ NULL,
 | |
|         /*.padding      =*/ { 0 },
 | |
|     };
 | |
| 
 | |
|     // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
 | |
|     //ggml_assert_aligned(result->data);
 | |
| 
 | |
|     for (int i = 0; i < n_dims; i++) {
 | |
|         result->ne[i] = ne[i];
 | |
|     }
 | |
| 
 | |
|     result->nb[0] = GGML_TYPE_SIZE[type];
 | |
|     result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
 | |
|     for (int i = 2; i < GGML_MAX_DIMS; i++) {
 | |
|         result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
 | |
|     }
 | |
| 
 | |
|     ctx->n_objects++;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_new_tensor(
 | |
|         struct ggml_context * ctx,
 | |
|         enum   ggml_type type,
 | |
|         int    n_dims,
 | |
|         const int64_t * ne) {
 | |
|     return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_new_tensor_1d(
 | |
|         struct ggml_context * ctx,
 | |
|         enum   ggml_type type,
 | |
|         int64_t ne0) {
 | |
|     return ggml_new_tensor(ctx, type, 1, &ne0);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_new_tensor_2d(
 | |
|         struct ggml_context * ctx,
 | |
|         enum   ggml_type type,
 | |
|         int64_t ne0,
 | |
|         int64_t ne1) {
 | |
|     const int64_t ne[2] = { ne0, ne1 };
 | |
|     return ggml_new_tensor(ctx, type, 2, ne);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_new_tensor_3d(
 | |
|         struct ggml_context * ctx,
 | |
|         enum   ggml_type type,
 | |
|         int64_t ne0,
 | |
|         int64_t ne1,
 | |
|         int64_t ne2) {
 | |
|     const int64_t ne[3] = { ne0, ne1, ne2 };
 | |
|     return ggml_new_tensor(ctx, type, 3, ne);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_new_tensor_4d(
 | |
|         struct ggml_context * ctx,
 | |
|         enum   ggml_type type,
 | |
|         int64_t ne0,
 | |
|         int64_t ne1,
 | |
|         int64_t ne2,
 | |
|         int64_t ne3) {
 | |
|     const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
 | |
|     return ggml_new_tensor(ctx, type, 4, ne);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     ggml_set_i32(result, value);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     ggml_set_f32(result, value);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
 | |
|     return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
 | |
|     memset(tensor->data, 0, ggml_nbytes(tensor));
 | |
|     return tensor;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
 | |
|     const int n     = ggml_nrows(tensor);
 | |
|     const int nc    = tensor->ne[0];
 | |
|     const size_t n1 = tensor->nb[1];
 | |
| 
 | |
|     char * const data = tensor->data;
 | |
| 
 | |
|     switch (tensor->type) {
 | |
|         case GGML_TYPE_I8:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(int8_t));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_I16:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(int16_t));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_I32:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(int32_t));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(ggml_fp16_t));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(float));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
 | |
|                 }
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     return tensor;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
 | |
|     const int n     = ggml_nrows(tensor);
 | |
|     const int nc    = tensor->ne[0];
 | |
|     const size_t n1 = tensor->nb[1];
 | |
| 
 | |
|     char * const data = tensor->data;
 | |
| 
 | |
|     switch (tensor->type) {
 | |
|         case GGML_TYPE_I8:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(int8_t));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_I16:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(int16_t));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_I32:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(int32_t));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(ggml_fp16_t));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 assert(tensor->nb[0] == sizeof(float));
 | |
|                 for (int i = 0; i < n; i++) {
 | |
|                     ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
 | |
|                 }
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     return tensor;
 | |
| }
 | |
| 
 | |
| int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
 | |
|     switch (tensor->type) {
 | |
|         case GGML_TYPE_I8:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
 | |
|                 return ((int8_t *)(tensor->data))[i];
 | |
|             } break;
 | |
|         case GGML_TYPE_I16:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
 | |
|                 return ((int16_t *)(tensor->data))[i];
 | |
|             } break;
 | |
|         case GGML_TYPE_I32:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
 | |
|                 return ((int32_t *)(tensor->data))[i];
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
 | |
|                 return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(float));
 | |
|                 return ((float *)(tensor->data))[i];
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     return 0.0f;
 | |
| }
 | |
| 
 | |
| void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
 | |
|     switch (tensor->type) {
 | |
|         case GGML_TYPE_I8:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
 | |
|                 ((int8_t *)(tensor->data))[i] = value;
 | |
|             } break;
 | |
|         case GGML_TYPE_I16:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
 | |
|                 ((int16_t *)(tensor->data))[i] = value;
 | |
|             } break;
 | |
|         case GGML_TYPE_I32:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
 | |
|                 ((int32_t *)(tensor->data))[i] = value;
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
 | |
|                 ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(float));
 | |
|                 ((float *)(tensor->data))[i] = value;
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
 | |
|     switch (tensor->type) {
 | |
|         case GGML_TYPE_I8:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
 | |
|                 return ((int8_t *)(tensor->data))[i];
 | |
|             } break;
 | |
|         case GGML_TYPE_I16:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
 | |
|                 return ((int16_t *)(tensor->data))[i];
 | |
|             } break;
 | |
|         case GGML_TYPE_I32:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
 | |
|                 return ((int32_t *)(tensor->data))[i];
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
 | |
|                 return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(float));
 | |
|                 return ((float *)(tensor->data))[i];
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     return 0.0f;
 | |
| }
 | |
| 
 | |
| void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
 | |
|     switch (tensor->type) {
 | |
|         case GGML_TYPE_I8:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
 | |
|                 ((int8_t *)(tensor->data))[i] = value;
 | |
|             } break;
 | |
|         case GGML_TYPE_I16:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
 | |
|                 ((int16_t *)(tensor->data))[i] = value;
 | |
|             } break;
 | |
|         case GGML_TYPE_I32:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
 | |
|                 ((int32_t *)(tensor->data))[i] = value;
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
 | |
|                 ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 GGML_ASSERT(tensor->nb[0] == sizeof(float));
 | |
|                 ((float *)(tensor->data))[i] = value;
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void * ggml_get_data(const struct ggml_tensor * tensor) {
 | |
|     return tensor->data;
 | |
| }
 | |
| 
 | |
| float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
 | |
|     assert(tensor->type == GGML_TYPE_F32);
 | |
|     return (float *)(tensor->data);
 | |
| }
 | |
| 
 | |
| const char * ggml_get_name(const struct ggml_tensor * tensor) {
 | |
|     return tensor->name;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
 | |
|     strncpy(tensor->name, name, sizeof(tensor->name));
 | |
|     tensor->name[sizeof(tensor->name) - 1] = '\0';
 | |
|     return tensor;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
 | |
|     va_list args;
 | |
|     va_start(args, fmt);
 | |
|     vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
 | |
|     va_end(args);
 | |
|     return tensor;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_view_tensor(
 | |
|         struct ggml_context * ctx,
 | |
|         const struct ggml_tensor * src) {
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
 | |
|     ggml_format_name(result, "%s (view)", src->name);
 | |
| 
 | |
|     result->nb[0] = src->nb[0];
 | |
|     result->nb[1] = src->nb[1];
 | |
|     result->nb[2] = src->nb[2];
 | |
|     result->nb[3] = src->nb[3];
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
 | |
|     struct ggml_object * obj = ctx->objects_begin;
 | |
| 
 | |
|     char * const mem_buffer = ctx->mem_buffer;
 | |
| 
 | |
|     while (obj != NULL) {
 | |
|         struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
 | |
|         if (strcmp(cur->name, name) == 0) {
 | |
|             return cur;
 | |
|         }
 | |
| 
 | |
|         obj = obj->next;
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // ggml_dup
 | |
| 
 | |
| struct ggml_tensor * ggml_dup_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_DUP;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_dup(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a) {
 | |
|     return ggml_dup_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_dup_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a) {
 | |
|     return ggml_dup_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_add
 | |
| 
 | |
| struct ggml_tensor * ggml_add_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b,
 | |
|         bool inplace) {
 | |
|     // TODO: support less-strict constraint
 | |
|     //       GGML_ASSERT(ggml_can_repeat(b, a));
 | |
|     GGML_ASSERT(ggml_can_repeat_rows(b, a));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad || b->grad)) {
 | |
|         // TODO: support backward pass for broadcasting
 | |
|         GGML_ASSERT(ggml_are_same_shape(a, b));
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_ADD;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_add(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_add_impl(ctx, a, b, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_add_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_add_impl(ctx, a, b, true);
 | |
| }
 | |
| 
 | |
| // ggml_add1
 | |
| 
 | |
| struct ggml_tensor * ggml_add1_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b,
 | |
|         bool inplace) {
 | |
|     GGML_ASSERT(ggml_is_scalar(b));
 | |
|     GGML_ASSERT(ggml_is_padded_1d(a));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_ADD1;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_add1(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_add1_impl(ctx, a, b, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_add1_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_add1_impl(ctx, a, b, true);
 | |
| }
 | |
| 
 | |
| // ggml_acc
 | |
| 
 | |
| struct ggml_tensor * ggml_acc_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b,
 | |
|         size_t               nb1,
 | |
|         size_t               nb2,
 | |
|         size_t               nb3,
 | |
|         size_t               offset,
 | |
|         bool inplace) {
 | |
|     GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
 | |
|     GGML_ASSERT(ggml_is_contiguous(a));
 | |
|     GGML_ASSERT(a->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(b->type == GGML_TYPE_F32);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad || b->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
 | |
| 
 | |
|     ((int32_t *) c->data)[0] = nb1;
 | |
|     ((int32_t *) c->data)[1] = nb2;
 | |
|     ((int32_t *) c->data)[2] = nb3;
 | |
|     ((int32_t *) c->data)[3] = offset;
 | |
|     ((int32_t *) c->data)[4] = inplace ? 1 : 0;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_ACC;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
|     result->src[2] = c;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_acc(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b,
 | |
|         size_t               nb1,
 | |
|         size_t               nb2,
 | |
|         size_t               nb3,
 | |
|         size_t               offset) {
 | |
|     return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_acc_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b,
 | |
|         size_t               nb1,
 | |
|         size_t               nb2,
 | |
|         size_t               nb3,
 | |
|         size_t               offset) {
 | |
|     return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
 | |
| }
 | |
| 
 | |
| // ggml_sub
 | |
| 
 | |
| struct ggml_tensor * ggml_sub_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b,
 | |
|         bool inplace) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(a, b));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad || b->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_SUB;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_sub(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_sub_impl(ctx, a, b, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_sub_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_sub_impl(ctx, a, b, true);
 | |
| }
 | |
| 
 | |
| // ggml_mul
 | |
| 
 | |
| struct ggml_tensor * ggml_mul_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b,
 | |
|         bool inplace) {
 | |
|     // TODO: support less-strict constraint
 | |
|     //       GGML_ASSERT(ggml_can_repeat(b, a));
 | |
|     GGML_ASSERT(ggml_can_repeat_rows(b, a));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad || b->grad)) {
 | |
|         // TODO: support backward pass for broadcasting
 | |
|         GGML_ASSERT(ggml_are_same_shape(a, b));
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     if (inplace) {
 | |
|         GGML_ASSERT(is_node == false);
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_MUL;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_mul(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     return ggml_mul_impl(ctx, a, b, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_mul_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     return ggml_mul_impl(ctx, a, b, true);
 | |
| }
 | |
| 
 | |
| // ggml_div
 | |
| 
 | |
| struct ggml_tensor * ggml_div_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b,
 | |
|         bool inplace) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(a, b));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad || b->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     if (inplace) {
 | |
|         GGML_ASSERT(is_node == false);
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_DIV;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_div(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     return ggml_div_impl(ctx, a, b, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_div_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     return ggml_div_impl(ctx, a, b, true);
 | |
| }
 | |
| 
 | |
| // ggml_sqr
 | |
| 
 | |
| struct ggml_tensor * ggml_sqr_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_SQR;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_sqr(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_sqr_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_sqr_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_sqr_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_sqrt
 | |
| 
 | |
| struct ggml_tensor * ggml_sqrt_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_SQRT;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_sqrt(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_sqrt_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_sqrt_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_sqrt_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_log
 | |
| 
 | |
| struct ggml_tensor * ggml_log_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_LOG;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_log(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_log_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_log_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_log_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_sum
 | |
| 
 | |
| struct ggml_tensor * ggml_sum(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
 | |
| 
 | |
|     result->op   = GGML_OP_SUM;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_sum_rows
 | |
| 
 | |
| struct ggml_tensor * ggml_sum_rows(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     int64_t ne[4] = {1,1,1,1};
 | |
|     for (int i=1; i<a->n_dims; ++i) {
 | |
|         ne[i] = a->ne[i];
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
 | |
| 
 | |
|     result->op   = GGML_OP_SUM_ROWS;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_mean
 | |
| 
 | |
| struct ggml_tensor * ggml_mean(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         GGML_ASSERT(false); // TODO: implement
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
 | |
| 
 | |
|     result->op   = GGML_OP_MEAN;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_argmax
 | |
| 
 | |
| struct ggml_tensor * ggml_argmax(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a) {
 | |
|     GGML_ASSERT(ggml_is_matrix(a));
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         GGML_ASSERT(false);
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
 | |
| 
 | |
|     result->op   = GGML_OP_ARGMAX;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_repeat
 | |
| 
 | |
| struct ggml_tensor * ggml_repeat(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     GGML_ASSERT(ggml_can_repeat(a, b));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     if (ggml_are_same_shape(a, b) && !is_node) {
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
 | |
| 
 | |
|     result->op   = GGML_OP_REPEAT;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_repeat_back
 | |
| 
 | |
| struct ggml_tensor * ggml_repeat_back(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     GGML_ASSERT(ggml_can_repeat(b, a));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     if (ggml_are_same_shape(a, b) && !is_node) {
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
 | |
| 
 | |
|     result->op   = GGML_OP_REPEAT_BACK;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_abs
 | |
| 
 | |
| struct ggml_tensor * ggml_abs_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_ABS;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_abs(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_abs_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_abs_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_abs_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_sgn
 | |
| 
 | |
| struct ggml_tensor * ggml_sgn_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_SGN;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_sgn(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_sgn_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_sgn_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_sgn_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_neg
 | |
| 
 | |
| struct ggml_tensor * ggml_neg_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_NEG;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_neg(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_neg_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_neg_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_neg_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_step
 | |
| 
 | |
| struct ggml_tensor * ggml_step_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_STEP;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_step(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_step_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_step_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_step_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_tanh
 | |
| 
 | |
| struct ggml_tensor * ggml_tanh_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_TANH;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_tanh(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_tanh_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_tanh_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_tanh_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_elu
 | |
| 
 | |
| struct ggml_tensor * ggml_elu_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_ELU;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_elu(
 | |
|     struct ggml_context * ctx,
 | |
|     struct ggml_tensor  * a) {
 | |
|     return ggml_elu_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_elu_inplace(
 | |
|     struct ggml_context * ctx,
 | |
|     struct ggml_tensor  * a) {
 | |
|     return ggml_elu_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_relu
 | |
| 
 | |
| struct ggml_tensor * ggml_relu_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_RELU;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_relu(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_relu_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_relu_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_relu_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_gelu
 | |
| 
 | |
| struct ggml_tensor * ggml_gelu_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_GELU;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_gelu(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_gelu_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_gelu_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_gelu_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_gelu_quick
 | |
| 
 | |
| struct ggml_tensor * ggml_gelu_quick_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_GELU_QUICK;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_gelu_quick(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_gelu_quick_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_gelu_quick_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_gelu_quick_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_silu
 | |
| 
 | |
| struct ggml_tensor * ggml_silu_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_SILU;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_silu(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_silu_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_silu_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_silu_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_silu_back
 | |
| 
 | |
| struct ggml_tensor * ggml_silu_back(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_SILU_BACK;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_norm
 | |
| 
 | |
| struct ggml_tensor * ggml_norm_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         GGML_ASSERT(false); // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_NORM;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL; // TODO: maybe store epsilon here?
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_norm(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_norm_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_norm_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_norm_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_rms_norm_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_RMS_NORM;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL; // TODO: maybe store epsilon here?
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_rms_norm(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_rms_norm_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_rms_norm_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_rms_norm_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_rms_norm_back(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_RMS_NORM_BACK;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_mul_mat
 | |
| 
 | |
| struct ggml_tensor * ggml_mul_mat(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     GGML_ASSERT(ggml_can_mul_mat(a, b));
 | |
|     GGML_ASSERT(!ggml_is_transposed(a));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
 | |
| 
 | |
|     result->op   = GGML_OP_MUL_MAT;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_out_prod
 | |
| 
 | |
| struct ggml_tensor * ggml_out_prod(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     GGML_ASSERT(ggml_can_out_prod(a, b));
 | |
|     GGML_ASSERT(!ggml_is_transposed(a));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
 | |
| 
 | |
|     result->op   = GGML_OP_OUT_PROD;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_scale
 | |
| 
 | |
| struct ggml_tensor * ggml_scale_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b,
 | |
|         bool inplace) {
 | |
|     GGML_ASSERT(ggml_is_scalar(b));
 | |
|     GGML_ASSERT(ggml_is_padded_1d(a));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_SCALE;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_scale(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_scale_impl(ctx, a, b, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_scale_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_scale_impl(ctx, a, b, true);
 | |
| }
 | |
| 
 | |
| // ggml_set
 | |
| 
 | |
| struct ggml_tensor * ggml_set_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b,
 | |
|         size_t                nb1,
 | |
|         size_t                nb2,
 | |
|         size_t                nb3,
 | |
|         size_t                offset,
 | |
|         bool inplace) {
 | |
|     GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     // make a view of the destination
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
 | |
| 
 | |
|     (( int32_t * ) c->data)[0] = nb1;
 | |
|     (( int32_t * ) c->data)[1] = nb2;
 | |
|     (( int32_t * ) c->data)[2] = nb3;
 | |
|     (( int32_t * ) c->data)[3] = offset;
 | |
|     (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_SET;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
|     result->src[2] = c;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor *  a,
 | |
|         struct ggml_tensor *  b,
 | |
|         size_t                nb1,
 | |
|         size_t                nb2,
 | |
|         size_t                nb3,
 | |
|         size_t                offset) {
 | |
|     return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor *  a,
 | |
|         struct ggml_tensor *  b,
 | |
|         size_t                nb1,
 | |
|         size_t                nb2,
 | |
|         size_t                nb3,
 | |
|         size_t                offset) {
 | |
|     return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set_1d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor *  a,
 | |
|         struct ggml_tensor *  b,
 | |
|         size_t                offset) {
 | |
|     return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set_1d_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor *  a,
 | |
|         struct ggml_tensor *  b,
 | |
|         size_t                offset) {
 | |
|     return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set_2d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor *  a,
 | |
|         struct ggml_tensor *  b,
 | |
|         size_t                nb1,
 | |
|         size_t                offset) {
 | |
|     return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_set_2d_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor *  a,
 | |
|         struct ggml_tensor *  b,
 | |
|         size_t                nb1,
 | |
|         size_t                offset) {
 | |
|     return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_cpy
 | |
| 
 | |
| struct ggml_tensor * ggml_cpy_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b,
 | |
|         bool inplace) {
 | |
|     GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad || b->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     // make a view of the destination
 | |
|     struct ggml_tensor * result = ggml_view_tensor(ctx, b);
 | |
|     if (strlen(b->name) > 0) {
 | |
|         ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
 | |
|     } else {
 | |
|         ggml_format_name(result, "%s (copy)", a->name);
 | |
|     }
 | |
| 
 | |
|     result->op   = GGML_OP_CPY;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_cpy(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_cpy_impl(ctx, a, b, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_cpy_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     return ggml_cpy_impl(ctx, a, b, true);
 | |
| }
 | |
| 
 | |
| // ggml_cont
 | |
| 
 | |
| struct ggml_tensor * ggml_cont_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         bool inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
|     ggml_format_name(result, "%s (cont)", a->name);
 | |
| 
 | |
|     result->op   = GGML_OP_CONT;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_cont(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a) {
 | |
|     return ggml_cont_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_cont_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a) {
 | |
|     return ggml_cont_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| // ggml_reshape
 | |
| 
 | |
| struct ggml_tensor * ggml_reshape(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * a,
 | |
|         struct ggml_tensor * b) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(a));
 | |
|     GGML_ASSERT(ggml_is_contiguous(b));
 | |
|     GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     if (b->grad) {
 | |
|         // gradient propagation is not supported
 | |
|         //GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
 | |
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | |
| 
 | |
|     result->op   = GGML_OP_RESHAPE;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_reshape_1d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int64_t               ne0) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(a));
 | |
|     GGML_ASSERT(ggml_nelements(a) == ne0);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[1] = { ne0 };
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
 | |
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | |
| 
 | |
|     result->op   = GGML_OP_RESHAPE;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_reshape_2d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int64_t               ne0,
 | |
|         int64_t               ne1) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(a));
 | |
|     GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[2] = { ne0, ne1 };
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
 | |
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | |
| 
 | |
|     result->op   = GGML_OP_RESHAPE;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_reshape_3d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int64_t               ne0,
 | |
|         int64_t               ne1,
 | |
|         int64_t               ne2) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(a));
 | |
|     GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[3] = { ne0, ne1, ne2 };
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
 | |
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | |
| 
 | |
|     result->op   = GGML_OP_RESHAPE;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct ggml_tensor * ggml_reshape_4d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int64_t               ne0,
 | |
|         int64_t               ne1,
 | |
|         int64_t               ne2,
 | |
|         int64_t               ne3) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(a));
 | |
|     GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
 | |
|     ggml_format_name(result, "%s (reshaped)", a->name);
 | |
| 
 | |
|     result->op   = GGML_OP_RESHAPE;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_view_1d
 | |
| 
 | |
| struct ggml_tensor * ggml_view_1d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int64_t               ne0,
 | |
|         size_t                offset) {
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
 | |
|     ggml_format_name(result, "%s (view)", a->name);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
 | |
|     ggml_set_name(offs, "offset");
 | |
|     memcpy(offs->data, &offset, 2*sizeof(int32_t));
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_VIEW;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
|     result->src[2] = offs;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_view_2d
 | |
| 
 | |
| struct ggml_tensor * ggml_view_2d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int64_t               ne0,
 | |
|         int64_t               ne1,
 | |
|         size_t                nb1,
 | |
|         size_t                offset) {
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
 | |
|     ggml_format_name(result, "%s (view)", a->name);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
 | |
|     ggml_set_name(offs, "offset");
 | |
|     memcpy(offs->data, &offset, 2*sizeof(int32_t));
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->nb[1] = nb1;
 | |
|     result->nb[2] = result->nb[1]*ne1;
 | |
|     result->nb[3] = result->nb[2];
 | |
| 
 | |
|     result->op   = GGML_OP_VIEW;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
|     result->src[2] = offs;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_view_3d
 | |
| 
 | |
| struct ggml_tensor * ggml_view_3d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int64_t               ne0,
 | |
|         int64_t               ne1,
 | |
|         int64_t               ne2,
 | |
|         size_t                nb1,
 | |
|         size_t                nb2,
 | |
|         size_t                offset) {
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
 | |
|     ggml_format_name(result, "%s (view)", a->name);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
 | |
|     ggml_set_name(offs, "offset");
 | |
|     memcpy(offs->data, &offset, 2*sizeof(int32_t));
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->nb[1] = nb1;
 | |
|     result->nb[2] = nb2;
 | |
|     result->nb[3] = result->nb[2]*ne2;
 | |
| 
 | |
|     result->op   = GGML_OP_VIEW;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
|     result->src[2] = offs;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_view_4d
 | |
| 
 | |
| struct ggml_tensor * ggml_view_4d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int64_t               ne0,
 | |
|         int64_t               ne1,
 | |
|         int64_t               ne2,
 | |
|         int64_t               ne3,
 | |
|         size_t                nb1,
 | |
|         size_t                nb2,
 | |
|         size_t                nb3,
 | |
|         size_t                offset) {
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
 | |
|     ggml_format_name(result, "%s (view)", a->name);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
 | |
|     ggml_set_name(offs, "offset");
 | |
|     memcpy(offs->data, &offset, 2*sizeof(int32_t));
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->nb[1] = nb1;
 | |
|     result->nb[2] = nb2;
 | |
|     result->nb[3] = nb3;
 | |
| 
 | |
|     result->op   = GGML_OP_VIEW;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
|     result->src[2] = offs;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_permute
 | |
| 
 | |
| struct ggml_tensor * ggml_permute(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   axis0,
 | |
|         int                   axis1,
 | |
|         int                   axis2,
 | |
|         int                   axis3) {
 | |
|     GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
 | |
|     GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
 | |
|     GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
 | |
|     GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
 | |
| 
 | |
|     GGML_ASSERT(axis0 != axis1);
 | |
|     GGML_ASSERT(axis0 != axis2);
 | |
|     GGML_ASSERT(axis0 != axis3);
 | |
|     GGML_ASSERT(axis1 != axis2);
 | |
|     GGML_ASSERT(axis1 != axis3);
 | |
|     GGML_ASSERT(axis2 != axis3);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | |
|     ggml_format_name(result, "%s (permuted)", a->name);
 | |
| 
 | |
|     int ne[GGML_MAX_DIMS];
 | |
|     int nb[GGML_MAX_DIMS];
 | |
| 
 | |
|     ne[axis0] = a->ne[0];
 | |
|     ne[axis1] = a->ne[1];
 | |
|     ne[axis2] = a->ne[2];
 | |
|     ne[axis3] = a->ne[3];
 | |
| 
 | |
|     nb[axis0] = a->nb[0];
 | |
|     nb[axis1] = a->nb[1];
 | |
|     nb[axis2] = a->nb[2];
 | |
|     nb[axis3] = a->nb[3];
 | |
| 
 | |
|     result->ne[0] = ne[0];
 | |
|     result->ne[1] = ne[1];
 | |
|     result->ne[2] = ne[2];
 | |
|     result->ne[3] = ne[3];
 | |
| 
 | |
|     result->nb[0] = nb[0];
 | |
|     result->nb[1] = nb[1];
 | |
|     result->nb[2] = nb[2];
 | |
|     result->nb[3] = nb[3];
 | |
| 
 | |
|     result->op   = GGML_OP_PERMUTE;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     if (is_node) {
 | |
|         ggml_scratch_save(ctx);
 | |
| 
 | |
|         struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
 | |
| 
 | |
|         ((int32_t *) b->data)[0] = axis0;
 | |
|         ((int32_t *) b->data)[1] = axis1;
 | |
|         ((int32_t *) b->data)[2] = axis2;
 | |
|         ((int32_t *) b->data)[3] = axis3;
 | |
| 
 | |
|         ggml_scratch_load(ctx);
 | |
| 
 | |
|         result->src[2] = b;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_transpose
 | |
| 
 | |
| struct ggml_tensor * ggml_transpose(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | |
|     ggml_format_name(result, "%s (transposed)", a->name);
 | |
| 
 | |
|     result->ne[0] = a->ne[1];
 | |
|     result->ne[1] = a->ne[0];
 | |
| 
 | |
|     result->nb[0] = a->nb[1];
 | |
|     result->nb[1] = a->nb[0];
 | |
| 
 | |
|     result->op   = GGML_OP_TRANSPOSE;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_get_rows
 | |
| 
 | |
| struct ggml_tensor * ggml_get_rows(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     // TODO: implement non F32 return
 | |
|     //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
 | |
|     struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
 | |
| 
 | |
|     result->op   = GGML_OP_GET_ROWS;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_get_rows_back
 | |
| 
 | |
| struct ggml_tensor * ggml_get_rows_back(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b,
 | |
|         struct ggml_tensor  * c) {
 | |
|     GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     // TODO: implement non F32 return
 | |
|     //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
 | |
|     struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
 | |
| 
 | |
|     result->op   = GGML_OP_GET_ROWS_BACK;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
|     result->src[2] = c;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_diag
 | |
| 
 | |
| struct ggml_tensor * ggml_diag(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     GGML_ASSERT(a->ne[1] == 1);
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
 | |
| 
 | |
|     result->op   = GGML_OP_DIAG;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_diag_mask_inf
 | |
| 
 | |
| struct ggml_tensor * ggml_diag_mask_inf_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past,
 | |
|         bool                  inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
 | |
| 
 | |
|     ((int32_t *) b->data)[0] = n_past;
 | |
|     ((int32_t *) b->data)[1] = inplace ? 1 : 0;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_DIAG_MASK_INF;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_diag_mask_inf(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past) {
 | |
|     return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct ggml_tensor * ggml_diag_mask_inf_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past) {
 | |
|     return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
 | |
| }
 | |
| 
 | |
| // ggml_diag_mask_zero
 | |
| 
 | |
| struct ggml_tensor * ggml_diag_mask_zero_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past,
 | |
|         bool                  inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
 | |
|     ggml_set_name(b, "n_past, inplace");
 | |
| 
 | |
|     ((int32_t *) b->data)[0] = n_past;
 | |
|     ((int32_t *) b->data)[1] = inplace ? 1 : 0;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_DIAG_MASK_ZERO;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_diag_mask_zero(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past) {
 | |
|     return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_diag_mask_zero_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past) {
 | |
|     return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
 | |
| }
 | |
| 
 | |
| // ggml_soft_max
 | |
| 
 | |
| struct ggml_tensor * ggml_soft_max_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         bool                  inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_SOFT_MAX;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_soft_max(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_soft_max_impl(ctx, a, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_soft_max_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a) {
 | |
|     return ggml_soft_max_impl(ctx, a, true);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_soft_max_back
 | |
| 
 | |
| struct ggml_tensor * ggml_soft_max_back_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b,
 | |
|         bool                  inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         is_node = true; // TODO : implement backward pass
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_SOFT_MAX_BACK;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_soft_max_back(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     return ggml_soft_max_back_impl(ctx, a, b, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_soft_max_back_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b) {
 | |
|     return ggml_soft_max_back_impl(ctx, a, b, true);
 | |
| }
 | |
| 
 | |
| // ggml_rope
 | |
| 
 | |
| struct ggml_tensor * ggml_rope_impl(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past,
 | |
|         int                   n_dims,
 | |
|         int                   mode,
 | |
|         int                   n_ctx,
 | |
|         float                 freq_base,
 | |
|         float                 freq_scale,
 | |
|         bool                  inplace) {
 | |
|     GGML_ASSERT(n_past >= 0);
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
 | |
| 
 | |
|     ((int32_t *) b->data)[0] = n_past;
 | |
|     ((int32_t *) b->data)[1] = n_dims;
 | |
|     ((int32_t *) b->data)[2] = mode;
 | |
|     ((int32_t *) b->data)[3] = n_ctx;
 | |
|     memcpy((int32_t *) b->data + 4, &freq_base,  sizeof(float));
 | |
|     memcpy((int32_t *) b->data + 5, &freq_scale, sizeof(float));
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_ROPE;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_rope(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past,
 | |
|         int                   n_dims,
 | |
|         int                   mode,
 | |
|         int                   n_ctx) {
 | |
|     return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_rope_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past,
 | |
|         int                   n_dims,
 | |
|         int                   mode,
 | |
|         int                   n_ctx) {
 | |
|     return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_rope_custom_inplace(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past,
 | |
|         int                   n_dims,
 | |
|         int                   mode,
 | |
|         int                   n_ctx,
 | |
|         float                 freq_base,
 | |
|         float                 freq_scale) {
 | |
|     return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
 | |
| }
 | |
| 
 | |
| // ggml_rope_back
 | |
| 
 | |
| struct ggml_tensor * ggml_rope_back(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past,
 | |
|         int                   n_dims,
 | |
|         int                   mode,
 | |
|         int                   n_ctx) {
 | |
|     GGML_ASSERT(n_past >= 0);
 | |
|     GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         is_node = false; // TODO: implement backward
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
 | |
|     ggml_set_name(b, "n_past, n_dims, mode");
 | |
| 
 | |
|     ((int32_t *) b->data)[0] = n_past;
 | |
|     ((int32_t *) b->data)[1] = n_dims;
 | |
|     ((int32_t *) b->data)[2] = mode;
 | |
|     ((int32_t *) b->data)[3] = n_ctx;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_ROPE_BACK;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_alibi
 | |
| 
 | |
| struct ggml_tensor * ggml_alibi(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   n_past,
 | |
|         int                   n_head,
 | |
|         float                 bias_max) {
 | |
|     GGML_ASSERT(n_past >= 0);
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         GGML_ASSERT(false); // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     // TODO: when implement backward, fix this:
 | |
|     //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
 | |
| 
 | |
|     ((int32_t *) b->data)[0] = n_past;
 | |
|     ((int32_t *) b->data)[1] = n_head;
 | |
|     GGML_ASSERT(sizeof(float) == sizeof(int32_t));
 | |
|     (((float *) b->data)[2]) = bias_max;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_ALIBI;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_clamp
 | |
| 
 | |
| struct ggml_tensor * ggml_clamp(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         float                 min,
 | |
|         float                 max) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         GGML_ASSERT(false); // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     // TODO: when implement backward, fix this:
 | |
|     struct ggml_tensor * result = ggml_view_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
 | |
| 
 | |
|     ((float *) b->data)[0] = min;
 | |
|     ((float *) b->data)[1] = max;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_CLAMP;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_conv_1d
 | |
| 
 | |
| static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
 | |
|     return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
 | |
| }
 | |
| 
 | |
| GGML_API struct ggml_tensor * ggml_conv_1d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b,
 | |
|         int                   s0,
 | |
|         int                   p0,
 | |
|         int                   d0) {
 | |
|     GGML_ASSERT(ggml_is_matrix(b));
 | |
|     GGML_ASSERT(a->ne[1] == b->ne[1]);
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         GGML_ASSERT(false); // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[4] = {
 | |
|         ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
 | |
|         a->ne[2], 1, 1,
 | |
|     };
 | |
|     struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
|     struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
 | |
|     ((int32_t*)c->data)[0] = s0;
 | |
|     ((int32_t*)c->data)[1] = p0;
 | |
|     ((int32_t*)c->data)[2] = d0;
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op = GGML_OP_CONV_1D;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
|     result->src[2] = c;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_conv_2d
 | |
| 
 | |
| struct ggml_tensor* ggml_conv_2d(
 | |
|     struct ggml_context* ctx,
 | |
|     struct ggml_tensor * a,
 | |
|     struct ggml_tensor * b,
 | |
|     int                  s0,
 | |
|     int                  s1,
 | |
|     int                  p0,
 | |
|     int                  p1,
 | |
|     int                  d0,
 | |
|     int                  d1) {
 | |
| 
 | |
|     GGML_ASSERT(a->ne[2] == b->ne[2]);
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         GGML_ASSERT(false); // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[4] = {
 | |
|         ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
 | |
|         ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
 | |
|         a->ne[3], b->ne[3],
 | |
|     };
 | |
|     struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
|     struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
 | |
|     ((int32_t*)c->data)[0] = s0;
 | |
|     ((int32_t*)c->data)[1] = s1;
 | |
|     ((int32_t*)c->data)[2] = p0;
 | |
|     ((int32_t*)c->data)[3] = p1;
 | |
|     ((int32_t*)c->data)[4] = d0;
 | |
|     ((int32_t*)c->data)[5] = d1;
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op = GGML_OP_CONV_2D;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
|     result->src[2] = c;
 | |
| 
 | |
|     return result;
 | |
| 
 | |
| }
 | |
| 
 | |
| // ggml_conv_1d_ph
 | |
| 
 | |
| struct ggml_tensor* ggml_conv_1d_ph(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b,
 | |
|         int                   s,
 | |
|         int                   d) {
 | |
|     return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_pool_*
 | |
| 
 | |
| static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
 | |
|     return (ins + 2 * p - ks) / s + 1;
 | |
| }
 | |
| 
 | |
| // ggml_pool_2d
 | |
| 
 | |
| struct ggml_tensor* ggml_pool_1d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         enum ggml_op_pool     op,
 | |
|         int                   k0,
 | |
|         int                   s0,
 | |
|         int                   p0) {
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         GGML_ASSERT(false); // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[3] = {
 | |
|         ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
 | |
|         a->ne[1],
 | |
|     };
 | |
|     struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
|     struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
 | |
|     ((int32_t*)c->data)[0] = op;
 | |
|     ((int32_t*)c->data)[1] = k0;
 | |
|     ((int32_t*)c->data)[2] = s0;
 | |
|     ((int32_t*)c->data)[3] = p0;
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op = GGML_OP_POOL_1D;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = c;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_pool_2d
 | |
| 
 | |
| struct ggml_tensor* ggml_pool_2d(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         enum ggml_op_pool     op,
 | |
|         int                   k0,
 | |
|         int                   k1,
 | |
|         int                   s0,
 | |
|         int                   s1,
 | |
|         int                   p0,
 | |
|         int                   p1) {
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         GGML_ASSERT(false); // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[3] = {
 | |
|         ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
 | |
|         ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
 | |
|         a->ne[2],
 | |
|     };
 | |
|     struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
|     struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 7);
 | |
|     ((int32_t*)c->data)[0] = op;
 | |
|     ((int32_t*)c->data)[1] = k0;
 | |
|     ((int32_t*)c->data)[2] = k1;
 | |
|     ((int32_t*)c->data)[3] = s0;
 | |
|     ((int32_t*)c->data)[4] = s1;
 | |
|     ((int32_t*)c->data)[5] = p0;
 | |
|     ((int32_t*)c->data)[6] = p1;
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op = GGML_OP_POOL_2D;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = c;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_flash_attn
 | |
| 
 | |
| struct ggml_tensor * ggml_flash_attn(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * q,
 | |
|         struct ggml_tensor  * k,
 | |
|         struct ggml_tensor  * v,
 | |
|         bool                  masked) {
 | |
|     GGML_ASSERT(ggml_can_mul_mat(k, q));
 | |
|     // TODO: check if vT can be multiplied by (k*qT)
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (q->grad || k->grad || v->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
 | |
| 
 | |
|     result->op   = GGML_OP_FLASH_ATTN;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = q;
 | |
|     result->src[1] = k;
 | |
|     result->src[2] = v;
 | |
|     result->src[3] = ggml_new_i32(ctx, masked ? 1 : 0);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_flash_ff
 | |
| 
 | |
| struct ggml_tensor * ggml_flash_ff(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         struct ggml_tensor  * b0,
 | |
|         struct ggml_tensor  * b1,
 | |
|         struct ggml_tensor  * c0,
 | |
|         struct ggml_tensor  * c1) {
 | |
|     GGML_ASSERT(ggml_can_mul_mat(b0, a));
 | |
|     // TODO: more checks
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
 | |
| 
 | |
|     result->op   = GGML_OP_FLASH_FF;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b0;
 | |
|     result->src[2] = b1;
 | |
|     result->src[3] = c0;
 | |
|     result->src[4] = c1;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_flash_attn_back
 | |
| 
 | |
| struct ggml_tensor * ggml_flash_attn_back(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * q,
 | |
|         struct ggml_tensor  * k,
 | |
|         struct ggml_tensor  * v,
 | |
|         struct ggml_tensor  * d,
 | |
|         bool                  masked) {
 | |
|     GGML_ASSERT(ggml_can_mul_mat(k, q));
 | |
|     // TODO: check if vT can be multiplied by (k*qT)
 | |
| 
 | |
|     // d shape [D,N,ne2,ne3]
 | |
|     // q shape [D,N,ne2,ne3]
 | |
|     // k shape [D,M,ne2,ne3]
 | |
|     // v shape [M,D,ne2,ne3]
 | |
| 
 | |
|     const int64_t   D = q->ne[0];
 | |
|     const int64_t   N = q->ne[1];
 | |
|     const int64_t   M = k->ne[1];
 | |
|     const int64_t ne2 = q->ne[2];
 | |
|     const int64_t ne3 = q->ne[3];
 | |
| 
 | |
|     GGML_ASSERT(k->ne[0] == D);
 | |
|     GGML_ASSERT(v->ne[0] == M);
 | |
|     GGML_ASSERT(v->ne[1] == D);
 | |
|     GGML_ASSERT(d->ne[0] == D);
 | |
|     GGML_ASSERT(d->ne[1] == N);
 | |
|     GGML_ASSERT(k->ne[2] == ne2);
 | |
|     GGML_ASSERT(k->ne[3] == ne3);
 | |
|     GGML_ASSERT(v->ne[2] == ne2);
 | |
|     GGML_ASSERT(v->ne[3] == ne3);
 | |
|     GGML_ASSERT(d->ne[2] == ne2);
 | |
|     GGML_ASSERT(d->ne[3] == ne3);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (q->grad || k->grad || v->grad) {
 | |
|         // when using this operation (in backwards pass) these grads are set.
 | |
|         // we don't want to create (big) grad of our result, so is_node is false.
 | |
|         is_node = false;
 | |
|     }
 | |
| 
 | |
|     // store gradients of q, k and v as continuous tensors concatenated in result.
 | |
|     // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
 | |
|     // gradq->data = result->data
 | |
|     // gradk->data = result->data + nb0*D*N*ne2*ne3
 | |
|     // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
 | |
|     // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
 | |
|     int64_t ne[4] = {D,M+N+M,ne2,ne3};
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | |
| 
 | |
|     result->op   = GGML_OP_FLASH_ATTN_BACK;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = q;
 | |
|     result->src[1] = k;
 | |
|     result->src[2] = v;
 | |
|     result->src[3] = d;
 | |
|     result->src[4] = ggml_new_i32(ctx, masked ? 1 : 0);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_win_part
 | |
| 
 | |
| struct ggml_tensor * ggml_win_part(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   w) {
 | |
|     GGML_ASSERT(a->ne[3] == 1);
 | |
|     GGML_ASSERT(a->type  == GGML_TYPE_F32);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         GGML_ASSERT(false); // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     // padding
 | |
|     const int px = (w - a->ne[1]%w)%w;
 | |
|     const int py = (w - a->ne[2]%w)%w;
 | |
| 
 | |
|     const int npx = (px + a->ne[1])/w;
 | |
|     const int npy = (py + a->ne[2])/w;
 | |
|     const int np  = npx*npy;
 | |
| 
 | |
|     const int64_t ne[4] = { a->ne[0], w, w, np, };
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
 | |
| 
 | |
|     ((int32_t *) b->data)[0] = npx;
 | |
|     ((int32_t *) b->data)[1] = npy;
 | |
|     ((int32_t *) b->data)[2] = w;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_WIN_PART;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
|     result->src[2] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_win_unpart
 | |
| 
 | |
| struct ggml_tensor * ggml_win_unpart(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor  * a,
 | |
|         int                   w0,
 | |
|         int                   h0,
 | |
|         int                   w) {
 | |
|     GGML_ASSERT(a->type == GGML_TYPE_F32);
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad) {
 | |
|         GGML_ASSERT(false); // TODO: implement backward
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
 | |
|     struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
 | |
| 
 | |
|     ((int32_t *) b->data)[0] = w;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op   = GGML_OP_WIN_UNPART;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = NULL;
 | |
|     result->src[2] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_map_unary
 | |
| 
 | |
| struct ggml_tensor * ggml_map_unary_impl_f32(
 | |
|         struct ggml_context        * ctx,
 | |
|         struct ggml_tensor         * a,
 | |
|         const  ggml_unary_op_f32_t fun,
 | |
|         bool   inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
 | |
|     *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op = GGML_OP_MAP_UNARY;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[2] = addr_tensor;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_unary_f32(
 | |
|         struct ggml_context        * ctx,
 | |
|         struct ggml_tensor         * a,
 | |
|         const  ggml_unary_op_f32_t fun) {
 | |
|     return ggml_map_unary_impl_f32(ctx, a, fun, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_unary_inplace_f32(
 | |
|         struct ggml_context        * ctx,
 | |
|         struct ggml_tensor         * a,
 | |
|         const  ggml_unary_op_f32_t fun) {
 | |
|     return ggml_map_unary_impl_f32(ctx, a, fun, true);
 | |
| }
 | |
| 
 | |
| // ggml_map_binary
 | |
| 
 | |
| struct ggml_tensor * ggml_map_binary_impl_f32(
 | |
|         struct ggml_context         * ctx,
 | |
|         struct ggml_tensor          * a,
 | |
|         struct ggml_tensor          * b,
 | |
|         const  ggml_binary_op_f32_t fun,
 | |
|         bool   inplace) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(a, b));
 | |
| 
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad || b->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
 | |
|     *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op = GGML_OP_MAP_BINARY;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
|     result->src[2] = addr_tensor;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_binary_f32(
 | |
|         struct ggml_context         * ctx,
 | |
|         struct ggml_tensor          * a,
 | |
|         struct ggml_tensor          * b,
 | |
|         const  ggml_binary_op_f32_t fun) {
 | |
|     return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_binary_inplace_f32(
 | |
|         struct ggml_context         * ctx,
 | |
|         struct ggml_tensor          * a,
 | |
|         struct ggml_tensor          * b,
 | |
|         const  ggml_binary_op_f32_t fun) {
 | |
|     return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
 | |
| }
 | |
| 
 | |
| // ggml_map_custom1
 | |
| 
 | |
| struct ggml_tensor * ggml_map_custom1_impl_f32(
 | |
|         struct ggml_context          * ctx,
 | |
|         struct ggml_tensor           * a,
 | |
|         const  ggml_custom1_op_f32_t   fun,
 | |
|         bool   inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && a->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
 | |
|     *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op = GGML_OP_MAP_CUSTOM1;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[2] = addr_tensor;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_custom1_f32(
 | |
|         struct ggml_context          * ctx,
 | |
|         struct ggml_tensor           * a,
 | |
|         const  ggml_custom1_op_f32_t   fun) {
 | |
|     return ggml_map_custom1_impl_f32(ctx, a, fun, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_custom1_inplace_f32(
 | |
|         struct ggml_context          * ctx,
 | |
|         struct ggml_tensor           * a,
 | |
|         const  ggml_custom1_op_f32_t   fun) {
 | |
|     return ggml_map_custom1_impl_f32(ctx, a, fun, true);
 | |
| }
 | |
| 
 | |
| // ggml_map_custom2
 | |
| 
 | |
| struct ggml_tensor * ggml_map_custom2_impl_f32(
 | |
|         struct ggml_context          * ctx,
 | |
|         struct ggml_tensor           * a,
 | |
|         struct ggml_tensor           * b,
 | |
|         const  ggml_custom2_op_f32_t   fun,
 | |
|         bool   inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad || b->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
 | |
|     *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op = GGML_OP_MAP_CUSTOM2;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
|     result->src[2] = addr_tensor;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_custom2_f32(
 | |
|         struct ggml_context          * ctx,
 | |
|         struct ggml_tensor           * a,
 | |
|         struct ggml_tensor           * b,
 | |
|         const  ggml_custom2_op_f32_t   fun) {
 | |
|     return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_custom2_inplace_f32(
 | |
|         struct ggml_context          * ctx,
 | |
|         struct ggml_tensor           * a,
 | |
|         struct ggml_tensor           * b,
 | |
|         const  ggml_custom2_op_f32_t   fun) {
 | |
|     return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
 | |
| }
 | |
| 
 | |
| // ggml_map_custom3
 | |
| 
 | |
| struct ggml_tensor * ggml_map_custom3_impl_f32(
 | |
|         struct ggml_context          * ctx,
 | |
|         struct ggml_tensor           * a,
 | |
|         struct ggml_tensor           * b,
 | |
|         struct ggml_tensor           * c,
 | |
|         const  ggml_custom3_op_f32_t   fun,
 | |
|         bool   inplace) {
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (!inplace && (a->grad || b->grad || c->grad)) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     ggml_scratch_save(ctx);
 | |
| 
 | |
|     struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
 | |
|     *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
 | |
| 
 | |
|     ggml_scratch_load(ctx);
 | |
| 
 | |
|     result->op = GGML_OP_MAP_CUSTOM3;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
|     result->src[2] = addr_tensor;
 | |
|     result->src[3] = c;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_custom3_f32(
 | |
|         struct ggml_context          * ctx,
 | |
|         struct ggml_tensor           * a,
 | |
|         struct ggml_tensor           * b,
 | |
|         struct ggml_tensor           * c,
 | |
|         const  ggml_custom3_op_f32_t   fun) {
 | |
|     return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_map_custom3_inplace_f32(
 | |
|         struct ggml_context          * ctx,
 | |
|         struct ggml_tensor           * a,
 | |
|         struct ggml_tensor           * b,
 | |
|         struct ggml_tensor           * c,
 | |
|         const  ggml_custom3_op_f32_t   fun) {
 | |
|     return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
 | |
| }
 | |
| 
 | |
| // ggml_cross_entropy_loss
 | |
| 
 | |
| struct ggml_tensor * ggml_cross_entropy_loss(
 | |
|         struct ggml_context         * ctx,
 | |
|         struct ggml_tensor          * a,
 | |
|         struct ggml_tensor          * b) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(a, b));
 | |
|     bool is_node = false;
 | |
| 
 | |
|     if (a->grad || b->grad) {
 | |
|         is_node = true;
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
 | |
| 
 | |
|     result->op   = GGML_OP_CROSS_ENTROPY_LOSS;
 | |
|     result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // ggml_cross_entropy_loss_back
 | |
| 
 | |
| struct ggml_tensor * ggml_cross_entropy_loss_back(
 | |
|         struct ggml_context         * ctx,
 | |
|         struct ggml_tensor          * a,
 | |
|         struct ggml_tensor          * b,
 | |
|         struct ggml_tensor          * c) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(a, b));
 | |
|     GGML_ASSERT(ggml_is_scalar(c));
 | |
| 
 | |
|     struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
 | |
| 
 | |
|     result->op   = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
 | |
|     result->grad = NULL;
 | |
|     result->src[0] = a;
 | |
|     result->src[1] = b;
 | |
|     result->src[2] = c;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| void ggml_set_param(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_tensor * tensor) {
 | |
|     tensor->is_param = true;
 | |
| 
 | |
|     GGML_ASSERT(tensor->grad == NULL);
 | |
|     tensor->grad = ggml_dup_tensor(ctx, tensor);
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_dup
 | |
| 
 | |
| static void ggml_compute_forward_dup_same_cont(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(src0->type == dst->type);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const size_t nb00 = src0->nb[0];
 | |
|     const size_t nb0 = dst->nb[0];
 | |
| 
 | |
|     const int ith = params->ith; // thread index
 | |
|     const int nth = params->nth; // number of threads
 | |
| 
 | |
|     // parallelize by elements
 | |
|     const int ne = ggml_nelements(dst);
 | |
|     const int dr = (ne + nth - 1) / nth;
 | |
|     const int ie0 = dr * ith;
 | |
|     const int ie1 = MIN(ie0 + dr, ne);
 | |
| 
 | |
|     if (ie0 < ie1) {
 | |
|         memcpy(
 | |
|             ((char *)  dst->data + ie0*nb0),
 | |
|             ((char *) src0->data + ie0*nb00),
 | |
|             (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
 | |
|     }
 | |
| 
 | |
| }
 | |
| static void ggml_compute_forward_dup_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith; // thread index
 | |
|     const int nth = params->nth; // number of threads
 | |
| 
 | |
|     if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
 | |
|         ggml_compute_forward_dup_same_cont(params, src0, dst);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // parallelize by rows
 | |
|     const int nr = ne01;
 | |
|     // number of rows per thread
 | |
|     const int dr = (nr + nth - 1) / nth;
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr * ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     if (src0->type == dst->type &&
 | |
|         ne00 == ne0 &&
 | |
|         nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
 | |
|         // copy by rows
 | |
|         const size_t rs = ne00*nb00;
 | |
|         for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | |
|                     memcpy(
 | |
|                         ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
 | |
|                         ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
 | |
|                         rs);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
 | |
| 
 | |
|     if (ggml_is_contiguous(dst)) {
 | |
|         if (nb00 == sizeof(ggml_fp16_t)) {
 | |
|             if (dst->type == GGML_TYPE_F16) {
 | |
|                 size_t id = 0;
 | |
|                 const size_t rs = ne00 * nb00;
 | |
|                 char * dst_ptr = (char *) dst->data;
 | |
| 
 | |
|                 for (int i03 = 0; i03 < ne03; i03++) {
 | |
|                     for (int i02 = 0; i02 < ne02; i02++) {
 | |
|                         id += rs * ir0;
 | |
|                         for (int i01 = ir0; i01 < ir1; i01++) {
 | |
|                             const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
 | |
|                             memcpy(dst_ptr + id, src0_ptr, rs);
 | |
|                             id += rs;
 | |
|                         }
 | |
|                         id += rs * (ne01 - ir1);
 | |
|                     }
 | |
|                 }
 | |
|             } else if (dst->type == GGML_TYPE_F32) {
 | |
|                 size_t id = 0;
 | |
|                 float * dst_ptr = (float *) dst->data;
 | |
| 
 | |
|                 for (int i03 = 0; i03 < ne03; i03++) {
 | |
|                     for (int i02 = 0; i02 < ne02; i02++) {
 | |
|                         id += ne00 * ir0;
 | |
|                         for (int i01 = ir0; i01 < ir1; i01++) {
 | |
|                             const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | |
|                             for (int i00 = 0; i00 < ne00; i00++) {
 | |
|                                 dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
 | |
|                                 id++;
 | |
|                             }
 | |
|                         }
 | |
|                         id += ne00 * (ne01 - ir1);
 | |
|                     }
 | |
|                 }
 | |
|             } else if (type_traits[dst->type].from_float) {
 | |
|                 ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
 | |
|                 float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
 | |
| 
 | |
|                 size_t id = 0;
 | |
|                 size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
 | |
|                 char * dst_ptr = (char *) dst->data;
 | |
| 
 | |
|                 for (int i03 = 0; i03 < ne03; i03++) {
 | |
|                     for (int i02 = 0; i02 < ne02; i02++) {
 | |
|                         id += rs * ir0;
 | |
|                         for (int i01 = ir0; i01 < ir1; i01++) {
 | |
|                             const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | |
| 
 | |
|                             for (int i00 = 0; i00 < ne00; i00++) {
 | |
|                                 src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
 | |
|                             }
 | |
| 
 | |
|                             quantize_row_q(src0_f32, dst_ptr + id, ne00);
 | |
|                             id += rs;
 | |
|                         }
 | |
|                         id += rs * (ne01 - ir1);
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 GGML_ASSERT(false); // TODO: implement
 | |
|             }
 | |
|         } else {
 | |
|             //printf("%s: this is not optimal - fix me\n", __func__);
 | |
| 
 | |
|             if (dst->type == GGML_TYPE_F32) {
 | |
|                 size_t id = 0;
 | |
|                 float * dst_ptr = (float *) dst->data;
 | |
| 
 | |
|                 for (int i03 = 0; i03 < ne03; i03++) {
 | |
|                     for (int i02 = 0; i02 < ne02; i02++) {
 | |
|                         id += ne00 * ir0;
 | |
|                         for (int i01 = ir0; i01 < ir1; i01++) {
 | |
|                             for (int i00 = 0; i00 < ne00; i00++) {
 | |
|                                 const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | |
| 
 | |
|                                 dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
 | |
|                                 id++;
 | |
|                             }
 | |
|                         }
 | |
|                         id += ne00 * (ne01 - ir1);
 | |
|                     }
 | |
|                 }
 | |
|             } else if (dst->type == GGML_TYPE_F16) {
 | |
|                 size_t id = 0;
 | |
|                 ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
 | |
| 
 | |
|                 for (int i03 = 0; i03 < ne03; i03++) {
 | |
|                     for (int i02 = 0; i02 < ne02; i02++) {
 | |
|                         id += ne00 * ir0;
 | |
|                         for (int i01 = ir0; i01 < ir1; i01++) {
 | |
|                             for (int i00 = 0; i00 < ne00; i00++) {
 | |
|                                 const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | |
| 
 | |
|                                 dst_ptr[id] = *src0_ptr;
 | |
|                                 id++;
 | |
|                             }
 | |
|                         }
 | |
|                         id += ne00 * (ne01 - ir1);
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 GGML_ASSERT(false); // TODO: implement
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // dst counters
 | |
|     int64_t i10 = 0;
 | |
|     int64_t i11 = 0;
 | |
|     int64_t i12 = 0;
 | |
|     int64_t i13 = 0;
 | |
| 
 | |
|     if (dst->type == GGML_TYPE_F16) {
 | |
|         for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 i10 += ne00 * ir0;
 | |
|                 while (i10 >= ne0) {
 | |
|                     i10 -= ne0;
 | |
|                     if (++i11 == ne1) {
 | |
|                         i11 = 0;
 | |
|                         if (++i12 == ne2) {
 | |
|                             i12 = 0;
 | |
|                             if (++i13 == ne3) {
 | |
|                                 i13 = 0;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | |
|                     for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                         const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | |
|                               char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | |
| 
 | |
|                         memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
 | |
| 
 | |
|                         if (++i10 == ne00) {
 | |
|                             i10 = 0;
 | |
|                             if (++i11 == ne01) {
 | |
|                                 i11 = 0;
 | |
|                                 if (++i12 == ne02) {
 | |
|                                     i12 = 0;
 | |
|                                     if (++i13 == ne03) {
 | |
|                                         i13 = 0;
 | |
|                                     }
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 i10 += ne00 * (ne01 - ir1);
 | |
|                 while (i10 >= ne0) {
 | |
|                     i10 -= ne0;
 | |
|                     if (++i11 == ne1) {
 | |
|                         i11 = 0;
 | |
|                         if (++i12 == ne2) {
 | |
|                             i12 = 0;
 | |
|                             if (++i13 == ne3) {
 | |
|                                 i13 = 0;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (dst->type == GGML_TYPE_F32) {
 | |
|         for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 i10 += ne00 * ir0;
 | |
|                 while (i10 >= ne0) {
 | |
|                     i10 -= ne0;
 | |
|                     if (++i11 == ne1) {
 | |
|                         i11 = 0;
 | |
|                         if (++i12 == ne2) {
 | |
|                             i12 = 0;
 | |
|                             if (++i13 == ne3) {
 | |
|                                 i13 = 0;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | |
|                     for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                         const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | |
|                               char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | |
| 
 | |
|                         *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
 | |
| 
 | |
|                         if (++i10 == ne0) {
 | |
|                             i10 = 0;
 | |
|                             if (++i11 == ne1) {
 | |
|                                 i11 = 0;
 | |
|                                 if (++i12 == ne2) {
 | |
|                                     i12 = 0;
 | |
|                                     if (++i13 == ne3) {
 | |
|                                         i13 = 0;
 | |
|                                     }
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 i10 += ne00 * (ne01 - ir1);
 | |
|                 while (i10 >= ne0) {
 | |
|                     i10 -= ne0;
 | |
|                     if (++i11 == ne1) {
 | |
|                         i11 = 0;
 | |
|                         if (++i12 == ne2) {
 | |
|                             i12 = 0;
 | |
|                             if (++i13 == ne3) {
 | |
|                                 i13 = 0;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         GGML_ASSERT(false); // TODO: implement
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_dup_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith; // thread index
 | |
|     const int nth = params->nth; // number of threads
 | |
| 
 | |
|     if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
 | |
|         ggml_compute_forward_dup_same_cont(params, src0, dst);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // parallelize by rows
 | |
|     const int nr = ne01;
 | |
|     // number of rows per thread
 | |
|     const int dr = (nr + nth - 1) / nth;
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr * ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     if (src0->type == dst->type &&
 | |
|         ne00 == ne0 &&
 | |
|         nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
 | |
|         // copy by rows
 | |
|         const size_t rs = ne00*nb00;
 | |
|         for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | |
|                     memcpy(
 | |
|                         ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
 | |
|                         ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
 | |
|                         rs);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (ggml_is_contiguous(dst)) {
 | |
|         // TODO: simplify
 | |
|         if (nb00 == sizeof(float)) {
 | |
|             if (dst->type == GGML_TYPE_F32) {
 | |
|                 size_t id = 0;
 | |
|                 const size_t rs = ne00 * nb00;
 | |
|                 char * dst_ptr = (char *) dst->data;
 | |
| 
 | |
|                 for (int i03 = 0; i03 < ne03; i03++) {
 | |
|                     for (int i02 = 0; i02 < ne02; i02++) {
 | |
|                         id += rs * ir0;
 | |
|                         for (int i01 = ir0; i01 < ir1; i01++) {
 | |
|                             const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
 | |
|                             memcpy(dst_ptr + id, src0_ptr, rs);
 | |
|                             id += rs;
 | |
|                         }
 | |
|                         id += rs * (ne01 - ir1);
 | |
|                     }
 | |
|                 }
 | |
|             } else if (type_traits[dst->type].from_float) {
 | |
|                 ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
 | |
| 
 | |
|                 size_t id = 0;
 | |
|                 size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
 | |
|                 char * dst_ptr = (char *) dst->data;
 | |
| 
 | |
|                 for (int i03 = 0; i03 < ne03; i03++) {
 | |
|                     for (int i02 = 0; i02 < ne02; i02++) {
 | |
|                         id += rs * ir0;
 | |
|                         for (int i01 = ir0; i01 < ir1; i01++) {
 | |
|                             const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | |
|                             quantize_row_q(src0_ptr, dst_ptr + id, ne00);
 | |
|                             id += rs;
 | |
|                         }
 | |
|                         id += rs * (ne01 - ir1);
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 GGML_ASSERT(false); // TODO: implement
 | |
|             }
 | |
|         } else {
 | |
|             //printf("%s: this is not optimal - fix me\n", __func__);
 | |
| 
 | |
|             if (dst->type == GGML_TYPE_F32) {
 | |
|                 size_t id = 0;
 | |
|                 float * dst_ptr = (float *) dst->data;
 | |
| 
 | |
|                 for (int i03 = 0; i03 < ne03; i03++) {
 | |
|                     for (int i02 = 0; i02 < ne02; i02++) {
 | |
|                         id += ne00 * ir0;
 | |
|                         for (int i01 = ir0; i01 < ir1; i01++) {
 | |
|                             for (int i00 = 0; i00 < ne00; i00++) {
 | |
|                                 const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | |
| 
 | |
|                                 dst_ptr[id] = *src0_ptr;
 | |
|                                 id++;
 | |
|                             }
 | |
|                         }
 | |
|                         id += ne00 * (ne01 - ir1);
 | |
|                     }
 | |
|                 }
 | |
|             } else if (dst->type == GGML_TYPE_F16) {
 | |
|                 size_t id = 0;
 | |
|                 ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
 | |
| 
 | |
|                 for (int i03 = 0; i03 < ne03; i03++) {
 | |
|                     for (int i02 = 0; i02 < ne02; i02++) {
 | |
|                         id += ne00 * ir0;
 | |
|                         for (int i01 = ir0; i01 < ir1; i01++) {
 | |
|                             for (int i00 = 0; i00 < ne00; i00++) {
 | |
|                                 const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | |
| 
 | |
|                                 dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
 | |
|                                 id++;
 | |
|                             }
 | |
|                         }
 | |
|                         id += ne00 * (ne01 - ir1);
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 GGML_ASSERT(false); // TODO: implement
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // dst counters
 | |
| 
 | |
|     int64_t i10 = 0;
 | |
|     int64_t i11 = 0;
 | |
|     int64_t i12 = 0;
 | |
|     int64_t i13 = 0;
 | |
| 
 | |
|     if (dst->type == GGML_TYPE_F32) {
 | |
|         for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 i10 += ne00 * ir0;
 | |
|                 while (i10 >= ne0) {
 | |
|                     i10 -= ne0;
 | |
|                     if (++i11 == ne1) {
 | |
|                         i11 = 0;
 | |
|                         if (++i12 == ne2) {
 | |
|                             i12 = 0;
 | |
|                             if (++i13 == ne3) {
 | |
|                                 i13 = 0;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | |
|                     for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                         const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | |
|                               char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | |
| 
 | |
|                         memcpy(dst_ptr, src0_ptr, sizeof(float));
 | |
| 
 | |
|                         if (++i10 == ne0) {
 | |
|                             i10 = 0;
 | |
|                             if (++i11 == ne1) {
 | |
|                                 i11 = 0;
 | |
|                                 if (++i12 == ne2) {
 | |
|                                     i12 = 0;
 | |
|                                     if (++i13 == ne3) {
 | |
|                                         i13 = 0;
 | |
|                                     }
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 i10 += ne00 * (ne01 - ir1);
 | |
|                 while (i10 >= ne0) {
 | |
|                     i10 -= ne0;
 | |
|                     if (++i11 == ne1) {
 | |
|                         i11 = 0;
 | |
|                         if (++i12 == ne2) {
 | |
|                             i12 = 0;
 | |
|                             if (++i13 == ne3) {
 | |
|                                 i13 = 0;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (dst->type == GGML_TYPE_F16) {
 | |
|         for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 i10 += ne00 * ir0;
 | |
|                 while (i10 >= ne0) {
 | |
|                     i10 -= ne0;
 | |
|                     if (++i11 == ne1) {
 | |
|                         i11 = 0;
 | |
|                         if (++i12 == ne2) {
 | |
|                             i12 = 0;
 | |
|                             if (++i13 == ne3) {
 | |
|                                 i13 = 0;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 for (int64_t i01 = ir0; i01 < ir1; i01++) {
 | |
|                     for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                         const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
 | |
|                               char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
 | |
| 
 | |
|                         *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
 | |
| 
 | |
|                         if (++i10 == ne0) {
 | |
|                             i10 = 0;
 | |
|                             if (++i11 == ne1) {
 | |
|                                 i11 = 0;
 | |
|                                 if (++i12 == ne2) {
 | |
|                                     i12 = 0;
 | |
|                                     if (++i13 == ne3) {
 | |
|                                         i13 = 0;
 | |
|                                     }
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 i10 += ne00 * (ne01 - ir1);
 | |
|                 while (i10 >= ne0) {
 | |
|                     i10 -= ne0;
 | |
|                     if (++i11 == ne1) {
 | |
|                         i11 = 0;
 | |
|                         if (++i12 == ne2) {
 | |
|                             i12 = 0;
 | |
|                             if (++i13 == ne3) {
 | |
|                                 i13 = 0;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         GGML_ASSERT(false); // TODO: implement
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_dup(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
 | |
|         ggml_compute_forward_dup_same_cont(params, src0, dst);
 | |
|         return;
 | |
|     }
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_dup_f16(params, src0, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_dup_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_add
 | |
| 
 | |
| static void ggml_compute_forward_add_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     if (nb10 == sizeof(float)) {
 | |
|         for (int ir = ir0; ir < ir1; ++ir) {
 | |
|             // src1 is broadcastable across src0 and dst in i1, i2, i3
 | |
|             const int64_t i03 = ir/(ne02*ne01);
 | |
|             const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
 | |
|             const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
 | |
| 
 | |
|             const int64_t i13 = i03 % ne13;
 | |
|             const int64_t i12 = i02 % ne12;
 | |
|             const int64_t i11 = i01 % ne11;
 | |
| 
 | |
|             float * dst_ptr  = (float *) ((char *) dst->data  + i03*nb3  + i02*nb2  + i01*nb1 );
 | |
|             float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
 | |
|             float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
 | |
| 
 | |
| #ifdef GGML_USE_ACCELERATE
 | |
|             vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
 | |
| #else
 | |
|             ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
 | |
| #endif
 | |
|                 // }
 | |
|             // }
 | |
|         }
 | |
|     } else {
 | |
|         // src1 is not contiguous
 | |
|         for (int ir = ir0; ir < ir1; ++ir) {
 | |
|             // src1 is broadcastable across src0 and dst in i1, i2, i3
 | |
|             const int64_t i03 = ir/(ne02*ne01);
 | |
|             const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
 | |
|             const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
 | |
| 
 | |
|             const int64_t i13 = i03 % ne13;
 | |
|             const int64_t i12 = i02 % ne12;
 | |
|             const int64_t i11 = i01 % ne11;
 | |
| 
 | |
|             float * dst_ptr  = (float *) ((char *) dst->data  + i03*nb3  + i02*nb2  + i01*nb1 );
 | |
|             float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
 | |
| 
 | |
|             for (int i0 = 0; i0 < ne0; i0++) {
 | |
|                 float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
 | |
| 
 | |
|                 dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_add_f16_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type  == GGML_TYPE_F16);
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     if (nb10 == sizeof(float)) {
 | |
|         for (int ir = ir0; ir < ir1; ++ir) {
 | |
|             // src0, src1 and dst are same shape => same indices
 | |
|             const int i3 = ir/(ne2*ne1);
 | |
|             const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|             const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
|             ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1);
 | |
|             ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | |
|             float *       src1_ptr = (float *)       ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
 | |
| 
 | |
|             for (int i = 0; i < ne0; i++) {
 | |
|                 dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         // src1 is not contiguous
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_add_f16_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(dst->type  == GGML_TYPE_F16);
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     if (nb10 == sizeof(ggml_fp16_t)) {
 | |
|         for (int ir = ir0; ir < ir1; ++ir) {
 | |
|             // src0, src1 and dst are same shape => same indices
 | |
|             const int i3 = ir/(ne2*ne1);
 | |
|             const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|             const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
|             ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1);
 | |
|             ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | |
|             ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
 | |
| 
 | |
|             for (int i = 0; i < ne0; i++) {
 | |
|                 dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         // src1 is not contiguous
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_add_q_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const enum ggml_type type = src0->type;
 | |
|     ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
 | |
|     ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
 | |
| 
 | |
|     // we don't support permuted src0 or src1
 | |
|     GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
 | |
|     GGML_ASSERT(nb10 == sizeof(float));
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 <= nb1);
 | |
|     GGML_ASSERT(nb1 <= nb2);
 | |
|     GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     GGML_ASSERT(ggml_is_quantized(src0->type));
 | |
|     GGML_ASSERT(dst->type == src0->type);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // src0 indices
 | |
|         const int i03 = ir/(ne02*ne01);
 | |
|         const int i02 = (ir - i03*ne02*ne01)/ne01;
 | |
|         const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
 | |
| 
 | |
|         // src1 and dst are same shape as src0 => same indices
 | |
|         const int i13 = i03;
 | |
|         const int i12 = i02;
 | |
|         const int i11 = i01;
 | |
| 
 | |
|         const int i3 = i03;
 | |
|         const int i2 = i02;
 | |
|         const int i1 = i01;
 | |
| 
 | |
|         void  * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
 | |
|         float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
 | |
|         void  * dst_row  = (void *) ((char *)  dst->data + ( i1*nb1  +  i2*nb2  +  i3*nb3));
 | |
| 
 | |
|         assert(ne00 % 32 == 0);
 | |
| 
 | |
|         // unquantize row from src0 to temp buffer
 | |
|         dequantize_row_q(src0_row, wdata, ne00);
 | |
|         // add src1
 | |
|         ggml_vec_acc_f32(ne00, wdata, src1_row);
 | |
|         // quantize row to dst
 | |
|         quantize_row_q(wdata, dst_row, ne00);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_add(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_add_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 if (src1->type == GGML_TYPE_F16) {
 | |
|                     ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
 | |
|                 }
 | |
|                 else if (src1->type == GGML_TYPE_F32) {
 | |
|                     ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
 | |
|                 }
 | |
|                 else {
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             {
 | |
|                 ggml_compute_forward_add_q_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_add1
 | |
| 
 | |
| static void ggml_compute_forward_add1_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
|     GGML_ASSERT(ggml_is_scalar(src1));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // src0 and dst are same shape => same indices
 | |
|         const int i3 = ir/(ne2*ne1);
 | |
|         const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|         const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
| #ifdef GGML_USE_ACCELERATE
 | |
|         UNUSED(ggml_vec_add1_f32);
 | |
| 
 | |
|         vDSP_vadd(
 | |
|                 (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
 | |
|                 (float *) ((char *) src1->data), 0,
 | |
|                 (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ), 1,
 | |
|                 ne0);
 | |
| #else
 | |
|         ggml_vec_add1_f32(ne0,
 | |
|                 (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ),
 | |
|                 (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
 | |
|                *(float *) src1->data);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_add1_f16_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
|     GGML_ASSERT(ggml_is_scalar(src1));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // scalar to add
 | |
|     const float v = *(float *) src1->data;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type  == GGML_TYPE_F16);
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // src0 and dst are same shape => same indices
 | |
|         const int i3 = ir/(ne2*ne1);
 | |
|         const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|         const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
|         ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
 | |
|         ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | |
|         for (int i = 0; i < ne0; i++) {
 | |
|             dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_add1_f16_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
|     GGML_ASSERT(ggml_is_scalar(src1));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // scalar to add
 | |
|     const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(dst->type  == GGML_TYPE_F16);
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // src0 and dst are same shape => same indices
 | |
|         const int i3 = ir/(ne2*ne1);
 | |
|         const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|         const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
|         ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
 | |
|         ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | |
|         for (int i = 0; i < ne0; i++) {
 | |
|             dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_add1_q_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
|     GGML_ASSERT(ggml_is_scalar(src1));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // scalar to add
 | |
|     const float v = *(float *) src1->data;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     const enum ggml_type type = src0->type;
 | |
|     ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
 | |
|     ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
 | |
| 
 | |
|     // we don't support permuted src0
 | |
|     GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 <= nb1);
 | |
|     GGML_ASSERT(nb1 <= nb2);
 | |
|     GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     GGML_ASSERT(ggml_is_quantized(src0->type));
 | |
|     GGML_ASSERT(dst->type == src0->type);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // src0 and dst are same shape => same indices
 | |
|         const int i3 = ir/(ne2*ne1);
 | |
|         const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|         const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
|         void  * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
 | |
|         void  * dst_row  = (void *) ((char *)  dst->data + (i1*nb1  + i2*nb2  + i3*nb0 ));
 | |
| 
 | |
|         assert(ne0 % 32 == 0);
 | |
| 
 | |
|         // unquantize row from src0 to temp buffer
 | |
|         dequantize_row_q(src0_row, wdata, ne0);
 | |
|         // add src1
 | |
|         ggml_vec_acc1_f32(ne0, wdata, v);
 | |
|         // quantize row to dst
 | |
|         quantize_row_q(wdata, dst_row, ne0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_add1(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_add1_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 if (src1->type == GGML_TYPE_F16) {
 | |
|                     ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
 | |
|                 }
 | |
|                 else if (src1->type == GGML_TYPE_F32) {
 | |
|                     ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
 | |
|                 }
 | |
|                 else {
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|         case GGML_TYPE_Q8_1:
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             {
 | |
|                 ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_compute_forward_acc
 | |
| 
 | |
| static void ggml_compute_forward_acc_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
 | |
| 
 | |
|     GGML_ASSERT(opt0->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(ggml_nelements(opt0) == 5);
 | |
| 
 | |
|     // view src0 and dst with these strides and data offset inbytes during acc
 | |
|     // nb0 is implicitely element_size because src0 and dst are contiguous
 | |
|     size_t nb1     = ((int32_t *) opt0->data)[0];
 | |
|     size_t nb2     = ((int32_t *) opt0->data)[1];
 | |
|     size_t nb3     = ((int32_t *) opt0->data)[2];
 | |
|     size_t offset  = ((int32_t *) opt0->data)[3];
 | |
|     bool   inplace = (bool) ((int32_t *) opt0->data)[4];
 | |
| 
 | |
|     if (!inplace && (params->type == GGML_TASK_INIT)) {
 | |
|         // memcpy needs to be synchronized across threads to avoid race conditions.
 | |
|         // => do it in INIT phase
 | |
|         memcpy(
 | |
|             ((char *)  dst->data),
 | |
|             ((char *) src0->data),
 | |
|             ggml_nbytes(dst));
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr = ggml_nrows(src1);
 | |
|     const int nc = src1->ne[0];
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb);
 | |
| 
 | |
|     // src0 and dst as viewed during acc
 | |
|     const size_t nb0 = ggml_element_size(src0);
 | |
| 
 | |
|     const size_t nb00 = nb0;
 | |
|     const size_t nb01 = nb1;
 | |
|     const size_t nb02 = nb2;
 | |
|     const size_t nb03 = nb3;
 | |
| 
 | |
|     GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0  + (ne11 == 0 ? 0 : ne11-1)*nb1  + (ne12 == 0 ? 0 : ne12-1)*nb2  + (ne13 == 0 ? 0 : ne13-1)*nb3  < ggml_nbytes(dst));
 | |
|     GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
 | |
| 
 | |
|     GGML_ASSERT(nb10 == sizeof(float));
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // src0 and dst are viewed with shape of src1 and offset
 | |
|         // => same indices
 | |
|         const int i3 = ir/(ne12*ne11);
 | |
|         const int i2 = (ir - i3*ne12*ne11)/ne11;
 | |
|         const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
 | |
| 
 | |
| #ifdef GGML_USE_ACCELERATE
 | |
|         vDSP_vadd(
 | |
|                 (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
 | |
|                 (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
 | |
|                 (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1  + offset), 1, nc);
 | |
| #else
 | |
|         ggml_vec_add_f32(nc,
 | |
|                 (float *) ((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + offset),
 | |
|                 (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
 | |
|                 (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_acc(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|         case GGML_TYPE_Q8_1:
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_Q6_K:
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_sub
 | |
| 
 | |
| static void ggml_compute_forward_sub_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     if (nb10 == sizeof(float)) {
 | |
|         for (int ir = 0; ir < nr; ++ir) {
 | |
|             // src0, src1 and dst are same shape => same indices
 | |
|             const int i3 = ir/(ne2*ne1);
 | |
|             const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|             const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
| 
 | |
| #ifdef GGML_USE_ACCELERATE
 | |
|             vDSP_vsub(
 | |
|                     (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
 | |
|                     (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
 | |
|                     (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ), 1,
 | |
|                     ne0);
 | |
| #else
 | |
|             ggml_vec_sub_f32(ne0,
 | |
|                     (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ),
 | |
|                     (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
 | |
|                     (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
 | |
| #endif
 | |
|                 // }
 | |
|             // }
 | |
|         }
 | |
|     } else {
 | |
|         // src1 is not contiguous
 | |
|         for (int ir = 0; ir < nr; ++ir) {
 | |
|             // src0, src1 and dst are same shape => same indices
 | |
|             const int i3 = ir/(ne2*ne1);
 | |
|             const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|             const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
|             float * dst_ptr  = (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
 | |
|             float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | |
|             for (int i0 = 0; i0 < ne0; i0++) {
 | |
|                 float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
 | |
| 
 | |
|                 dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_sub(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_sub_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_mul
 | |
| 
 | |
| static void ggml_compute_forward_mul_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
| #ifdef GGML_USE_CLBLAST
 | |
|     if (src1->backend == GGML_BACKEND_GPU) {
 | |
|         if (ith == 0) {
 | |
|             ggml_cl_mul(src0, src1, dst);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     const int64_t nr = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
|     GGML_ASSERT(ne00 == ne10);
 | |
| 
 | |
|     if (nb10 == sizeof(float)) {
 | |
|         for (int64_t ir = ith; ir < nr; ir += nth) {
 | |
|             // src0 and dst are same shape => same indices
 | |
|             const int64_t i03 = ir/(ne02*ne01);
 | |
|             const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
 | |
|             const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
 | |
| 
 | |
|             const int64_t i13 = i03 % ne13;
 | |
|             const int64_t i12 = i02 % ne12;
 | |
|             const int64_t i11 = i01 % ne11;
 | |
| 
 | |
|             float * dst_ptr  = (float *) ((char *) dst->data  + i03*nb3  + i02*nb2  + i01*nb1 );
 | |
|             float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
 | |
|             float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
 | |
| 
 | |
| #ifdef GGML_USE_ACCELERATE
 | |
|             UNUSED(ggml_vec_mul_f32);
 | |
| 
 | |
|             vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr,  1, ne00);
 | |
| #else
 | |
|             ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
 | |
| #endif
 | |
|                 // }
 | |
|             // }
 | |
|         }
 | |
|     } else {
 | |
|         // src1 is not contiguous
 | |
|         for (int64_t ir = ith; ir < nr; ir += nth) {
 | |
|             // src0 and dst are same shape => same indices
 | |
|             // src1 is broadcastable across src0 and dst in i1, i2, i3
 | |
|             const int64_t i03 = ir/(ne02*ne01);
 | |
|             const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
 | |
|             const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
 | |
| 
 | |
|             const int64_t i13 = i03 % ne13;
 | |
|             const int64_t i12 = i02 % ne12;
 | |
|             const int64_t i11 = i01 % ne11;
 | |
| 
 | |
|             float * dst_ptr  = (float *) ((char *) dst->data  + i03*nb3  + i02*nb2  + i01*nb1 );
 | |
|             float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
 | |
| 
 | |
|             for (int64_t i0 = 0; i0 < ne00; i0++) {
 | |
|                 float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
 | |
| 
 | |
|                 dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_mul(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_mul_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_div
 | |
| 
 | |
| static void ggml_compute_forward_div_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int nr  = ggml_nrows(src0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     if (nb10 == sizeof(float)) {
 | |
|         for (int ir = 0; ir < nr; ++ir) {
 | |
|             // src0, src1 and dst are same shape => same indices
 | |
|             const int i3 = ir/(ne2*ne1);
 | |
|             const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|             const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
| 
 | |
| #ifdef GGML_USE_ACCELERATE
 | |
|             vDSP_vdiv(
 | |
|                     (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
 | |
|                     (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
 | |
|                     (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ), 1,
 | |
|                     ne0);
 | |
| #else
 | |
|             ggml_vec_div_f32(ne0,
 | |
|                     (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ),
 | |
|                     (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
 | |
|                     (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
 | |
| #endif
 | |
|                 // }
 | |
|             // }
 | |
|         }
 | |
|     } else {
 | |
|         // src1 is not contiguous
 | |
|         for (int ir = 0; ir < nr; ++ir) {
 | |
|             // src0, src1 and dst are same shape => same indices
 | |
|             const int i3 = ir/(ne2*ne1);
 | |
|             const int i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|             const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
|             float * dst_ptr  = (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
 | |
|             float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
 | |
|             for (int i0 = 0; i0 < ne0; i0++) {
 | |
|                 float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
 | |
| 
 | |
|                 dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_div(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_div_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_sqr
 | |
| 
 | |
| static void ggml_compute_forward_sqr_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n     = ggml_nrows(src0);
 | |
|     const int nc    = src0->ne[0];
 | |
| 
 | |
|     assert( dst->nb[0] == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_sqr_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_sqr(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_sqr_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_sqrt
 | |
| 
 | |
| static void ggml_compute_forward_sqrt_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert( dst->nb[0] == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_sqrt_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_sqrt(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_sqrt_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_compute_forward_log
 | |
| 
 | |
| static void ggml_compute_forward_log_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(params->ith == 0);
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     GGML_ASSERT( dst->nb[0] == sizeof(float));
 | |
|     GGML_ASSERT(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_log_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_log(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_log_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_sum
 | |
| 
 | |
| static void ggml_compute_forward_sum_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_is_scalar(dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     assert(ggml_is_scalar(dst));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb);
 | |
| 
 | |
|     ggml_float sum     = 0;
 | |
|     ggml_float row_sum = 0;
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             for (int64_t i01 = 0; i01 < ne01; i01++) {
 | |
|                 ggml_vec_sum_ggf(ne00,
 | |
|                         &row_sum,
 | |
|                         (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
 | |
|                 sum += row_sum;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ((float *) dst->data)[0] = sum;
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_sum(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_sum_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_sum_rows
 | |
| 
 | |
| static void ggml_compute_forward_sum_rows_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(src0->nb[0] == sizeof(float));
 | |
|     GGML_ASSERT(dst->nb[0] == sizeof(float));
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT(ne0 == 1);
 | |
|     GGML_ASSERT(ne1 == ne01);
 | |
|     GGML_ASSERT(ne2 == ne02);
 | |
|     GGML_ASSERT(ne3 == ne03);
 | |
| 
 | |
|     for (int64_t i3 = 0; i3 < ne03; i3++) {
 | |
|         for (int64_t i2 = 0; i2 < ne02; i2++) {
 | |
|             for (int64_t i1 = 0; i1 < ne01; i1++) {
 | |
|                 float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
 | |
|                 float* dst_row = (float *) ((char *) dst->data  + i1*nb1  + i2*nb2  + i3*nb3);
 | |
|                 float row_sum = 0;
 | |
|                 ggml_vec_sum_f32(ne00, &row_sum, src_row);
 | |
|                 dst_row[0] = row_sum;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_sum_rows(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_sum_rows_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_mean
 | |
| 
 | |
| static void ggml_compute_forward_mean_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     assert(ne0 == 1);
 | |
|     assert(ne1 == ne01);
 | |
|     assert(ne2 == ne02);
 | |
|     assert(ne3 == ne03);
 | |
| 
 | |
|     UNUSED(ne0);
 | |
|     UNUSED(ne1);
 | |
|     UNUSED(ne2);
 | |
|     UNUSED(ne3);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             for (int64_t i01 = 0; i01 < ne01; i01++) {
 | |
|                 ggml_vec_sum_f32(ne00,
 | |
|                         (float *) ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
 | |
|                         (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
 | |
| 
 | |
|                 *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_mean(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_mean_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_argmax
 | |
| 
 | |
| static void ggml_compute_forward_argmax_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
|     assert(dst->nb[0] == sizeof(float));
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
| 
 | |
|     const size_t nb01 = src0->nb[1];
 | |
|     const size_t nb0 = dst->nb[0];
 | |
| 
 | |
|     for (int64_t i1 = 0; i1 < ne01; i1++) {
 | |
|         float * src = (float *) ((char *) src0->data + i1*nb01);
 | |
|         int32_t * dst_ = (int32_t *) ((char *)  dst->data + i1*nb0);
 | |
|         int v = 0;
 | |
|         ggml_vec_argmax_f32(ne00, &v, src);
 | |
|         dst_[0] = v;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_argmax(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_argmax_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_repeat
 | |
| 
 | |
| static void ggml_compute_forward_repeat_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(params->ith == 0);
 | |
|     GGML_ASSERT(ggml_can_repeat(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     // guaranteed to be an integer due to the check in ggml_can_repeat
 | |
|     const int nr0 = (int)(ne0/ne00);
 | |
|     const int nr1 = (int)(ne1/ne01);
 | |
|     const int nr2 = (int)(ne2/ne02);
 | |
|     const int nr3 = (int)(ne3/ne03);
 | |
| 
 | |
|     // TODO: support for transposed / permuted tensors
 | |
|     GGML_ASSERT(nb0  == sizeof(float));
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     // TODO: maybe this is not optimal?
 | |
|     for                         (int i3 = 0; i3 < nr3;  i3++) {
 | |
|         for                     (int k3 = 0; k3 < ne03; k3++) {
 | |
|             for                 (int i2 = 0; i2 < nr2;  i2++) {
 | |
|                 for             (int k2 = 0; k2 < ne02; k2++) {
 | |
|                     for         (int i1 = 0; i1 < nr1;  i1++) {
 | |
|                         for     (int k1 = 0; k1 < ne01; k1++) {
 | |
|                             for (int i0 = 0; i0 < nr0;  i0++) {
 | |
|                                 ggml_vec_cpy_f32(ne00,
 | |
|                                         (float *) ((char *)  dst->data + (i3*ne03 + k3)*nb3  + (i2*ne02 + k2)*nb2  + (i1*ne01 + k1)*nb1  + (i0*ne00)*nb0),
 | |
|                                         (float *) ((char *) src0->data + (          k3)*nb03 + (          k2)*nb02 + (          k1)*nb01));
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_repeat(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_repeat_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_repeat_back
 | |
| 
 | |
| static void ggml_compute_forward_repeat_back_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(params->ith == 0);
 | |
|     GGML_ASSERT(ggml_can_repeat(dst, src0));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     // guaranteed to be an integer due to the check in ggml_can_repeat
 | |
|     const int nr0 = (int)(ne00/ne0);
 | |
|     const int nr1 = (int)(ne01/ne1);
 | |
|     const int nr2 = (int)(ne02/ne2);
 | |
|     const int nr3 = (int)(ne03/ne3);
 | |
| 
 | |
|     // TODO: support for transposed / permuted tensors
 | |
|     GGML_ASSERT(nb0  == sizeof(float));
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     if (ggml_is_contiguous(dst)) {
 | |
|         ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
 | |
|     } else {
 | |
|         for         (int k3 = 0; k3 < ne3; k3++) {
 | |
|             for     (int k2 = 0; k2 < ne2; k2++) {
 | |
|                 for (int k1 = 0; k1 < ne1; k1++) {
 | |
|                     ggml_vec_set_f32(ne0,
 | |
|                         (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
 | |
|                         0);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // TODO: maybe this is not optimal?
 | |
|     for                         (int i3 = 0; i3 < nr3; i3++) {
 | |
|         for                     (int k3 = 0; k3 < ne3; k3++) {
 | |
|             for                 (int i2 = 0; i2 < nr2; i2++) {
 | |
|                 for             (int k2 = 0; k2 < ne2; k2++) {
 | |
|                     for         (int i1 = 0; i1 < nr1; i1++) {
 | |
|                         for     (int k1 = 0; k1 < ne1; k1++) {
 | |
|                             for (int i0 = 0; i0 < nr0; i0++) {
 | |
|                                 ggml_vec_acc_f32(ne0,
 | |
|                                         (float *) ((char *)  dst->data + (         k3)*nb3  + (         k2)*nb2  + (         k1)*nb1),
 | |
|                                         (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_repeat_back(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_repeat_back_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_abs
 | |
| 
 | |
| static void ggml_compute_forward_abs_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert(dst->nb[0]  == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_abs_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_abs(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_abs_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_sgn
 | |
| 
 | |
| static void ggml_compute_forward_sgn_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert(dst->nb[0]  == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_sgn_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_sgn(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_sgn_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_neg
 | |
| 
 | |
| static void ggml_compute_forward_neg_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert(dst->nb[0]  == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_neg_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_neg(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_neg_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_step
 | |
| 
 | |
| static void ggml_compute_forward_step_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert(dst->nb[0]  == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_step_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_step(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_step_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_tanh
 | |
| 
 | |
| static void ggml_compute_forward_tanh_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert(dst->nb[0]  == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_tanh_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_tanh(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_tanh_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_elu
 | |
| 
 | |
| static void ggml_compute_forward_elu_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert(dst->nb[0]  == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_elu_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_elu(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_elu_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_relu
 | |
| 
 | |
| static void ggml_compute_forward_relu_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert(dst->nb[0]  == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         ggml_vec_relu_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_relu(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_relu_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_gelu
 | |
| 
 | |
| static void ggml_compute_forward_gelu_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nrows(src0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         ggml_vec_gelu_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i1*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i1*(src0->nb[1])));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int k = 0; k < nc; k++) {
 | |
|             const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | |
|             UNUSED(x);
 | |
|             assert(!isnan(x));
 | |
|             assert(!isinf(x));
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_gelu(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_gelu_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_gelu_quick
 | |
| 
 | |
| static void ggml_compute_forward_gelu_quick_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nrows(src0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         ggml_vec_gelu_quick_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i1*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i1*(src0->nb[1])));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int k = 0; k < nc; k++) {
 | |
|             const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | |
|             UNUSED(x);
 | |
|             assert(!isnan(x));
 | |
|             assert(!isinf(x));
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_gelu_quick(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_gelu_quick_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_silu
 | |
| 
 | |
| static void ggml_compute_forward_silu_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nrows(src0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         ggml_vec_silu_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i1*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i1*(src0->nb[1])));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int k = 0; k < nc; k++) {
 | |
|             const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | |
|             UNUSED(x);
 | |
|             assert(!isnan(x));
 | |
|             assert(!isinf(x));
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_silu(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_silu_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_compute_forward_silu_back
 | |
| 
 | |
| static void ggml_compute_forward_silu_back_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * grad,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(grad));
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, grad));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nrows(src0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         ggml_vec_silu_backward_f32(nc,
 | |
|                 (float *) ((char *) dst->data  + i1*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i1*(src0->nb[1])),
 | |
|                 (float *) ((char *) grad->data + i1*(grad->nb[1])));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int k = 0; k < nc; k++) {
 | |
|             const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
 | |
|             UNUSED(x);
 | |
|             assert(!isnan(x));
 | |
|             assert(!isinf(x));
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_silu_back(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * grad,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_norm
 | |
| 
 | |
| static void ggml_compute_forward_norm_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     const float eps = 1e-5f; // TODO: make this a parameter
 | |
| 
 | |
|     // TODO: optimize
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
 | |
|                 const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | |
| 
 | |
|                 ggml_float sum = 0.0;
 | |
|                 for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                     sum += (ggml_float)x[i00];
 | |
|                 }
 | |
| 
 | |
|                 float mean = sum/ne00;
 | |
| 
 | |
|                 float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
 | |
| 
 | |
|                 ggml_float sum2 = 0.0;
 | |
|                 for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                     float v = x[i00] - mean;
 | |
|                     y[i00] = v;
 | |
|                     sum2 += (ggml_float)(v*v);
 | |
|                 }
 | |
| 
 | |
|                 float variance = sum2/ne00;
 | |
|                 const float scale = 1.0f/sqrtf(variance + eps);
 | |
| 
 | |
|                 ggml_vec_scale_f32(ne00, y, scale);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_norm(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_norm_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_rms_norm_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     const float eps = 1e-6f; // TODO: make this a parameter
 | |
| 
 | |
|     // TODO: optimize
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
 | |
|                 const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | |
| 
 | |
|                 ggml_float sum = 0.0;
 | |
|                 for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                     sum += (ggml_float)(x[i00] * x[i00]);
 | |
|                 }
 | |
| 
 | |
|                 const float mean = sum/ne00;
 | |
| 
 | |
|                 float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
 | |
| 
 | |
|                 memcpy(y, x, ne00 * sizeof(float));
 | |
|                 // for (int i00 = 0; i00 < ne00; i00++) {
 | |
|                 //     y[i00] = x[i00];
 | |
|                 // }
 | |
| 
 | |
|                 const float scale = 1.0f/sqrtf(mean + eps);
 | |
| 
 | |
|                 ggml_vec_scale_f32(ne00, y, scale);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_rms_norm(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_rms_norm_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ggml_compute_forward_rms_norm_back_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const float eps = 1e-6f; // TODO: make this a parameter
 | |
| 
 | |
|     // TODO: optimize
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
 | |
|                 // src1 is same shape as src0 => same indices
 | |
|                 const int64_t i11 = i01;
 | |
|                 const int64_t i12 = i02;
 | |
|                 const int64_t i13 = i03;
 | |
| 
 | |
|                 const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
 | |
|                 const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
 | |
| 
 | |
|                 ggml_float sum_xx  = 0.0;
 | |
|                 ggml_float sum_xdz = 0.0;
 | |
| 
 | |
|                 for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                     sum_xx  += (ggml_float)(x[i00] * x[i00]);
 | |
|                     sum_xdz += (ggml_float)(x[i00] * dz[i00]);
 | |
|                 }
 | |
| 
 | |
|                 //const float mean     = (float)(sum_xx)/ne00;
 | |
|                 const float mean_eps = (float)(sum_xx)/ne00 + eps;
 | |
|                 const float sum_eps  = (float)(sum_xx) + eps*ne00;
 | |
|                 //const float mean_xdz = (float)(sum_xdz)/ne00;
 | |
|                 // we could cache rms from forward pass to improve performance.
 | |
|                 // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
 | |
|                 //const float rms      = sqrtf(mean_eps);
 | |
|                 const float rrms     = 1.0f / sqrtf(mean_eps);
 | |
|                 //const float scale    = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
 | |
| 
 | |
|                 {
 | |
|                     // z = rms_norm(x)
 | |
|                     //
 | |
|                     // rms_norm(src0) =
 | |
|                     //     scale(
 | |
|                     //         src0,
 | |
|                     //         div(
 | |
|                     //             1,
 | |
|                     //             sqrt(
 | |
|                     //                 add(
 | |
|                     //                     scale(
 | |
|                     //                         sum(
 | |
|                     //                             sqr(
 | |
|                     //                                 src0)),
 | |
|                     //                         (1.0/N)),
 | |
|                     //                     eps))));
 | |
| 
 | |
|                     // postorder:
 | |
|                     // ## op    args         grad
 | |
|                     // 00 param src0         grad[#00]
 | |
|                     // 01 const 1
 | |
|                     // 02 sqr   (#00)        grad[#02]
 | |
|                     // 03 sum   (#02)        grad[#03]
 | |
|                     // 04 const 1/N
 | |
|                     // 05 scale (#03, #04)   grad[#05]
 | |
|                     // 06 const eps
 | |
|                     // 07 add   (#05, #06)   grad[#07]
 | |
|                     // 08 sqrt  (#07)        grad[#08]
 | |
|                     // 09 div   (#01,#08)    grad[#09]
 | |
|                     // 10 scale (#00,#09)    grad[#10]
 | |
|                     //
 | |
|                     // backward pass, given grad[#10]
 | |
|                     // #10: scale
 | |
|                     // grad[#00] += scale(grad[#10],#09)
 | |
|                     // grad[#09] += sum(mul(grad[#10],#00))
 | |
|                     // #09: div
 | |
|                     // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
 | |
|                     // #08: sqrt
 | |
|                     // grad[#07] += mul(grad[#08], div(0.5, #08))
 | |
|                     // #07: add
 | |
|                     // grad[#05] += grad[#07]
 | |
|                     // #05: scale
 | |
|                     // grad[#03] += scale(grad[#05],#04)
 | |
|                     // #03: sum
 | |
|                     // grad[#02] += repeat(grad[#03], #02)
 | |
|                     // #02:
 | |
|                     // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
 | |
|                     //
 | |
|                     // substitute and simplify:
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
 | |
|                     // grad[#02] = repeat(grad[#03], #02)
 | |
|                     // grad[#02] = repeat(scale(grad[#05],#04), #02)
 | |
|                     // grad[#02] = repeat(scale(grad[#07],#04), #02)
 | |
|                     // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
 | |
|                     // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
 | |
|                     // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
 | |
|                     // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
 | |
|                     // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
 | |
|                     // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
 | |
|                     // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
 | |
|                     // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
 | |
|                     // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
 | |
|                     // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
 | |
|                     // a = b*c + d*e
 | |
|                     // a = b*c*f/f + d*e*f/f
 | |
|                     // a = (b*c*f + d*e*f)*(1/f)
 | |
|                     // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
 | |
|                     // a = (b + d*e/c)*c
 | |
|                     // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
 | |
|                     // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
 | |
|                     // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
 | |
|                     // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
 | |
|                     // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
 | |
|                     // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
 | |
|                     // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
 | |
|                     // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
 | |
|                     // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
 | |
|                     // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
 | |
|                 }
 | |
|                 // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
 | |
|                 // post-order:
 | |
|                 // dx := x
 | |
|                 // dx := scale(dx,-mean_xdz/mean_eps)
 | |
|                 // dx := add(dx, dz)
 | |
|                 // dx := scale(dx, rrms)
 | |
|                 float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
 | |
| 
 | |
|                 ggml_vec_cpy_f32  (ne00, dx, x);
 | |
|                 // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
 | |
|                 ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
 | |
|                 ggml_vec_acc_f32  (ne00, dx, dz);
 | |
|                 ggml_vec_scale_f32(ne00, dx, rrms);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_rms_norm_back(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_mul_mat
 | |
| 
 | |
| #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
 | |
| // helper function to determine if it is better to use BLAS or not
 | |
| // for large matrices, BLAS is faster
 | |
| static bool ggml_compute_forward_mul_mat_use_blas(
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     //const int64_t ne00 = src0->ne[0];
 | |
|     //const int64_t ne01 = src0->ne[1];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     // TODO: find the optimal values for these
 | |
|     if (ggml_is_contiguous(src0) &&
 | |
|         ggml_is_contiguous(src1) &&
 | |
|         (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
 | |
| 
 | |
|         /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void ggml_compute_forward_mul_mat(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const enum ggml_type type = src0->type;
 | |
| 
 | |
|     const bool src1_cont = ggml_is_contiguous(src1);
 | |
| 
 | |
|     ggml_vec_dot_t    const vec_dot               = type_traits[type].vec_dot;
 | |
|     enum ggml_type    const vec_dot_type          = type_traits[type].vec_dot_type;
 | |
|     ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
 | |
| 
 | |
|     GGML_ASSERT(ne0 == ne01);
 | |
|     GGML_ASSERT(ne1 == ne11);
 | |
|     GGML_ASSERT(ne2 == ne12);
 | |
|     GGML_ASSERT(ne3 == ne13);
 | |
| 
 | |
|     // we don't support permuted src0 or src1
 | |
|     GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
 | |
|     GGML_ASSERT(nb10 == sizeof(float));
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb0 <= nb1);
 | |
|     GGML_ASSERT(nb1 <= nb2);
 | |
|     GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     // nb01 >= nb00 - src0 is not transposed
 | |
|     //   compute by src0 rows
 | |
| 
 | |
| #if defined(GGML_USE_CLBLAST)
 | |
|     if (ggml_cl_can_mul_mat(src0, src1, dst)) {
 | |
|         // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
 | |
|         //       ref: https://github.com/ggerganov/ggml/pull/224
 | |
|         GGML_ASSERT(ne02 == ne12);
 | |
|         GGML_ASSERT(ne03 == ne13);
 | |
| 
 | |
|         if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
 | |
|             ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
 | |
|     if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
 | |
|         // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
 | |
|         //       ref: https://github.com/ggerganov/ggml/pull/224
 | |
|         GGML_ASSERT(ne02 == ne12);
 | |
|         GGML_ASSERT(ne03 == ne13);
 | |
| 
 | |
|         if (params->ith != 0) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->type == GGML_TASK_INIT) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->type == GGML_TASK_FINALIZE) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
 | |
|                 const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
 | |
| 
 | |
|                 float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
| 
 | |
|                 if (type != GGML_TYPE_F32) {
 | |
|                             float * const wdata    = params->wdata;
 | |
|                     ggml_to_float_t const to_float = type_traits[type].to_float;
 | |
| 
 | |
|                     size_t id = 0;
 | |
|                     for (int64_t i01 = 0; i01 < ne01; ++i01) {
 | |
|                         to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
 | |
|                         id += ne00;
 | |
|                     }
 | |
| 
 | |
|                     assert(id*sizeof(float) <= params->wsize);
 | |
|                     x = wdata;
 | |
|                 }
 | |
| 
 | |
|                 cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
 | |
|                         ne11, ne01, ne10,
 | |
|                         1.0f,    y, ne10,
 | |
|                                  x, ne00,
 | |
|                         0.0f,    d, ne01);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         if (src1->type != vec_dot_type) {
 | |
|             char * wdata = params->wdata;
 | |
|             const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
 | |
| 
 | |
|             for (int64_t i13 = 0; i13 < ne13; ++i13) {
 | |
|                 for (int64_t i12 = 0; i12 < ne12; ++i12) {
 | |
|                     for (int64_t i11 = 0; i11 < ne11; ++i11) {
 | |
|                         from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
 | |
|                         wdata += row_size;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // parallelize by src0 rows
 | |
|     const int64_t dr = (ne01 + nth - 1)/nth;
 | |
| 
 | |
|     const int64_t ir10 = dr*ith;
 | |
|     const int64_t ir11 = MIN(ir10 + dr, ne01);
 | |
| 
 | |
|     // src1 rows
 | |
|     const int64_t nr1 = ne11*ne12*ne13;
 | |
| 
 | |
|     const void * wdata    = (src1->type == vec_dot_type) ? src1->data : params->wdata;
 | |
|     const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
 | |
| 
 | |
|     for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
 | |
|         const int64_t i13 = (ir1/(ne12*ne11));
 | |
|         const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
 | |
|         const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
 | |
| 
 | |
|         const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
 | |
|         const int64_t i03 = (ir0/(ne02));
 | |
|         // Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
 | |
|         // See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
 | |
|         // GG: this is likely the correct way to broadcast, though need some more thought
 | |
|         //     therefore leaving the comments to remind us for now
 | |
|         const int64_t i02 = (i12 / (ne12 / ne02));
 | |
|         // Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
 | |
|         // const int64_t i02 = (ir0 - i03*ne02);
 | |
| 
 | |
|         const int64_t i1 = i11;
 | |
|         const int64_t i2 = i12;
 | |
|         const int64_t i3 = i13;
 | |
| 
 | |
|         const char * src0_row = (const char *) src0->data + (  0 + i02*nb02 + i03*nb03     );
 | |
| 
 | |
|         // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
 | |
|         //       if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
 | |
|         //       the original src1 data pointer, so we should index using the indices directly
 | |
|         // TODO: this is a bit of a hack, we should probably have a better way to handle this
 | |
|         const char * src1_col = (const char *) wdata +
 | |
|             (src1_cont || src1->type != vec_dot_type
 | |
|              ? (i11      + i12*ne11 + i13*ne12*ne11)*row_size
 | |
|              : (i11*nb11 + i12*nb12 + i13*nb13));
 | |
| 
 | |
|         float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
 | |
| 
 | |
|         for (int64_t ir = ir10; ir < ir11; ++ir) {
 | |
|             vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //int64_t t1 = ggml_time_us();
 | |
|     //static int64_t acc = 0;
 | |
|     //acc += t1 - t0;
 | |
|     //if (t1 - t0 > 10) {
 | |
|     //    printf("\n");
 | |
|     //    printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
 | |
|     //    printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
 | |
|     //    printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
 | |
| 
 | |
|     //    printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
 | |
|     //}
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_compute_forward_out_prod
 | |
| 
 | |
| 
 | |
| static void ggml_compute_forward_out_prod_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     GGML_ASSERT(ne02 == ne12);
 | |
|     GGML_ASSERT(ne03 == ne13);
 | |
|     GGML_ASSERT(ne2  == ne12);
 | |
|     GGML_ASSERT(ne3  == ne13);
 | |
| 
 | |
|     // we don't support permuted src0 or src1
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 == sizeof(float));
 | |
|     // GGML_ASSERT(nb0 <= nb1);
 | |
|     // GGML_ASSERT(nb1 <= nb2);
 | |
|     // GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     GGML_ASSERT(ne0 == ne00);
 | |
|     GGML_ASSERT(ne1 == ne10);
 | |
|     GGML_ASSERT(ne2 == ne02);
 | |
|     GGML_ASSERT(ne3 == ne03);
 | |
| 
 | |
|     // nb01 >= nb00 - src0 is not transposed
 | |
|     //   compute by src0 rows
 | |
| 
 | |
|     // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
 | |
|     // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // parallelize by last three dimensions
 | |
| 
 | |
|     // total rows in dst
 | |
|     const int64_t nr = ne1*ne2*ne3;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int64_t dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int64_t ir0 = dr*ith;
 | |
|     const int64_t ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     // dst[:,:,:,:] = 0
 | |
|     // for i2,i3:
 | |
|     //   for i1:
 | |
|     //     for i01:
 | |
|     //       for i0:
 | |
|     //         dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
 | |
| 
 | |
|     for (int64_t ir = ir0; ir < ir1; ++ir) {
 | |
|         // dst indices
 | |
|         const int64_t i3 = ir/(ne2*ne1);
 | |
|         const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
 | |
|         const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
 | |
| 
 | |
|         const int64_t i02 = i2;
 | |
|         const int64_t i03 = i3;
 | |
| 
 | |
|         //const int64_t i10 = i1;
 | |
|         const int64_t i12 = i2;
 | |
|         const int64_t i13 = i3;
 | |
| 
 | |
|         for (int64_t i01 = 0; i01 < ne01; ++i01) {
 | |
|             const int64_t i11 = i01;
 | |
| 
 | |
|             float * s0 = (float *) ((char *) src0->data + (          i01*nb01 + i02*nb02 + i03*nb03));
 | |
|             float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
 | |
|             float * d  = (float *) ((char *)  dst->data + (          i1*nb1 + i2*nb2 + i3*nb3));
 | |
| 
 | |
|             ggml_vec_mad_f32(ne0, d, s0, *s1);
 | |
|             // for (int64_t i0 = 0; i0 < ne0; ++i0) {
 | |
|             //     d[i0] += s0[i0] * s1[i1];
 | |
|             // }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //int64_t t1 = ggml_perf_time_us();
 | |
|     //static int64_t acc = 0;
 | |
|     //acc += t1 - t0;
 | |
|     //if (t1 - t0 > 10) {
 | |
|     //    printf("\n");
 | |
|     //    printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
 | |
|     //    printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
 | |
|     //    printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
 | |
|     //    printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
 | |
| 
 | |
|     //    printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
 | |
|     //}
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_out_prod(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|         case GGML_TYPE_Q8_1:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // todo
 | |
|                 // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // todo
 | |
|                 // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_scale
 | |
| 
 | |
| static void ggml_compute_forward_scale_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
|     GGML_ASSERT(ggml_is_scalar(src1));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // scale factor
 | |
|     const float v = *(float *) src1->data;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nrows(src0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     const size_t nb01 = src0->nb[1];
 | |
| 
 | |
|     const size_t nb1 = dst->nb[1];
 | |
| 
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         if (dst->data != src0->data) {
 | |
|             // src0 is same shape as dst => same indices
 | |
|             memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
 | |
|         }
 | |
|         ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_scale(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_scale_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_set
 | |
| 
 | |
| static void ggml_compute_forward_set_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
 | |
| 
 | |
|     GGML_ASSERT(opt0->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(ggml_nelements(opt0) == 5);
 | |
| 
 | |
|     // view src0 and dst with these strides and data offset inbytes during set
 | |
|     // nb0 is implicitely element_size because src0 and dst are contiguous
 | |
|     size_t nb1     = ((int32_t *) opt0->data)[0];
 | |
|     size_t nb2     = ((int32_t *) opt0->data)[1];
 | |
|     size_t nb3     = ((int32_t *) opt0->data)[2];
 | |
|     size_t offset  = ((int32_t *) opt0->data)[3];
 | |
|     bool   inplace = (bool) ((int32_t *) opt0->data)[4];
 | |
| 
 | |
|     if (!inplace && (params->type == GGML_TASK_INIT)) {
 | |
|         // memcpy needs to be synchronized across threads to avoid race conditions.
 | |
|         // => do it in INIT phase
 | |
|         memcpy(
 | |
|             ((char *)  dst->data),
 | |
|             ((char *) src0->data),
 | |
|             ggml_nbytes(dst));
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr = ggml_nrows(src1);
 | |
|     const int nc = src1->ne[0];
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb);
 | |
| 
 | |
|     // src0 and dst as viewed during set
 | |
|     const size_t nb0 = ggml_element_size(src0);
 | |
| 
 | |
|     const int im0 = (ne10 == 0 ? 0 : ne10-1);
 | |
|     const int im1 = (ne11 == 0 ? 0 : ne11-1);
 | |
|     const int im2 = (ne12 == 0 ? 0 : ne12-1);
 | |
|     const int im3 = (ne13 == 0 ? 0 : ne13-1);
 | |
| 
 | |
|     GGML_ASSERT(offset + im0*nb0  + im1*nb1  + im2*nb2  + im3*nb3  <= ggml_nbytes(dst));
 | |
| 
 | |
|     GGML_ASSERT(nb10 == sizeof(float));
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // src0 and dst are viewed with shape of src1 and offset
 | |
|         // => same indices
 | |
|         const int i3 = ir/(ne12*ne11);
 | |
|         const int i2 = (ir - i3*ne12*ne11)/ne11;
 | |
|         const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
 | |
| 
 | |
|         ggml_vec_cpy_f32(nc,
 | |
|                 (float *) ((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + offset),
 | |
|                 (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_set(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|         case GGML_TYPE_Q8_1:
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_Q6_K:
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_cpy
 | |
| 
 | |
| static void ggml_compute_forward_cpy(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     ggml_compute_forward_dup(params, src0, dst);
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_cont
 | |
| 
 | |
| static void ggml_compute_forward_cont(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     ggml_compute_forward_dup(params, src0, dst);
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_reshape
 | |
| 
 | |
| static void ggml_compute_forward_reshape(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     // NOP
 | |
|     UNUSED(params);
 | |
|     UNUSED(src0);
 | |
|     UNUSED(dst);
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_view
 | |
| 
 | |
| static void ggml_compute_forward_view(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0) {
 | |
|     // NOP
 | |
|     UNUSED(params);
 | |
|     UNUSED(src0);
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_permute
 | |
| 
 | |
| static void ggml_compute_forward_permute(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0) {
 | |
|     // NOP
 | |
|     UNUSED(params);
 | |
|     UNUSED(src0);
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_transpose
 | |
| 
 | |
| static void ggml_compute_forward_transpose(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0) {
 | |
|     // NOP
 | |
|     UNUSED(params);
 | |
|     UNUSED(src0);
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_get_rows
 | |
| 
 | |
| static void ggml_compute_forward_get_rows_q(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nelements(src1);
 | |
|     const enum ggml_type type = src0->type;
 | |
|     ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
 | |
| 
 | |
|     assert( dst->ne[0] == nc);
 | |
|     assert( dst->ne[1] == nr);
 | |
|     assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
 | |
| 
 | |
|     for (int i = 0; i < nr; ++i) {
 | |
|         const int r = ((int32_t *) src1->data)[i];
 | |
| 
 | |
|         dequantize_row_q(
 | |
|                 (const void *) ((char *) src0->data + r*src0->nb[1]),
 | |
|                      (float *) ((char *)  dst->data + i*dst->nb[1]), nc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_get_rows_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nelements(src1);
 | |
| 
 | |
|     assert( dst->ne[0] == nc);
 | |
|     assert( dst->ne[1] == nr);
 | |
|     assert(src0->nb[0] == sizeof(ggml_fp16_t));
 | |
| 
 | |
|     for (int i = 0; i < nr; ++i) {
 | |
|         const int r = ((int32_t *) src1->data)[i];
 | |
| 
 | |
|         for (int j = 0; j < nc; ++j) {
 | |
|             ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
 | |
|             ((float *) ((char *)  dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_get_rows_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nelements(src1);
 | |
| 
 | |
|     assert( dst->ne[0] == nc);
 | |
|     assert( dst->ne[1] == nr);
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < nr; ++i) {
 | |
|         const int r = ((int32_t *) src1->data)[i];
 | |
| 
 | |
|         ggml_vec_cpy_f32(nc,
 | |
|                 (float *) ((char *)  dst->data + i*dst->nb[1]),
 | |
|                 (float *) ((char *) src0->data + r*src0->nb[1]));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_get_rows(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|         case GGML_TYPE_Q8_1:
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             {
 | |
|                 ggml_compute_forward_get_rows_q(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     //static bool first = true;
 | |
|     //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
 | |
|     //if (first) {
 | |
|     //    first = false;
 | |
|     //} else {
 | |
|     //    for (int k = 0; k < dst->ne[1]; ++k) {
 | |
|     //        for (int j = 0; j < dst->ne[0]/16; ++j) {
 | |
|     //            for (int i = 0; i < 16; ++i) {
 | |
|     //                printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
 | |
|     //            }
 | |
|     //            printf("\n");
 | |
|     //        }
 | |
|     //        printf("\n");
 | |
|     //    }
 | |
|     //    printf("\n");
 | |
|     //    exit(0);
 | |
|     //}
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_get_rows_back
 | |
| 
 | |
| static void ggml_compute_forward_get_rows_back_f32_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|               struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(params->ith == 0);
 | |
|     GGML_ASSERT(ggml_are_same_shape(opt0, dst));
 | |
|     GGML_ASSERT(ggml_is_contiguous(opt0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
| 
 | |
|     ggml_compute_forward_dup_same_cont(params, opt0, dst);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nelements(src1);
 | |
| 
 | |
|     GGML_ASSERT( dst->ne[0] == nc);
 | |
|     GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
 | |
| 
 | |
|     for (int i = 0; i < nr; ++i) {
 | |
|         const int r = ((int32_t *) src1->data)[i];
 | |
| 
 | |
|         for (int j = 0; j < nc; ++j) {
 | |
|             ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
 | |
|             ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_get_rows_back_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|               struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(params->ith == 0);
 | |
|     GGML_ASSERT(ggml_are_same_shape(opt0, dst));
 | |
|     GGML_ASSERT(ggml_is_contiguous(opt0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
| 
 | |
|     // ggml_compute_forward_dup_same_cont(params, opt0, dst);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         memset(dst->data, 0, ggml_nbytes(dst));
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nelements(src1);
 | |
| 
 | |
|     GGML_ASSERT( dst->ne[0] == nc);
 | |
|     GGML_ASSERT(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < nr; ++i) {
 | |
|         const int r = ((int32_t *) src1->data)[i];
 | |
| 
 | |
|         ggml_vec_add_f32(nc,
 | |
|                 (float *) ((char *)  dst->data + r*dst->nb[1]),
 | |
|                 (float *) ((char *)  dst->data + r*dst->nb[1]),
 | |
|                 (float *) ((char *) src0->data + i*src0->nb[1]));
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ggml_compute_forward_get_rows_back(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     //static bool first = true;
 | |
|     //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
 | |
|     //if (first) {
 | |
|     //    first = false;
 | |
|     //} else {
 | |
|     //    for (int k = 0; k < dst->ne[1]; ++k) {
 | |
|     //        for (int j = 0; j < dst->ne[0]/16; ++j) {
 | |
|     //            for (int i = 0; i < 16; ++i) {
 | |
|     //                printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
 | |
|     //            }
 | |
|     //            printf("\n");
 | |
|     //        }
 | |
|     //        printf("\n");
 | |
|     //    }
 | |
|     //    printf("\n");
 | |
|     //    exit(0);
 | |
|     //}
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_diag
 | |
| 
 | |
| static void ggml_compute_forward_diag_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // TODO: handle transposed/permuted matrices
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     GGML_ASSERT(ne00 == ne0);
 | |
|     GGML_ASSERT(ne00 == ne1);
 | |
|     GGML_ASSERT(ne01 == 1);
 | |
|     GGML_ASSERT(ne02 == ne2);
 | |
|     GGML_ASSERT(ne03 == ne3);
 | |
| 
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
|     GGML_ASSERT(nb0  == sizeof(float));
 | |
| 
 | |
|     for (int i3 = 0; i3 < ne3; i3++) {
 | |
|         for (int i2 = 0; i2 < ne2; i2++) {
 | |
|             for (int i1 = 0; i1 < ne1; i1++) {
 | |
|                 float * d = (float *)((char *)  dst->data + i3*nb3  + i2*nb2 + i1*nb1);
 | |
|                 float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
 | |
|                 for (int i0 = 0; i0 < i1; i0++) {
 | |
|                     d[i0] = 0;
 | |
|                 }
 | |
|                 d[i1] = s[i1];
 | |
|                 for (int i0 = i1+1; i0 < ne0; i0++) {
 | |
|                     d[i0] = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_diag(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_diag_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_diag_mask_inf
 | |
| 
 | |
| static void ggml_compute_forward_diag_mask_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst,
 | |
|         const float value) {
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(ggml_nelements(src1) == 2);
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int  n_past  =       ((int32_t *) src1->data)[0];
 | |
|     const bool inplace = (bool)((int32_t *) src1->data)[1];
 | |
| 
 | |
|     GGML_ASSERT(n_past >= 0);
 | |
| 
 | |
|     if (!inplace && (params->type == GGML_TASK_INIT)) {
 | |
|         // memcpy needs to be synchronized across threads to avoid race conditions.
 | |
|         // => do it in INIT phase
 | |
|         GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 | |
|         GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
 | |
|         memcpy(
 | |
|             ((char *)  dst->data),
 | |
|             ((char *) src0->data),
 | |
|             ggml_nbytes(dst));
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // TODO: handle transposed/permuted matrices
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = src0->ne[1];
 | |
|     const int nz = n/nr;
 | |
| 
 | |
|     GGML_ASSERT( dst->nb[0] == sizeof(float));
 | |
|     GGML_ASSERT(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int k = 0; k < nz; k++) {
 | |
|         for (int j = ith; j < nr; j += nth) {
 | |
|             for (int i = n_past; i < nc; i++) {
 | |
|                 if (i > n_past + j) {
 | |
|                     *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_diag_mask_inf(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_diag_mask_zero(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_soft_max
 | |
| 
 | |
| static void ggml_compute_forward_soft_max_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // TODO: handle transposed/permuted matrices
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nrows(src0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
 | |
|         float *dp = (float *)((char *)  dst->data +  i1*dst->nb[1]);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int i = 0; i < nc; ++i) {
 | |
|             //printf("p[%d] = %f\n", i, p[i]);
 | |
|             assert(!isnan(sp[i]));
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         float max = -INFINITY;
 | |
|         ggml_vec_max_f32(nc, &max, sp);
 | |
| 
 | |
|         ggml_float sum = 0.0;
 | |
| 
 | |
|         uint16_t scvt;
 | |
|         for (int i = 0; i < nc; i++) {
 | |
|             if (sp[i] == -INFINITY) {
 | |
|                 dp[i] = 0.0f;
 | |
|             } else {
 | |
|                 // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
 | |
|                 ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
 | |
|                 memcpy(&scvt, &s, sizeof(scvt));
 | |
|                 const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
 | |
|                 sum += (ggml_float)val;
 | |
|                 dp[i] = val;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         assert(sum > 0.0);
 | |
| 
 | |
|         sum = 1.0/sum;
 | |
|         ggml_vec_scale_f32(nc, dp, sum);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int i = 0; i < nc; ++i) {
 | |
|             assert(!isnan(dp[i]));
 | |
|             assert(!isinf(dp[i]));
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_soft_max(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_soft_max_f32(params, src0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_soft_max_back
 | |
| 
 | |
| static void ggml_compute_forward_soft_max_back_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(src1));
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src1, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // TODO: handle transposed/permuted matrices
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nrows(src0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
 | |
|         float *y  = (float *)((char *) src1->data + i1*src1->nb[1]);
 | |
|         float *dx = (float *)((char *) dst->data  + i1*dst->nb[1]);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int i = 0; i < nc; ++i) {
 | |
|             //printf("p[%d] = %f\n", i, p[i]);
 | |
|             assert(!isnan(dy[i]));
 | |
|             assert(!isnan(y[i]));
 | |
|         }
 | |
| #endif
 | |
|         // Jii = yi - yi*yi
 | |
|         // Jij = -yi*yj
 | |
|         // J = diag(y)-y.T*y
 | |
|         // dx = J * dy
 | |
|         // dxk = sum_i(Jki * dyi)
 | |
|         // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
 | |
|         // dxk = sum_i(-yk*yi * dyi) + yk*dyk
 | |
|         // dxk = -yk * sum_i(yi * dyi) + yk*dyk
 | |
|         // dxk = -yk * dot(y, dy) + yk*dyk
 | |
|         // dxk = yk * (- dot(y, dy) + dyk)
 | |
|         // dxk = yk * (dyk - dot(y, dy))
 | |
|         //
 | |
|         // post-order:
 | |
|         // dot_y_dy := dot(y, dy)
 | |
|         // dx := dy
 | |
|         // dx := dx - dot_y_dy
 | |
|         // dx := dx * y
 | |
| 
 | |
|         // linear runtime, no additional memory
 | |
|         float dot_y_dy = 0;
 | |
|         ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
 | |
|         ggml_vec_cpy_f32 (nc, dx, dy);
 | |
|         ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
 | |
|         ggml_vec_mul_f32 (nc, dx, dx, y);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int i = 0; i < nc; ++i) {
 | |
|             assert(!isnan(dx[i]));
 | |
|             assert(!isinf(dx[i]));
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_soft_max_back(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_alibi
 | |
| 
 | |
| static void ggml_compute_forward_alibi_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(ggml_nelements(src1) == 3);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int   n_past   = ((int32_t *) src1->data)[0];
 | |
|     const int   n_head   = ((int32_t *) src1->data)[1];
 | |
|     const float max_bias = ((float *)   src1->data)[2];
 | |
| 
 | |
|     assert(n_past >= 0);
 | |
| 
 | |
|     const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
 | |
|     const int ne1 = src0->ne[1]; // seq_len_without_past
 | |
|     const int ne2 = src0->ne[2]; // n_head -> this is k
 | |
|     //const int ne3 = src0->ne[3]; // 1 -> bsz
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int ne2_ne3 = n/ne1; // ne2*ne3
 | |
| 
 | |
|     const int nb0 = src0->nb[0];
 | |
|     const int nb1 = src0->nb[1];
 | |
|     const int nb2 = src0->nb[2];
 | |
|     //const int nb3 = src0->nb[3];
 | |
| 
 | |
|     GGML_ASSERT(nb0 == sizeof(float));
 | |
|     GGML_ASSERT(ne1 + n_past == ne0);
 | |
|     GGML_ASSERT(n_head == ne2);
 | |
| 
 | |
|     // add alibi to src0 (KQ_scaled)
 | |
|     const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
 | |
| 
 | |
|     const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
 | |
|     const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
 | |
| 
 | |
|     for (int i = 0; i < ne0; i++) {
 | |
|         for (int j = 0; j < ne1; j++) {
 | |
|             for (int k = 0; k < ne2_ne3; k++) {
 | |
|                 float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
 | |
|                 float *      pdst = (float *)((char *)  dst->data + i*nb0 + j*nb1 + k*nb2);
 | |
| 
 | |
|                 // TODO: k*nb2 or k*nb3
 | |
| 
 | |
|                 float m_k;
 | |
| 
 | |
|                 if (k < n_heads_log2_floor) {
 | |
|                     m_k = powf(m0, k + 1);
 | |
|                 } else {
 | |
|                     m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
 | |
|                 }
 | |
| 
 | |
|                 pdst[0] = i * m_k + src[0];
 | |
| 
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_alibi_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(ggml_nelements(src1) == 3);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int   n_past   = ((int32_t *) src1->data)[0];
 | |
|     const int   n_head   = ((int32_t *) src1->data)[1];
 | |
|     const float max_bias = ((float *)   src1->data)[2];
 | |
| 
 | |
|     assert(n_past >= 0);
 | |
| 
 | |
|     const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
 | |
|     const int ne1 = src0->ne[1]; // seq_len_without_past
 | |
|     const int ne2 = src0->ne[2]; // n_head -> this is k
 | |
|     //const int ne3 = src0->ne[3]; // 1 -> bsz
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int ne2_ne3 = n/ne1; // ne2*ne3
 | |
| 
 | |
|     const int nb0 = src0->nb[0];
 | |
|     const int nb1 = src0->nb[1];
 | |
|     const int nb2 = src0->nb[2];
 | |
|     //const int nb3 = src0->nb[3];
 | |
| 
 | |
|     GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
 | |
|     GGML_ASSERT(n_head == ne2);
 | |
| 
 | |
|     // add alibi to src0 (KQ_scaled)
 | |
|     const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
 | |
| 
 | |
|     const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
 | |
|     const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
 | |
| 
 | |
|     for (int i = 0; i < ne0; i++) {
 | |
|         for (int j = 0; j < ne1; j++) {
 | |
|             for (int k = 0; k < ne2_ne3; k++) {
 | |
|                 ggml_fp16_t * const src  = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
 | |
|                       float *      pdst  =       (float *)((char *)  dst->data + i*nb0 + j*nb1 + k*nb2);
 | |
| 
 | |
|                 // TODO: k*nb2 or k*nb3
 | |
| 
 | |
|                 float m_k;
 | |
| 
 | |
|                 if (k < n_heads_log2_floor) {
 | |
|                     m_k = powf(m0, k + 1);
 | |
|                 } else {
 | |
|                     m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
 | |
|                 }
 | |
| 
 | |
|                 // we return F32
 | |
|                 pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_alibi(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_alibi_f16(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_alibi_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|         case GGML_TYPE_Q8_1:
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_Q6_K:
 | |
|         case GGML_TYPE_Q8_K:
 | |
|         case GGML_TYPE_I8:
 | |
|         case GGML_TYPE_I16:
 | |
|         case GGML_TYPE_I32:
 | |
|         case GGML_TYPE_COUNT:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_compute_forward_clamp
 | |
| 
 | |
| static void ggml_compute_forward_clamp_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(ggml_nelements(src1) == 2);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const float min = ((float *) src1->data)[0];
 | |
|     const float max = ((float *) src1->data)[1];
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     const size_t nb00 = src0->nb[0];
 | |
|     const size_t nb01 = src0->nb[1];
 | |
| 
 | |
|     const size_t nb0 = dst->nb[0];
 | |
|     const size_t nb1 = dst->nb[1];
 | |
| 
 | |
|     GGML_ASSERT( nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     for (int j = ith; j < n; j += nth) {
 | |
|         float * dst_ptr  = (float *) ((char *)  dst->data + j*nb1);
 | |
|         float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
 | |
| 
 | |
|         for (int i = 0; i < nc; i++) {
 | |
|             dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_clamp(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_clamp_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F16:
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|         case GGML_TYPE_Q8_1:
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|         case GGML_TYPE_Q6_K:
 | |
|         case GGML_TYPE_Q8_K:
 | |
|         case GGML_TYPE_I8:
 | |
|         case GGML_TYPE_I16:
 | |
|         case GGML_TYPE_I32:
 | |
|         case GGML_TYPE_COUNT:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_rope
 | |
| 
 | |
| static void ggml_compute_forward_rope_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(ggml_nelements(src1) == 6);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     float freq_base;
 | |
|     float freq_scale;
 | |
| 
 | |
|     const int n_past = ((int32_t *) src1->data)[0];
 | |
|     const int n_dims = ((int32_t *) src1->data)[1];
 | |
|     const int mode   = ((int32_t *) src1->data)[2];
 | |
|     const int n_ctx  = ((int32_t *) src1->data)[3];
 | |
|     memcpy(&freq_base,  (int32_t *) src1->data + 4, sizeof(float));
 | |
|     memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
 | |
| 
 | |
|     assert(n_past >= 0);
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
 | |
|     //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
 | |
| 
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr = ggml_nrows(dst);
 | |
| 
 | |
|     GGML_ASSERT(n_dims <= ne0);
 | |
|     GGML_ASSERT(n_dims % 2 == 0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     // row index used to determine which thread to use
 | |
|     int ir = 0;
 | |
| 
 | |
|     const float theta_scale = powf(freq_base, -2.0f/n_dims);
 | |
| 
 | |
|     const bool is_neox = mode & 2;
 | |
|     const bool is_glm  = mode & 4;
 | |
| 
 | |
|     for (int64_t i3 = 0; i3 < ne3; i3++) {
 | |
|         for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
 | |
|             const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
 | |
|             for (int64_t i1 = 0; i1 < ne1; i1++) {
 | |
|                 if (ir++ < ir0) continue;
 | |
|                 if (ir   > ir1) break;
 | |
| 
 | |
|                 float theta = freq_scale * (float)p;
 | |
| 
 | |
|                 if (is_glm) {
 | |
|                     theta = MIN(p, n_ctx - 2);
 | |
|                     float block_theta = MAX(p - (n_ctx - 2), 0);
 | |
|                     for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
 | |
|                         const float cos_theta = cosf(theta);
 | |
|                         const float sin_theta = sinf(theta);
 | |
|                         const float cos_block_theta = cosf(block_theta);
 | |
|                         const float sin_block_theta = sinf(block_theta);
 | |
| 
 | |
|                         theta *= theta_scale;
 | |
|                         block_theta *= theta_scale;
 | |
| 
 | |
|                         const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                               float * dst_data  = (float *)((char *)  dst->data +  i3*nb3 + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                         const float x0 = src[0];
 | |
|                         const float x1 = src[n_dims/2];
 | |
|                         const float x2 = src[n_dims];
 | |
|                         const float x3 = src[n_dims/2*3];
 | |
| 
 | |
|                         dst_data[0]          = x0*cos_theta - x1*sin_theta;
 | |
|                         dst_data[n_dims/2]   = x0*sin_theta + x1*cos_theta;
 | |
|                         dst_data[n_dims]     = x2*cos_block_theta - x3*sin_block_theta;
 | |
|                         dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
 | |
|                     }
 | |
|                 } else if (!is_neox) {
 | |
|                     for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
 | |
|                         const float cos_theta = cosf(theta);
 | |
|                         const float sin_theta = sinf(theta);
 | |
| 
 | |
|                         theta *= theta_scale;
 | |
| 
 | |
|                         const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                               float * dst_data  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                         const float x0 = src[0];
 | |
|                         const float x1 = src[1];
 | |
| 
 | |
|                         dst_data[0] = x0*cos_theta - x1*sin_theta;
 | |
|                         dst_data[1] = x0*sin_theta + x1*cos_theta;
 | |
|                     }
 | |
|                 } else {
 | |
|                     // TODO: this is probably wrong, but I can't figure it out ..
 | |
|                     // ref:  https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
 | |
|                     for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
 | |
|                         for (int64_t ic = 0; ic < n_dims; ic += 2) {
 | |
|                             const float cos_theta = cosf(theta);
 | |
|                             const float sin_theta = sinf(theta);
 | |
| 
 | |
|                             theta *= theta_scale;
 | |
| 
 | |
|                             const int64_t i0 = ib*n_dims + ic/2;
 | |
| 
 | |
|                             const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                                   float * dst_data  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                             const float x0 = src[0];
 | |
|                             const float x1 = src[n_dims/2];
 | |
| 
 | |
|                             dst_data[0]        = x0*cos_theta - x1*sin_theta;
 | |
|                             dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_rope_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(ggml_nelements(src1) == 6);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     float freq_base;
 | |
|     float freq_scale;
 | |
| 
 | |
|     const int n_past = ((int32_t *) src1->data)[0];
 | |
|     const int n_dims = ((int32_t *) src1->data)[1];
 | |
|     const int mode   = ((int32_t *) src1->data)[2];
 | |
|     const int n_ctx  = ((int32_t *) src1->data)[3];
 | |
|     memcpy(&freq_base,  (int32_t *) src1->data + 4, sizeof(float));
 | |
|     memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
 | |
| 
 | |
|     assert(n_past >= 0);
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
 | |
|     //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
 | |
| 
 | |
|     GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr = ggml_nrows(dst);
 | |
| 
 | |
|     GGML_ASSERT(n_dims <= ne0);
 | |
|     GGML_ASSERT(n_dims % 2 == 0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     // row index used to determine which thread to use
 | |
|     int ir = 0;
 | |
| 
 | |
|     const float theta_scale = powf(freq_base, -2.0f/n_dims);
 | |
| 
 | |
|     const bool is_neox = mode & 2;
 | |
|     const bool is_glm  = mode & 4;
 | |
| 
 | |
|     for (int64_t i3 = 0; i3 < ne3; i3++) {
 | |
|         for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
 | |
|             const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
 | |
|             for (int64_t i1 = 0; i1 < ne1; i1++) {
 | |
|                 if (ir++ < ir0) continue;
 | |
|                 if (ir   > ir1) break;
 | |
| 
 | |
|                 float theta = freq_scale * (float)p;
 | |
| 
 | |
|                 if (is_glm) {
 | |
|                     theta = MIN(p, n_ctx - 2);
 | |
|                     float block_theta = MAX(p - (n_ctx - 2), 0);
 | |
|                     for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
 | |
|                         const float cos_theta = cosf(theta);
 | |
|                         const float sin_theta = sinf(theta);
 | |
|                         const float cos_block_theta = cosf(block_theta);
 | |
|                         const float sin_block_theta = sinf(block_theta);
 | |
| 
 | |
|                         theta *= theta_scale;
 | |
|                         block_theta *= theta_scale;
 | |
| 
 | |
|                         const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                               ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data +  i3*nb3 + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                         const float x0 = GGML_FP16_TO_FP32(src[0]);
 | |
|                         const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
 | |
|                         const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
 | |
|                         const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
 | |
| 
 | |
|                         dst_data[0]          = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
 | |
|                         dst_data[n_dims/2]   = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
 | |
|                         dst_data[n_dims]     = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
 | |
|                         dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
 | |
|                     }
 | |
|                 } if (!is_neox) {
 | |
|                     for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
 | |
|                         const float cos_theta = cosf(theta);
 | |
|                         const float sin_theta = sinf(theta);
 | |
| 
 | |
|                         theta *= theta_scale;
 | |
| 
 | |
|                         const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                               ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                         const float x0 = GGML_FP16_TO_FP32(src[0]);
 | |
|                         const float x1 = GGML_FP16_TO_FP32(src[1]);
 | |
| 
 | |
|                         dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
 | |
|                         dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
 | |
|                     }
 | |
|                 } else {
 | |
|                     // TODO: this is probably wrong, but I can't figure it out ..
 | |
|                     // ref:  https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
 | |
|                     for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
 | |
|                         for (int64_t ic = 0; ic < n_dims; ic += 2) {
 | |
|                             const float cos_theta = cosf(theta);
 | |
|                             const float sin_theta = sinf(theta);
 | |
| 
 | |
|                             theta *= theta_scale;
 | |
| 
 | |
|                             const int64_t i0 = ib*n_dims + ic/2;
 | |
| 
 | |
|                             const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                                   ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                             const float x0 = GGML_FP16_TO_FP32(src[0]);
 | |
|                             const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
 | |
| 
 | |
|                             dst_data[0]        = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
 | |
|                             dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_rope(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_rope_f16(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_rope_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_rope_back
 | |
| 
 | |
| static void ggml_compute_forward_rope_back_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(src1->type == GGML_TYPE_I32);
 | |
|     assert(ggml_nelements(src1) == 4);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // y = rope(x, src1)
 | |
|     // dx = rope_back(dy, src1)
 | |
|     // src0 is dy, src1 contains options
 | |
| 
 | |
|     const int n_past = ((int32_t *) src1->data)[0];
 | |
|     const int n_dims = ((int32_t *) src1->data)[1];
 | |
|     const int mode   = ((int32_t *) src1->data)[2];
 | |
| 
 | |
|     assert(n_past >= 0);
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
 | |
|     //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
 | |
| 
 | |
|     assert(nb0 == sizeof(float));
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr = ggml_nrows(dst);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     // row index used to determine which thread to use
 | |
|     int ir = 0;
 | |
| 
 | |
|     const float theta_scale = powf(10000.0, -2.0f/n_dims);
 | |
| 
 | |
|     const bool is_neox = mode & 2;
 | |
| 
 | |
|     for (int64_t i3 = 0; i3 < ne3; i3++) {
 | |
|         for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
 | |
|             const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
 | |
|             for (int64_t i1 = 0; i1 < ne1; i1++) {
 | |
|                 if (ir++ < ir0) continue;
 | |
|                 if (ir   > ir1) break;
 | |
| 
 | |
|                 float theta = (float)p;
 | |
| 
 | |
|                 if (!is_neox) {
 | |
|                     for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
 | |
|                         const float cos_theta = cosf(theta);
 | |
|                         const float sin_theta = sinf(theta);
 | |
| 
 | |
|                         theta *= theta_scale;
 | |
| 
 | |
|                         const float * const dy  = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                               float *       dx  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                         const float dy0 = dy[0];
 | |
|                         const float dy1 = dy[1];
 | |
| 
 | |
|                         dx[0] =   dy0*cos_theta + dy1*sin_theta;
 | |
|                         dx[1] = - dy0*sin_theta + dy1*cos_theta;
 | |
|                     }
 | |
|                 } else {
 | |
|                     for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
 | |
|                         for (int64_t ic = 0; ic < n_dims; ic += 2) {
 | |
|                             const float cos_theta = cosf(theta);
 | |
|                             const float sin_theta = sinf(theta);
 | |
| 
 | |
|                             theta *= theta_scale;
 | |
| 
 | |
|                             const int64_t i0 = ib*n_dims + ic/2;
 | |
| 
 | |
|                             const float * const dy  = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                                   float *       dx  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                             const float dy0 = dy[0];
 | |
|                             const float dy1 = dy[n_dims/2];
 | |
| 
 | |
|                             dx[0]        =   dy0*cos_theta + dy1*sin_theta;
 | |
|                             dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_rope_back_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(src1->type == GGML_TYPE_I32);
 | |
|     assert(ggml_nelements(src1) == 3);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // y = rope(x, src1)
 | |
|     // dx = rope_back(dy, src1)
 | |
|     // src0 is dy, src1 contains options
 | |
| 
 | |
|     const int n_past = ((int32_t *) src1->data)[0];
 | |
|     const int n_dims = ((int32_t *) src1->data)[1];
 | |
|     const int mode   = ((int32_t *) src1->data)[2];
 | |
| 
 | |
|     assert(n_past >= 0);
 | |
| 
 | |
|     GGML_TENSOR_UNARY_OP_LOCALS;
 | |
| 
 | |
|     //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
 | |
|     //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
 | |
| 
 | |
|     assert(nb0 == sizeof(ggml_fp16_t));
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nr = ggml_nrows(dst);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     // row index used to determine which thread to use
 | |
|     int ir = 0;
 | |
| 
 | |
|     const float theta_scale = powf(10000.0, -2.0f/n_dims);
 | |
| 
 | |
|     const bool is_neox = mode & 2;
 | |
| 
 | |
|     for (int64_t i3 = 0; i3 < ne3; i3++) {
 | |
|         for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
 | |
|             const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
 | |
|             for (int64_t i1 = 0; i1 < ne1; i1++) {
 | |
|                 if (ir++ < ir0) continue;
 | |
|                 if (ir   > ir1) break;
 | |
| 
 | |
|                 float theta = (float)p;
 | |
| 
 | |
|                 if (!is_neox) {
 | |
|                     for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
 | |
|                         const float cos_theta = cosf(theta);
 | |
|                         const float sin_theta = sinf(theta);
 | |
| 
 | |
|                         theta *= theta_scale;
 | |
| 
 | |
|                         const ggml_fp16_t * const dy  = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                               ggml_fp16_t *       dx  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                         const float dy0 = GGML_FP16_TO_FP32(dy[0]);
 | |
|                         const float dy1 = GGML_FP16_TO_FP32(dy[1]);
 | |
| 
 | |
|                         dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
 | |
|                         dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
 | |
|                     }
 | |
|                 } else {
 | |
|                     for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
 | |
|                         for (int64_t ic = 0; ic < n_dims; ic += 2) {
 | |
|                             const float cos_theta = cosf(theta);
 | |
|                             const float sin_theta = sinf(theta);
 | |
| 
 | |
|                             theta *= theta_scale;
 | |
| 
 | |
|                             const int64_t i0 = ib*n_dims + ic/2;
 | |
| 
 | |
|                             const ggml_fp16_t * const dy  = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
 | |
|                                   ggml_fp16_t *       dx  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
 | |
| 
 | |
|                             const float dy0 = GGML_FP16_TO_FP32(dy[0]);
 | |
|                             const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
 | |
| 
 | |
|                             dx[0]        = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
 | |
|                             dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_rope_back(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_conv_1d
 | |
| 
 | |
| static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nk = ne00;
 | |
|     const int nh = nk/2;
 | |
| 
 | |
|     const int ew0 = ggml_up32(ne01);
 | |
| 
 | |
|     GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
 | |
|     GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nb10 == sizeof(float));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         // TODO: fix this memset (wsize is overestimated)
 | |
|         memset(params->wdata, 0, params->wsize);
 | |
| 
 | |
|         // prepare kernel data (src0)
 | |
|         {
 | |
|             ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
 | |
| 
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 for (int64_t i01 = 0; i01 < ne01; i01++) {
 | |
|                     const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
 | |
|                     ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
 | |
|                     for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                         dst_data[i00*ew0 + i01] = src[i00];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // prepare source data (src1)
 | |
|         {
 | |
|             ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
 | |
| 
 | |
|             for (int64_t i11 = 0; i11 < ne11; i11++) {
 | |
|                 const float * const src = (float *)((char *) src1->data + i11*nb11);
 | |
|                 ggml_fp16_t * dst_data = wdata;
 | |
|                 for (int64_t i10 = 0; i10 < ne10; i10++) {
 | |
|                     dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // total rows in dst
 | |
|     const int nr = ne02;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         float * dst_data = (float *)((char *) dst->data + i1*nb1);
 | |
|         for (int64_t i0 = 0; i0 < ne10; ++i0) {
 | |
|             dst_data[i0] = 0;
 | |
|             for (int k = -nh; k <= nh; k++) {
 | |
|                 float v = 0.0f;
 | |
|                 ggml_vec_dot_f16(ew0, &v,
 | |
|                         (ggml_fp16_t *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
 | |
|                         (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
 | |
| 
 | |
|                 dst_data[i0] += v;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_conv_1d_s1_ph_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nk = ne00;
 | |
|     const int nh = nk/2;
 | |
| 
 | |
|     const int ew0 = ggml_up32(ne01);
 | |
| 
 | |
|     GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
|     GGML_ASSERT(nb10 == sizeof(float));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         // TODO: fix this memset (wsize is overestimated)
 | |
|         memset(params->wdata, 0, params->wsize);
 | |
| 
 | |
|         // prepare kernel data (src0)
 | |
|         {
 | |
|             float * const wdata = (float *) params->wdata + 0;
 | |
| 
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 for (int64_t i01 = 0; i01 < ne01; i01++) {
 | |
|                     const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
 | |
|                     float * dst_data = wdata + i02*ew0*ne00;
 | |
|                     for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                         dst_data[i00*ew0 + i01] = src[i00];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // prepare source data (src1)
 | |
|         {
 | |
|             float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
 | |
| 
 | |
|             for (int64_t i11 = 0; i11 < ne11; i11++) {
 | |
|                 const float * const src = (float *)((char *) src1->data + i11*nb11);
 | |
|                 float * dst_data = wdata;
 | |
|                 for (int64_t i10 = 0; i10 < ne10; i10++) {
 | |
|                     dst_data[(i10 + nh)*ew0 + i11] = src[i10];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // total rows in dst
 | |
|     const int nr = ne02;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         float * dst_data = (float *)((char *) dst->data + i1*nb1);
 | |
|         for (int64_t i0 = 0; i0 < ne10; ++i0) {
 | |
|             dst_data[i0] = 0;
 | |
|             for (int k = -nh; k <= nh; k++) {
 | |
|                 float v = 0.0f;
 | |
|                 ggml_vec_dot_f32(ew0, &v,
 | |
|                         (float *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
 | |
|                         (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
 | |
| 
 | |
|                 dst_data[i0] += v;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_conv_1d_s1_ph(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nk = ne00;
 | |
|     const int nh = nk/2;
 | |
| 
 | |
|     const int ew0 = ggml_up32(ne01);
 | |
| 
 | |
|     GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
 | |
|     GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nb10 == sizeof(float));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         // TODO: fix this memset (wsize is overestimated)
 | |
|         memset(params->wdata, 0, params->wsize);
 | |
| 
 | |
|         // prepare kernel data (src0)
 | |
|         {
 | |
|             ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
 | |
| 
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 for (int64_t i01 = 0; i01 < ne01; i01++) {
 | |
|                     const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
 | |
|                     ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
 | |
|                     for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                         dst_data[i00*ew0 + i01] = src[i00];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // prepare source data (src1)
 | |
|         {
 | |
|             ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
 | |
| 
 | |
|             for (int64_t i11 = 0; i11 < ne11; i11++) {
 | |
|                 const float * const src = (float *)((char *) src1->data + i11*nb11);
 | |
|                 ggml_fp16_t * dst_data = wdata;
 | |
|                 for (int64_t i10 = 0; i10 < ne10; i10++) {
 | |
|                     dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // total rows in dst
 | |
|     const int nr = ne02;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         float * dst_data = (float *)((char *) dst->data + i1*nb1);
 | |
|         for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
 | |
|             dst_data[i0/2] = 0;
 | |
|             for (int k = -nh; k <= nh; k++) {
 | |
|                 float v = 0.0f;
 | |
|                 ggml_vec_dot_f16(ew0, &v,
 | |
|                         (ggml_fp16_t *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
 | |
|                         (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
 | |
| 
 | |
|                 dst_data[i0/2] += v;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_conv_1d_s2_ph_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|               struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nk = ne00;
 | |
|     const int nh = nk/2;
 | |
| 
 | |
|     const int ew0 = ggml_up32(ne01);
 | |
| 
 | |
|     GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
 | |
|     GGML_ASSERT(nb00 == sizeof(float));
 | |
|     GGML_ASSERT(nb10 == sizeof(float));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         // TODO: fix this memset (wsize is overestimated)
 | |
|         memset(params->wdata, 0, params->wsize);
 | |
| 
 | |
|         // prepare kernel data (src0)
 | |
|         {
 | |
|             float * const wdata = (float *) params->wdata + 0;
 | |
| 
 | |
|             for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|                 for (int64_t i01 = 0; i01 < ne01; i01++) {
 | |
|                     const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
 | |
|                     float * dst_data = wdata + i02*ew0*ne00;
 | |
|                     for (int64_t i00 = 0; i00 < ne00; i00++) {
 | |
|                         dst_data[i00*ew0 + i01] = src[i00];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // prepare source data (src1)
 | |
|         {
 | |
|             float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
 | |
| 
 | |
|             for (int64_t i11 = 0; i11 < ne11; i11++) {
 | |
|                 const float * const src = (float *)((char *) src1->data + i11*nb11);
 | |
|                 float * dst_data = wdata;
 | |
|                 for (int64_t i10 = 0; i10 < ne10; i10++) {
 | |
|                     dst_data[(i10 + nh)*ew0 + i11] = src[i10];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // total rows in dst
 | |
|     const int nr = ne02;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         float * dst_data = (float *)((char *) dst->data + i1*nb1);
 | |
|         for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
 | |
|             dst_data[i0/2] = 0;
 | |
|             for (int k = -nh; k <= nh; k++) {
 | |
|                 float v = 0.0f;
 | |
|                 ggml_vec_dot_f32(ew0, &v,
 | |
|                         (float *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
 | |
|                         (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
 | |
| 
 | |
|                 dst_data[i0/2] += v;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_conv_1d_s2_ph(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_conv_1d
 | |
| 
 | |
| static void ggml_compute_forward_conv_1d(
 | |
|     const struct ggml_compute_params * params,
 | |
|     const struct ggml_tensor * src0,
 | |
|     const struct ggml_tensor * src1,
 | |
|     const struct ggml_tensor * opt0,
 | |
|     struct ggml_tensor * dst) {
 | |
|     const int32_t s0 = ((const int32_t*)(opt0->data))[0];
 | |
|     const int32_t p0 = ((const int32_t*)(opt0->data))[1];
 | |
|     const int32_t d0 = ((const int32_t*)(opt0->data))[2];
 | |
|     GGML_ASSERT(d0 == 1); // dilation not supported
 | |
|     GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
 | |
|     if (s0 == 1) {
 | |
|         ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
 | |
|     } else if (s0 == 2) {
 | |
|         ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
 | |
|     } else {
 | |
|         GGML_ASSERT(false); // only stride 1 and 2 supported
 | |
|     };
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_conv_2d
 | |
| 
 | |
| static void ggml_compute_forward_conv_2d_f16_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|               struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int nk0 = ne00;
 | |
|     const int nk1 = ne01;
 | |
| 
 | |
|     // size of the convolution row - the kernel size unrolled across all channels
 | |
|     const int ew0 = nk0*nk1*ne02;
 | |
| 
 | |
|     const int32_t s0 = ((const int32_t*)(opt0->data))[0];
 | |
|     const int32_t s1 = ((const int32_t*)(opt0->data))[1];
 | |
|     const int32_t p0 = ((const int32_t*)(opt0->data))[2];
 | |
|     const int32_t p1 = ((const int32_t*)(opt0->data))[3];
 | |
|     const int32_t d0 = ((const int32_t*)(opt0->data))[4];
 | |
|     const int32_t d1 = ((const int32_t*)(opt0->data))[5];
 | |
| 
 | |
|     GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nb10 == sizeof(float));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         memset(params->wdata, 0, params->wsize);
 | |
| 
 | |
|         // prepare source data (src1)
 | |
|         {
 | |
|             ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
 | |
| 
 | |
|             for (int i12 = 0; i12 < ne12; i12++) {
 | |
|                 const float * const src = (float *)((char *) src1->data + i12*nb12);
 | |
|                 ggml_fp16_t * dst_data = wdata;
 | |
| 
 | |
|                 for (int i1 = 0; i1 < ne1; i1++) {
 | |
|                     for (int i0 = 0; i0 < ne0; i0++) {
 | |
|                         for (int ik1 = 0; ik1 < nk1; ik1++) {
 | |
|                             for (int ik0 = 0; ik0 < nk0; ik0++) {
 | |
|                                 const int idx0 = i0*s0 + ik0*d0 - p0;
 | |
|                                 const int idx1 = i1*s1 + ik1*d1 - p1;
 | |
| 
 | |
|                                 if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
 | |
|                                     dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
 | |
|                                         GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // total patches in dst
 | |
|     const int np = ne2;
 | |
| 
 | |
|     // patches per thread
 | |
|     const int dp = (np + nth - 1)/nth;
 | |
| 
 | |
|     // patch range for this thread
 | |
|     const int ip0 = dp*ith;
 | |
|     const int ip1 = MIN(ip0 + dp, np);
 | |
| 
 | |
|     ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
 | |
| 
 | |
|     for (int i3 = 0; i3 < ne3; i3++) {
 | |
|         for (int i2 = ip0; i2 < ip1; i2++) {
 | |
|             float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
 | |
| 
 | |
|             for (int i1 = 0; i1 < ne1; ++i1) {
 | |
|                 for (int i0 = 0; i0 < ne0; ++i0) {
 | |
|                     ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
 | |
|                             (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
 | |
|                             (ggml_fp16_t *)                wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_conv_2d(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst
 | |
|         ) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, opt0, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 //ggml_compute_forward_conv_2d_f32(params, src0, src1, opt0, dst);
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_pool_1d_sk_p0
 | |
| 
 | |
| static void ggml_compute_forward_pool_1d_sk_p0(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const enum ggml_op_pool op,
 | |
|         const struct ggml_tensor * src,
 | |
|         const int k,
 | |
|         struct ggml_tensor * dst) {
 | |
|     assert(src->type == GGML_TYPE_F32);
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const char * cdata = (const char *)src->data;
 | |
|     const char * const data_end = cdata + ggml_nbytes(src);
 | |
|     float * drow = (float *)dst->data;
 | |
| 
 | |
|     const int64_t rs = dst->ne[0];
 | |
| 
 | |
|     while (cdata < data_end) {
 | |
|         const float * const srow = (const float *)cdata;
 | |
| 
 | |
|         int j = 0;
 | |
| 
 | |
|         for (int64_t i = 0; i < rs; ++i) {
 | |
|             switch (op) {
 | |
|                 case GGML_OP_POOL_AVG:   drow[i] = 0;        break;
 | |
|                 case GGML_OP_POOL_MAX:   drow[i] = -FLT_MAX; break;
 | |
|                 case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
 | |
|             }
 | |
|             for (int ki = 0; ki < k; ++ki) {
 | |
|                 switch (op) {
 | |
|                     case GGML_OP_POOL_AVG:                          drow[i] += srow[j]; break;
 | |
|                     case GGML_OP_POOL_MAX:   if (srow[j] > drow[i]) drow[i]  = srow[j]; break;
 | |
|                     case GGML_OP_POOL_COUNT:                        GGML_ASSERT(false); break;
 | |
|                 }
 | |
|                 ++j;
 | |
|             }
 | |
|             switch (op) {
 | |
|                 case GGML_OP_POOL_AVG:         drow[i] /= k; break;
 | |
|                 case GGML_OP_POOL_MAX:                       break;
 | |
|                 case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         cdata += src->nb[1];
 | |
|         drow  += rs;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_pool_1d
 | |
| 
 | |
| static void ggml_compute_forward_pool_1d(
 | |
|     const struct ggml_compute_params* params,
 | |
|     const struct ggml_tensor* src0,
 | |
|     const struct ggml_tensor* opt0,
 | |
|     struct ggml_tensor* dst) {
 | |
|     GGML_ASSERT(opt0->ne[0] == 4);
 | |
|     const int* opts = (const int*)opt0->data;
 | |
|     enum ggml_op_pool op = opts[0];
 | |
|     const int k0 = opts[1];
 | |
|     const int s0 = opts[2];
 | |
|     const int p0 = opts[3];
 | |
|     GGML_ASSERT(p0 == 0); // padding not supported
 | |
|     GGML_ASSERT(k0 == s0); // only s = k supported
 | |
| 
 | |
|     ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_pool_2d_sk_p0
 | |
| 
 | |
| static void ggml_compute_forward_pool_2d_sk_p0(
 | |
|     const struct ggml_compute_params * params,
 | |
|     const enum ggml_op_pool op,
 | |
|     const struct ggml_tensor * src,
 | |
|     const int k0,
 | |
|     const int k1,
 | |
|     struct ggml_tensor * dst) {
 | |
|     assert(src->type == GGML_TYPE_F32);
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const char * cdata = (const char*)src->data;
 | |
|     const char * const data_end = cdata + ggml_nbytes(src);
 | |
| 
 | |
|     const int64_t px = dst->ne[0];
 | |
|     const int64_t py = dst->ne[1];
 | |
|     const int64_t pa = px * py;
 | |
| 
 | |
|     float * dplane = (float *)dst->data;
 | |
| 
 | |
|     const int ka = k0 * k1;
 | |
| 
 | |
|     while (cdata < data_end) {
 | |
|         for (int oy = 0; oy < py; ++oy) {
 | |
|             float * const drow = dplane + oy * px;
 | |
|             for (int ox = 0; ox < px; ++ox) {
 | |
|                 float * const out =  drow + ox;
 | |
|                 switch (op) {
 | |
|                     case GGML_OP_POOL_AVG:     *out = 0;        break;
 | |
|                     case GGML_OP_POOL_MAX:     *out = -FLT_MAX; break;
 | |
|                     case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
 | |
|                 }
 | |
| 
 | |
|                 const int ix = ox * k0;
 | |
|                 const int iy = oy * k1;
 | |
| 
 | |
|                 for (int ky = 0; ky < k1; ++ky) {
 | |
|                     const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
 | |
|                     for (int kx = 0; kx < k0; ++kx) {
 | |
|                         int j = ix + kx;
 | |
|                         switch (op) {
 | |
|                             case GGML_OP_POOL_AVG:                     *out += srow[j]; break;
 | |
|                             case GGML_OP_POOL_MAX: if (srow[j] > *out) *out  = srow[j]; break;
 | |
|                             case GGML_OP_POOL_COUNT:                GGML_ASSERT(false); break;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 switch (op) {
 | |
|                     case GGML_OP_POOL_AVG:           *out /= ka; break;
 | |
|                     case GGML_OP_POOL_MAX:                       break;
 | |
|                     case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         cdata  += src->nb[2];
 | |
|         dplane += pa;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_pool_2d
 | |
| 
 | |
| static void ggml_compute_forward_pool_2d(
 | |
|     const struct ggml_compute_params * params,
 | |
|     const struct ggml_tensor * src0,
 | |
|     const struct ggml_tensor * opt0,
 | |
|     struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(opt0->ne[0] == 7);
 | |
|     const int* opts = (const int*)opt0->data;
 | |
|     enum ggml_op_pool op = opts[0];
 | |
|     const int k0 = opts[1];
 | |
|     const int k1 = opts[2];
 | |
|     const int s0 = opts[3];
 | |
|     const int s1 = opts[4];
 | |
|     const int p0 = opts[5];
 | |
|     const int p1 = opts[6];
 | |
|     GGML_ASSERT(p0 == 0);
 | |
|     GGML_ASSERT(p1 == 0); // padding not supported
 | |
|     GGML_ASSERT(k0 == s0);
 | |
|     GGML_ASSERT(k1 == s1); // only s = k supported
 | |
| 
 | |
|     ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ggml_compute_forward_flash_attn
 | |
| 
 | |
| static void ggml_compute_forward_flash_attn_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * q,
 | |
|         const struct ggml_tensor * k,
 | |
|         const struct ggml_tensor * v,
 | |
|         const bool masked,
 | |
|              struct ggml_tensor * dst) {
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, neq, q,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbq, q,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, nek, k,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbk, k,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, nev, v,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbv, v,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne,  dst, ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb,  dst, nb);
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int64_t D = neq0;
 | |
|     const int64_t N = neq1;
 | |
|     const int64_t P = nek1 - N;
 | |
|     const int64_t M = P + N;
 | |
| 
 | |
|     const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
 | |
| 
 | |
|     GGML_ASSERT(ne0 == D);
 | |
|     GGML_ASSERT(ne1 == N);
 | |
|     GGML_ASSERT(P >= 0);
 | |
| 
 | |
|     GGML_ASSERT(nbq0 == sizeof(float));
 | |
|     GGML_ASSERT(nbk0 == sizeof(float));
 | |
|     GGML_ASSERT(nbv0 == sizeof(float));
 | |
| 
 | |
|     GGML_ASSERT(neq0 == D);
 | |
|     GGML_ASSERT(nek0 == D);
 | |
|     GGML_ASSERT(nev1 == D);
 | |
| 
 | |
|     GGML_ASSERT(neq1 == N);
 | |
|     GGML_ASSERT(nek1 == N + P);
 | |
|     GGML_ASSERT(nev1 == D);
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb0 <= nb1);
 | |
|     GGML_ASSERT(nb1 <= nb2);
 | |
|     GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // parallelize by q rows using ggml_vec_dot_f32
 | |
| 
 | |
|     // total rows in q
 | |
|     const int nr = neq1*neq2*neq3;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     const float scale = 1.0f/sqrtf(D);
 | |
| 
 | |
|     //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // q indices
 | |
|         const int iq3 = ir/(neq2*neq1);
 | |
|         const int iq2 = (ir - iq3*neq2*neq1)/neq1;
 | |
|         const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
 | |
| 
 | |
|         float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
 | |
| 
 | |
|         for (int i = M; i < Mup; ++i) {
 | |
|             S[i] = -INFINITY;
 | |
|         }
 | |
| 
 | |
|         for (int64_t ic = 0; ic < nek1; ++ic) {
 | |
|             // k indices
 | |
|             const int ik3 = iq3;
 | |
|             const int ik2 = iq2;
 | |
|             const int ik1 = ic;
 | |
| 
 | |
|             // S indices
 | |
|             const int i1 = ik1;
 | |
| 
 | |
|             ggml_vec_dot_f32(neq0,
 | |
|                     S + i1,
 | |
|                     (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
 | |
|                     (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
 | |
|         }
 | |
| 
 | |
|         // scale
 | |
|         ggml_vec_scale_f32(nek1, S, scale);
 | |
| 
 | |
|         if (masked) {
 | |
|             for (int64_t i = P; i < M; i++) {
 | |
|                 if (i > P + iq1) {
 | |
|                     S[i] = -INFINITY;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // softmax
 | |
|         {
 | |
|             float max = -INFINITY;
 | |
|             ggml_vec_max_f32(M, &max, S);
 | |
| 
 | |
|             ggml_float sum = 0.0;
 | |
|             {
 | |
| #ifdef GGML_SOFT_MAX_ACCELERATE
 | |
|                 max = -max;
 | |
|                 vDSP_vsadd(S, 1, &max, S, 1, Mup);
 | |
|                 vvexpf(S, S, &Mup);
 | |
|                 ggml_vec_sum_f32(Mup, &sum, S);
 | |
| #else
 | |
|                 uint16_t   scvt[GGML_SOFT_MAX_UNROLL];
 | |
|                 ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
 | |
| 
 | |
|                 for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
 | |
|                     float * SS = S + i;
 | |
| 
 | |
|                     for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
 | |
|                         if (SS[j] == -INFINITY) {
 | |
|                             SS[j] = 0.0f;
 | |
|                         } else {
 | |
|                             ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
 | |
|                             memcpy(&scvt[j], &s, sizeof(uint16_t));
 | |
|                             const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
 | |
|                             sump[j] += (ggml_float)val;
 | |
|                             SS[j] = val;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
 | |
|                     sum += sump[i];
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
| 
 | |
|             assert(sum > 0.0);
 | |
| 
 | |
|             sum = 1.0/sum;
 | |
|             ggml_vec_scale_f32(M, S, sum);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|             for (int i = 0; i < M; ++i) {
 | |
|                 assert(!isnan(S[i]));
 | |
|                 assert(!isinf(S[i]));
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         for (int64_t ic = 0; ic < nev1; ++ic) {
 | |
|             // dst indices
 | |
|             const int i1 = iq1;
 | |
|             const int i2 = iq2;
 | |
|             const int i3 = iq3;
 | |
| 
 | |
|             ggml_vec_dot_f32(nek1,
 | |
|                     (float *) ((char *) dst->data + (ic*nb0 + i1*nb1  + i2*nb2  + i3*nb3)),
 | |
|                     (float *) ((char *) v->data   + (         ic*nbv1 + i2*nbv2 + i3*nbv3)),
 | |
|                     S);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_flash_attn_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * q,
 | |
|         const struct ggml_tensor * k,
 | |
|         const struct ggml_tensor * v,
 | |
|         const bool masked,
 | |
|              struct ggml_tensor * dst) {
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, neq, q,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbq, q,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, nek, k,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbk, k,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, nev, v,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbv, v,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne,  dst, ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb,  dst, nb);
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int64_t D = neq0;
 | |
|     const int64_t N = neq1;
 | |
|     const int64_t P = nek1 - N;
 | |
|     const int64_t M = P + N;
 | |
| 
 | |
|     const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
 | |
| 
 | |
|     GGML_ASSERT(ne0 == D);
 | |
|     GGML_ASSERT(ne1 == N);
 | |
|     GGML_ASSERT(P >= 0);
 | |
| 
 | |
|     GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
 | |
| 
 | |
|     GGML_ASSERT(neq0 == D);
 | |
|     GGML_ASSERT(nek0 == D);
 | |
|     GGML_ASSERT(nev1 == D);
 | |
| 
 | |
|     GGML_ASSERT(neq1 == N);
 | |
|     GGML_ASSERT(nek1 == N + P);
 | |
|     GGML_ASSERT(nev1 == D);
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb0 <= nb1);
 | |
|     GGML_ASSERT(nb1 <= nb2);
 | |
|     GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // parallelize by q rows using ggml_vec_dot_f32
 | |
| 
 | |
|     // total rows in q
 | |
|     const int nr = neq1*neq2*neq3;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     const float scale = 1.0f/sqrtf(D);
 | |
| 
 | |
|     //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // q indices
 | |
|         const int iq3 = ir/(neq2*neq1);
 | |
|         const int iq2 = (ir - iq3*neq2*neq1)/neq1;
 | |
|         const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
 | |
| 
 | |
|         float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
 | |
| 
 | |
|         for (int i = M; i < Mup; ++i) {
 | |
|             S[i] = -INFINITY;
 | |
|         }
 | |
| 
 | |
|         if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
 | |
|             for (int64_t ic = 0; ic < nek1; ++ic) {
 | |
|                 // k indices
 | |
|                 const int ik3 = iq3;
 | |
|                 const int ik2 = iq2;
 | |
|                 const int ik1 = ic;
 | |
| 
 | |
|                 // S indices
 | |
|                 const int i1 = ik1;
 | |
| 
 | |
|                 ggml_vec_dot_f16(neq0,
 | |
|                         S + i1,
 | |
|                         (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
 | |
|                         (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
 | |
|             }
 | |
|         } else {
 | |
|             for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
 | |
|                 // k indices
 | |
|                 const int ik3 = iq3;
 | |
|                 const int ik2 = iq2;
 | |
|                 const int ik1 = ic;
 | |
| 
 | |
|                 // S indices
 | |
|                 const int i1 = ik1;
 | |
| 
 | |
|                 ggml_vec_dot_f16_unroll(neq0, nbk1,
 | |
|                         S + i1,
 | |
|                         ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
 | |
|                         (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // scale
 | |
|         ggml_vec_scale_f32(nek1, S, scale);
 | |
| 
 | |
|         if (masked) {
 | |
|             for (int64_t i = P; i < M; i++) {
 | |
|                 if (i > P + iq1) {
 | |
|                     S[i] = -INFINITY;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // softmax
 | |
|         {
 | |
|             float max = -INFINITY;
 | |
|             ggml_vec_max_f32(M, &max, S);
 | |
| 
 | |
|             ggml_float sum = 0.0;
 | |
|             {
 | |
| #ifdef GGML_SOFT_MAX_ACCELERATE
 | |
|                 max = -max;
 | |
|                 vDSP_vsadd(S, 1, &max, S, 1, Mup);
 | |
|                 vvexpf(S, S, &Mup);
 | |
|                 ggml_vec_sum_f32(Mup, &sum, S);
 | |
| #else
 | |
|                 uint16_t   scvt[GGML_SOFT_MAX_UNROLL];
 | |
|                 ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
 | |
| 
 | |
|                 for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
 | |
|                     float * SS = S + i;
 | |
| 
 | |
|                     for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
 | |
|                         if (SS[j] == -INFINITY) {
 | |
|                             SS[j] = 0.0f;
 | |
|                         } else {
 | |
|                             ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
 | |
|                             memcpy(&scvt[j], &s, sizeof(uint16_t));
 | |
|                             const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
 | |
|                             sump[j] += (ggml_float)val;
 | |
|                             SS[j] = val;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
 | |
|                     sum += sump[i];
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
| 
 | |
|             assert(sum > 0.0);
 | |
| 
 | |
|             sum = 1.0/sum;
 | |
|             ggml_vec_scale_f32(M, S, sum);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|             for (int i = 0; i < M; ++i) {
 | |
|                 assert(!isnan(S[i]));
 | |
|                 assert(!isinf(S[i]));
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
 | |
| 
 | |
|         for (int64_t i = 0; i < M; i++) {
 | |
|             S16[i] = GGML_FP32_TO_FP16(S[i]);
 | |
|         }
 | |
| 
 | |
|         if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
 | |
|             for (int64_t ic = 0; ic < nev1; ++ic) {
 | |
|                 // dst indices
 | |
|                 const int i1 = iq1;
 | |
|                 const int i2 = iq2;
 | |
|                 const int i3 = iq3;
 | |
| 
 | |
|                 ggml_vec_dot_f16(nek1,
 | |
|                         (float *)       ((char *) dst->data + (ic*nb0 + i1*nb1  + i2*nb2  + i3*nb3)),
 | |
|                         (ggml_fp16_t *) ((char *) v->data   + (         ic*nbv1 + i2*nbv2 + i3*nbv3)),
 | |
|                         S16);
 | |
|             }
 | |
|         } else {
 | |
|             for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
 | |
|                 // dst indices
 | |
|                 const int i1 = iq1;
 | |
|                 const int i2 = iq2;
 | |
|                 const int i3 = iq3;
 | |
| 
 | |
|                 ggml_vec_dot_f16_unroll(nek1, nbv1,
 | |
|                         (float *) ((char *) dst->data + (ic*nb0 + i1*nb1  + i2*nb2  + i3*nb3)),
 | |
|                         ((char *) v->data   + (         ic*nbv1 + i2*nbv2 + i3*nbv3)),
 | |
|                         S16);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_flash_attn(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * q,
 | |
|         const struct ggml_tensor * k,
 | |
|         const struct ggml_tensor * v,
 | |
|         const bool masked,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (q->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_flash_ff
 | |
| 
 | |
| static void ggml_compute_forward_flash_ff_f16(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * a,  // F16
 | |
|         const struct ggml_tensor * b0, // F16 fc_w
 | |
|         const struct ggml_tensor * b1, // F32 fc_b
 | |
|         const struct ggml_tensor * c0, // F16 proj_w
 | |
|         const struct ggml_tensor * c1, // F32 proj_b
 | |
|         struct ggml_tensor * dst) {
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, nea,  a,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nba,  a,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, neb0, b0,  ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbb0, b0,  nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, neb1, b1,  ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbb1, b1,  nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, nec0, c0,  ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbc0, c0,  nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, nec1, c1,  ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbc1, c1,  nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne,   dst, ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb,   dst, nb);
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int64_t D = nea0;
 | |
|     //const int64_t N = nea1;
 | |
|     const int64_t M = neb01;
 | |
| 
 | |
|     GGML_ASSERT(ne0 == nea0);
 | |
|     GGML_ASSERT(ne1 == nea1);
 | |
|     GGML_ASSERT(ne2 == nea2);
 | |
| 
 | |
|     GGML_ASSERT(nba0  == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nbb10 == sizeof(float));
 | |
|     GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
 | |
|     GGML_ASSERT(nbc10 == sizeof(float));
 | |
| 
 | |
|     GGML_ASSERT(neb00 == D);
 | |
|     GGML_ASSERT(neb01 == M);
 | |
|     GGML_ASSERT(neb10 == M);
 | |
|     GGML_ASSERT(neb11 == 1);
 | |
| 
 | |
|     GGML_ASSERT(nec00 == M);
 | |
|     GGML_ASSERT(nec01 == D);
 | |
|     GGML_ASSERT(nec10 == D);
 | |
|     GGML_ASSERT(nec11 == 1);
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb0 <= nb1);
 | |
|     GGML_ASSERT(nb1 <= nb2);
 | |
|     GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // parallelize by a rows using ggml_vec_dot_f32
 | |
| 
 | |
|     // total rows in a
 | |
|     const int nr = nea1*nea2*nea3;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // a indices
 | |
|         const int ia3 = ir/(nea2*nea1);
 | |
|         const int ia2 = (ir - ia3*nea2*nea1)/nea1;
 | |
|         const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
 | |
| 
 | |
|         float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
 | |
| 
 | |
|         for (int64_t ic = 0; ic < neb01; ++ic) {
 | |
|             // b0 indices
 | |
|             const int ib03 = ia3;
 | |
|             const int ib02 = ia2;
 | |
|             const int ib01 = ic;
 | |
| 
 | |
|             // S indices
 | |
|             const int i1 = ib01;
 | |
| 
 | |
|             ggml_vec_dot_f16(nea0,
 | |
|                     S + i1,
 | |
|                     (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
 | |
|                     (ggml_fp16_t *) ((char *)  a->data + ( ia1*nba1  +  ia2*nba2  +  ia3*nba3)));
 | |
|         }
 | |
| 
 | |
|         ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
 | |
|         //ggml_vec_gelu_f32(neb01, S, S);
 | |
| 
 | |
|         ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
 | |
| 
 | |
|         for (int64_t i = 0; i < M; i++) {
 | |
|             S16[i] = GGML_FP32_TO_FP16(S[i]);
 | |
|         }
 | |
| 
 | |
|         ggml_vec_gelu_f16(neb01, S16, S16);
 | |
| 
 | |
|         {
 | |
|             // dst indices
 | |
|             const int i1 = ia1;
 | |
|             const int i2 = ia2;
 | |
|             const int i3 = ia3;
 | |
| 
 | |
|             for (int64_t ic = 0; ic < nec01; ++ic) {
 | |
| 
 | |
|                 ggml_vec_dot_f16(neb01,
 | |
|                         (float *)       ((char *) dst->data + (ic*nb0 + i1*nb1   + i2*nb2   + i3*nb3)),
 | |
|                         (ggml_fp16_t *) ((char *) c0->data  + (         ic*nbc01 + i2*nbc02 + i3*nbc03)),
 | |
|                         S16);
 | |
|             }
 | |
| 
 | |
|             ggml_vec_add_f32(nec01,
 | |
|                     (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
 | |
|                     (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
 | |
|                     (float *) c1->data);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_flash_ff(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * a,
 | |
|         const struct ggml_tensor * b0,
 | |
|         const struct ggml_tensor * b1,
 | |
|         const struct ggml_tensor * c0,
 | |
|         const struct ggml_tensor * c1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (b0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_flash_attn_back
 | |
| 
 | |
| static void ggml_compute_forward_flash_attn_back_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * q,
 | |
|         const struct ggml_tensor * k,
 | |
|         const struct ggml_tensor * v,
 | |
|         const struct ggml_tensor * d,
 | |
|         const bool masked,
 | |
|               struct ggml_tensor * dst) {
 | |
|     int64_t t0 = ggml_perf_time_us();
 | |
|     UNUSED(t0);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, neq, q,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbq, q,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, nek, k,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbk, k,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, nev, v,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbv, v,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, ned, d,   ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nbd, d,   nb);
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne,  dst, ne);
 | |
|     GGML_TENSOR_LOCALS(size_t,  nb,  dst, nb);
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     const int64_t D = neq0;
 | |
|     const int64_t N = neq1;
 | |
|     const int64_t P = nek1 - N;
 | |
|     const int64_t M = P + N;
 | |
| 
 | |
|     const int Mup  = ggml_up(M, GGML_SOFT_MAX_UNROLL);
 | |
|     const int mxDM = MAX(D, Mup);
 | |
| 
 | |
|     // GGML_ASSERT(ne0 == D);
 | |
|     // GGML_ASSERT(ne1 == N);
 | |
|     GGML_ASSERT(P >= 0);
 | |
| 
 | |
|     GGML_ASSERT(nbq0 == sizeof(float));
 | |
|     GGML_ASSERT(nbk0 == sizeof(float));
 | |
|     GGML_ASSERT(nbv0 == sizeof(float));
 | |
| 
 | |
|     GGML_ASSERT(neq0 == D);
 | |
|     GGML_ASSERT(nek0 == D);
 | |
|     GGML_ASSERT(nev1 == D);
 | |
|     GGML_ASSERT(ned0 == D);
 | |
| 
 | |
|     GGML_ASSERT(neq1 == N);
 | |
|     GGML_ASSERT(nek1 == N + P);
 | |
|     GGML_ASSERT(nev1 == D);
 | |
|     GGML_ASSERT(ned1 == N);
 | |
| 
 | |
|     // dst cannot be transposed or permuted
 | |
|     GGML_ASSERT(nb0 == sizeof(float));
 | |
|     GGML_ASSERT(nb0 <= nb1);
 | |
|     GGML_ASSERT(nb1 <= nb2);
 | |
|     GGML_ASSERT(nb2 <= nb3);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         if (ith == 0) {
 | |
|             memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // parallelize by q rows using ggml_vec_dot_f32
 | |
| 
 | |
|     // total rows in q
 | |
|     const int nr = neq2*neq3;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     const float scale = 1.0f/sqrtf(D);
 | |
| 
 | |
|     //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
 | |
| 
 | |
|     for (int ir = ir0; ir < ir1; ++ir) {
 | |
|         // q indices
 | |
|         const int iq3 = ir/(neq2);
 | |
|         const int iq2 = ir - iq3*neq2;
 | |
|         for ( int iq1 = 0; iq1 < neq1; ++iq1) {
 | |
| 
 | |
| 
 | |
|             // not sure about CACHE_LINE_SIZE_F32..
 | |
|             // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
 | |
|             float * S  = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
 | |
|             float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
 | |
| 
 | |
|             for (int i = M; i < Mup; ++i) {
 | |
|                 S[i] = -INFINITY;
 | |
|             }
 | |
| 
 | |
|             for (int64_t ic = 0; ic < nek1; ++ic) {
 | |
|                 // k indices
 | |
|                 const int ik3 = iq3;
 | |
|                 const int ik2 = iq2;
 | |
|                 const int ik1 = ic;
 | |
| 
 | |
|                 // S indices
 | |
|                 const int i1 = ik1;
 | |
| 
 | |
|                 ggml_vec_dot_f32(neq0,
 | |
|                         S + i1,
 | |
|                         (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
 | |
|                         (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
 | |
|             }
 | |
| 
 | |
|             // scale
 | |
|             ggml_vec_scale_f32(nek1, S, scale);
 | |
| 
 | |
|             if (masked) {
 | |
|                 for (int64_t i = P; i < M; i++) {
 | |
|                     if (i > P + iq1) {
 | |
|                         S[i] = -INFINITY;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // softmax
 | |
|             {
 | |
|                 float max = -INFINITY;
 | |
|                 ggml_vec_max_f32(M, &max, S);
 | |
| 
 | |
|                 ggml_float sum = 0.0;
 | |
|                 {
 | |
| #ifdef GGML_SOFT_MAX_ACCELERATE
 | |
|                     max = -max;
 | |
|                     vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
 | |
|                     vvexpf(SM, SM, &Mup);
 | |
|                     ggml_vec_sum_f32(Mup, &sum, SM);
 | |
| #else
 | |
|                     uint16_t   scvt[GGML_SOFT_MAX_UNROLL];
 | |
|                     ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
 | |
| 
 | |
|                     for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
 | |
|                         float * SR =  S + i;
 | |
|                         float * SW = SM + i;
 | |
| 
 | |
|                         for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
 | |
|                             if (SR[j] == -INFINITY) {
 | |
|                                 SW[j] = 0.0f;
 | |
|                             } else {
 | |
|                                 ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
 | |
|                                 memcpy(&scvt[j], &s, sizeof(uint16_t));
 | |
|                                 const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
 | |
|                                 sump[j] += (ggml_float)val;
 | |
|                                 SW[j] = val;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
 | |
|                         sum += sump[i];
 | |
|                     }
 | |
| #endif
 | |
|                 }
 | |
| 
 | |
|                 assert(sum > 0.0);
 | |
| 
 | |
|                 sum = 1.0/sum;
 | |
|                 ggml_vec_scale_f32(M, SM, sum);
 | |
| 
 | |
|             }
 | |
| 
 | |
|             // step-by-step explanation
 | |
|             {
 | |
|                 // forward-process                   shape      grads from backward process
 | |
|                 // parallel_for iq2,iq3:
 | |
|                 //  k[:D,:M,:,:]                     [D,M,:,:]  grad[k][:D,:M,iq2,iq3]  += grad[kcur]
 | |
|                 //  q[:D,:N,:,:]                     [D,N,:,:]  grad[q][:D,iq1,iq2,iq3] += grad[qcur]
 | |
|                 //  v[:M,:D,:,:]                     [M,D,:,:]  grad[v][:M,:D,iq2,iq3]  += grad[vcur]
 | |
|                 //  for iq1:
 | |
|                 //   kcur   = k[:D,:M,iq2,iq3]       [D,M,1,1]  grad[kcur] = grad[S1].T @ qcur
 | |
|                 //   qcur   = q[:D,iq1,iq2,iq3]      [D,1,1,1]  grad[qcur] = grad[S1]   @ kcur
 | |
|                 //   vcur   = v[:M,:D,iq2,iq3]       [M,D,1,1]  grad[vcur] = grad[S5].T @ S4
 | |
|                 //   S0     = -Inf                   [D,1,1,1]
 | |
|                 //  ~S1[i]  = dot(kcur[:D,i], qcur)
 | |
|                 //   S1     = qcur @ kcur.T          [M,1,1,1]  grad[S1]   = grad[S2] * scale
 | |
|                 //   S2     = S1 * scale             [M,1,1,1]  grad[S2]   = diag_mask_zero(grad[S3], P)
 | |
|                 //   S3     = diag_mask_inf(S2, P)   [M,1,1,1]  grad[S3]   = S4 * (grad[S4] - dot(S4, grad[S4]))
 | |
|                 //   S4     = softmax(S3)            [M,1,1,1]  grad[S4]   = grad[S5] @ vcur
 | |
|                 //  ~S5[i]  = dot(vcur[:,i], S4)
 | |
|                 //   S5     = S4 @ vcur.T            [D,1,1,1]  grad[S5]   = d[:D,iq1,iq2,iq3]
 | |
|                 //  ~dst[i,iq1,iq2,iq3]  = S5[i]              ^
 | |
|                 //   dst[:D,iq1,iq2,iq3] = S5                 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
 | |
|                 // dst                               backward-/ grad[dst]                 = d
 | |
|                 //
 | |
|                 // output gradients with their dependencies:
 | |
|                 //
 | |
|                 // grad[kcur] = grad[S1].T @ qcur
 | |
|                 // grad[S1]   = diag_mask_zero(grad[S3], P) * scale
 | |
|                 // grad[S3]   = S4 * (grad[S4] - dot(S4, grad[S4]))
 | |
|                 // grad[S4]   = grad[S5] @ vcur
 | |
|                 // grad[S4]   = d[:D,iq1,iq2,iq3] @ vcur
 | |
|                 // grad[qcur] = grad[S1]   @ kcur
 | |
|                 // grad[vcur] = grad[S5].T @ S4
 | |
|                 // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
 | |
|                 //
 | |
|                 // in post-order:
 | |
|                 //
 | |
|                 // S1         = qcur @ kcur.T
 | |
|                 // S2         = S1 * scale
 | |
|                 // S3         = diag_mask_inf(S2, P)
 | |
|                 // S4         = softmax(S3)
 | |
|                 // grad[S4]   = d[:D,iq1,iq2,iq3] @ vcur
 | |
|                 // grad[S3]   = S4 * (grad[S4] - dot(S4, grad[S4]))
 | |
|                 // grad[S1]   = diag_mask_zero(grad[S3], P) * scale
 | |
|                 // grad[qcur] = grad[S1]   @ kcur
 | |
|                 // grad[kcur] = grad[S1].T @ qcur
 | |
|                 // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
 | |
|                 //
 | |
|                 // using less variables (SM=S4):
 | |
|                 //
 | |
|                 // S             = diag_mask_inf(qcur @ kcur.T * scale, P)
 | |
|                 // SM            = softmax(S)
 | |
|                 // S             = d[:D,iq1,iq2,iq3] @ vcur
 | |
|                 // dot_SM_gradSM = dot(SM, S)
 | |
|                 // S             = SM * (S - dot(SM, S))
 | |
|                 // S             = diag_mask_zero(S, P) * scale
 | |
|                 //
 | |
|                 // grad[q][:D,iq1,iq2,iq3] += S   @ kcur
 | |
|                 // grad[k][:D,:M,iq2,iq3]  += S.T @ qcur
 | |
|                 // grad[v][:M,:D,iq2,iq3]  += d[:D,iq1,iq2,iq3].T @ SM
 | |
|             }
 | |
| 
 | |
|             // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
 | |
|             // S = d[:D,iq1,iq2,iq3] @ vcur
 | |
|             // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
 | |
|             ggml_vec_set_f32(M, S, 0);
 | |
|             for (int64_t ic = 0; ic < D; ++ic) {
 | |
|                 // dst indices
 | |
|                 const int i1 = iq1;
 | |
|                 const int i2 = iq2;
 | |
|                 const int i3 = iq3;
 | |
| 
 | |
|                 ggml_vec_mad_f32(M,
 | |
|                         S,
 | |
|                          (float *) ((char *) v->data + (          ic*nbv1 + i2*nbv2 + i3*nbv3)),
 | |
|                         *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
 | |
|             }
 | |
| 
 | |
|             // S = SM * (S - dot(SM, S))
 | |
|             float dot_SM_gradSM = 0;
 | |
|             ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
 | |
|             ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
 | |
|             ggml_vec_mul_f32 (M, S, S, SM);
 | |
| 
 | |
|             // S = diag_mask_zero(S, P) * scale
 | |
|             if (masked) {
 | |
|                 // for (int64_t i = P + iq1 + 1; i < M; i++) {
 | |
|                 //     S[i] = 0;
 | |
|                 // }
 | |
|                 for (int64_t i = P; i < M; i++) {
 | |
|                     if (i > P + iq1) {
 | |
|                         S[i] = 0;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             ggml_vec_scale_f32(M, S, scale);
 | |
| 
 | |
|             void * grad_q = (char *) dst->data;
 | |
|             void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
 | |
|             void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
 | |
| 
 | |
|             const size_t nbgq1 = nb0*neq0;
 | |
|             const size_t nbgq2 = nb0*neq0*neq1;
 | |
|             const size_t nbgq3 = nb0*neq0*neq1*neq2;
 | |
| 
 | |
|             const size_t nbgk1 = nb0*nek0;
 | |
|             const size_t nbgk2 = nb0*nek0*nek1;
 | |
|             const size_t nbgk3 = nb0*nek0*nek1*neq2;
 | |
| 
 | |
|             const size_t nbgv1 = nb0*nev0;
 | |
|             const size_t nbgv2 = nb0*nev0*nev1;
 | |
|             const size_t nbgv3 = nb0*nev0*nev1*neq2;
 | |
| 
 | |
|             // S    shape [M,1]
 | |
|             // SM   shape [M,1]
 | |
|             // kcur shape [D,M]
 | |
|             // qcur shape [D,1]
 | |
|             // vcur shape [M,D]
 | |
|             //
 | |
|             // grad[q][:D,iq1,iq2,iq3] += S @ kcur
 | |
|             // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
 | |
|             // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
 | |
|             //
 | |
|             //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
 | |
|             //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
 | |
|             for (int64_t ic = 0; ic < M; ++ic) {
 | |
|                 // dst indices
 | |
|                 const int i1 = iq1;
 | |
|                 const int i2 = iq2;
 | |
|                 const int i3 = iq3;
 | |
| 
 | |
|                 ggml_vec_mad_f32(D,
 | |
|                         (float *) ((char *) grad_q  + (i1*nbgq1  + i2*nbgq2  + i3*nbgq3)),
 | |
|                         (float *) ((char *) k->data + (ic*nbk1   + i2*nbk2   + i3*nbk3)),
 | |
|                         S[ic]);
 | |
|             }
 | |
| 
 | |
|             // grad[k][:D,:M,iq2,iq3] += S.T       @ qcur
 | |
|             // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
 | |
|             // grad[k][:D,ic,iq2,iq3] += S[ic]     * qcur[:D,0]
 | |
|             for (int64_t ic = 0; ic < M; ++ic) {
 | |
|                 // dst indices
 | |
|                 const int i1 = iq1;
 | |
|                 const int i2 = iq2;
 | |
|                 const int i3 = iq3;
 | |
| 
 | |
|                 // ggml_vec_set_f32(D,
 | |
|                 //         (float *) ((char *) grad_k  + (ic*nbgk1  + i2*nbgk2  + i3*nbgk3)),
 | |
|                 //         0);
 | |
|                 ggml_vec_mad_f32(D,
 | |
|                         (float *) ((char *) grad_k  + (ic*nbgk1  + i2*nbgk2  + i3*nbgk3)),
 | |
|                         (float *) ((char *) q->data + (i1*nbq1   + i2*nbq2   + i3*nbq3)),
 | |
|                         S[ic]);
 | |
|             }
 | |
| 
 | |
|             // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T       @ SM
 | |
|             // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
 | |
|             // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3]         * SM[:M]
 | |
|             for (int64_t ic = 0; ic < D; ++ic) {
 | |
|                 // dst indices
 | |
|                 const int i1 = iq1;
 | |
|                 const int i2 = iq2;
 | |
|                 const int i3 = iq3;
 | |
| 
 | |
|                 // ggml_vec_set_f32(M,
 | |
|                 //         (float *) ((char *) grad_v   + (          ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
 | |
|                 //         0);
 | |
|                 ggml_vec_mad_f32(M,
 | |
|                         (float *) ((char *) grad_v   + (          ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
 | |
|                         SM,
 | |
|                         *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1  + i2*nbd2  + i3*nbd3)));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_flash_attn_back(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * q,
 | |
|         const struct ggml_tensor * k,
 | |
|         const struct ggml_tensor * v,
 | |
|         const struct ggml_tensor * d,
 | |
|         const bool masked,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (q->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_win_part
 | |
| 
 | |
| static void ggml_compute_forward_win_part_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne);
 | |
| 
 | |
|     const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
 | |
|     const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
 | |
|     const int32_t w    = ((const int32_t *)(opt0->data))[2];
 | |
| 
 | |
|     assert(ne00 == ne0);
 | |
|     assert(ne3  == nep0*nep1);
 | |
| 
 | |
|     // TODO: optimize / multi-thread
 | |
|     for (int py = 0; py < nep1; ++py) {
 | |
|         for (int px = 0; px < nep0; ++px) {
 | |
|             const int64_t i3 = py*nep0 + px;
 | |
|             for (int64_t i2 = 0; i2 < ne2; ++i2) {
 | |
|                 for (int64_t i1 = 0; i1 < ne1; ++i1) {
 | |
|                     for (int64_t i0 = 0; i0 < ne0; ++i0) {
 | |
|                         const int64_t i02 = py*w + i2;
 | |
|                         const int64_t i01 = px*w + i1;
 | |
|                         const int64_t i00 = i0;
 | |
| 
 | |
|                         const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0    + i1*ne0   + i0;
 | |
|                         const int64_t j =                  i02*ne01*ne00 + i01*ne00 + i00;
 | |
| 
 | |
|                         if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
 | |
|                             ((float *) dst->data)[i] = 0.0f;
 | |
|                         } else {
 | |
|                             ((float *) dst->data)[i] = ((float *) src0->data)[j];
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_win_part(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_win_unpart
 | |
| 
 | |
| static void ggml_compute_forward_win_unpart_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne);
 | |
| 
 | |
|     const int32_t w = ((const int32_t *)(opt0->data))[0];
 | |
| 
 | |
|     // padding
 | |
|     const int px = (w - ne1%w)%w;
 | |
|     //const int py = (w - ne2%w)%w;
 | |
| 
 | |
|     const int npx = (px + ne1)/w;
 | |
|     //const int npy = (py + ne2)/w;
 | |
| 
 | |
|     assert(ne0 == ne00);
 | |
| 
 | |
|     // TODO: optimize / multi-thread
 | |
|     for (int64_t i2 = 0; i2 < ne2; ++i2) {
 | |
|         for (int64_t i1 = 0; i1 < ne1; ++i1) {
 | |
|             for (int64_t i0 = 0; i0 < ne0; ++i0) {
 | |
|                 const int ip2 = i2/w;
 | |
|                 const int ip1 = i1/w;
 | |
| 
 | |
|                 const int64_t i02 = i2%w;
 | |
|                 const int64_t i01 = i1%w;
 | |
|                 const int64_t i00 = i0;
 | |
| 
 | |
|                 const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
 | |
|                 const int64_t j =                                  i2*ne1*ne0    + i1*ne0   + i0;
 | |
| 
 | |
|                 ((float *) dst->data)[j] = ((float *) src0->data)[i];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_win_unpart(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_map_unary
 | |
| 
 | |
| static void ggml_compute_forward_map_unary_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_unary_op_f32_t fun) {
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert( dst->nb[0] == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         fun(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ggml_compute_forward_map_unary(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_unary_op_f32_t fun) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_map_binary
 | |
| 
 | |
| static void ggml_compute_forward_map_binary_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_binary_op_f32_t fun) {
 | |
|     assert(params->ith == 0);
 | |
|     assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int n  = ggml_nrows(src0);
 | |
|     const int nc = src0->ne[0];
 | |
| 
 | |
|     assert( dst->nb[0] == sizeof(float));
 | |
|     assert(src0->nb[0] == sizeof(float));
 | |
|     assert(src1->nb[0] == sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         fun(nc,
 | |
|                 (float *) ((char *) dst->data  + i*( dst->nb[1])),
 | |
|                 (float *) ((char *) src0->data + i*(src0->nb[1])),
 | |
|                 (float *) ((char *) src1->data + i*(src1->nb[1])));
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ggml_compute_forward_map_binary(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_binary_op_f32_t fun) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_map_custom1
 | |
| 
 | |
| static void ggml_compute_forward_map_custom1_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * a,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_custom1_op_f32_t fun) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     fun(dst, a);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ggml_compute_forward_map_custom1(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * a,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_custom1_op_f32_t fun) {
 | |
|     switch (a->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_map_custom2
 | |
| 
 | |
| static void ggml_compute_forward_map_custom2_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * a,
 | |
|         const struct ggml_tensor * b,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_custom2_op_f32_t fun) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     fun(dst, a, b);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ggml_compute_forward_map_custom2(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * a,
 | |
|         const struct ggml_tensor * b,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_custom2_op_f32_t fun) {
 | |
|     switch (a->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_map_custom3
 | |
| 
 | |
| static void ggml_compute_forward_map_custom3_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * a,
 | |
|         const struct ggml_tensor * b,
 | |
|         const struct ggml_tensor * c,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_custom3_op_f32_t fun) {
 | |
|     assert(params->ith == 0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     fun(dst, a, b, c);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ggml_compute_forward_map_custom3(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * a,
 | |
|         const struct ggml_tensor * b,
 | |
|         const struct ggml_tensor * c,
 | |
|         struct ggml_tensor * dst,
 | |
|         const ggml_custom3_op_f32_t fun) {
 | |
|     switch (a->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_cross_entropy_loss
 | |
| 
 | |
| static void ggml_compute_forward_cross_entropy_loss_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(src1));
 | |
|     GGML_ASSERT(ggml_is_scalar(dst));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, src1));
 | |
| 
 | |
|     const int ith = params->ith;
 | |
|     const int nth = params->nth;
 | |
| 
 | |
|     float * sums = (float *) params->wdata;
 | |
| 
 | |
|     // TODO: handle transposed/permuted matrices
 | |
|     const int nc = src0->ne[0];
 | |
|     const int nr = ggml_nrows(src0);
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT) {
 | |
|         if (ith == 0) {
 | |
|             memset(sums, 0, sizeof(float) * (nth + nth * nc));
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->type == GGML_TASK_FINALIZE) {
 | |
|         if (ith == 0) {
 | |
|             float * dp = (float *) dst->data;
 | |
|             ggml_vec_sum_f32(nth, dp, sums);
 | |
|             dp[0] *= -1.0f;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const double eps = 1e-9;
 | |
| 
 | |
|     // rows per thread
 | |
|     const int dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int ir0 = dr*ith;
 | |
|     const int ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     for (int i1 = ir0; i1 < ir1; i1++) {
 | |
|         float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
 | |
|         float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
 | |
|         float * st = (float *) params->wdata + nth + ith*nc;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int i = 0; i < nc; ++i) {
 | |
|             //printf("p[%d] = %f\n", i, p[i]);
 | |
|             assert(!isnan(s0[i]));
 | |
|             assert(!isnan(s1[i]));
 | |
|         }
 | |
| #endif
 | |
|         // soft_max
 | |
|         ggml_float sum = 0.0;
 | |
|         {
 | |
|             float max = -INFINITY;
 | |
|             ggml_vec_max_f32(nc, &max, s0);
 | |
| 
 | |
|             uint16_t scvt;
 | |
|             for (int i = 0; i < nc; i++) {
 | |
|                 if (s0[i] == -INFINITY) {
 | |
|                     st[i] = 0.0f;
 | |
|                 } else {
 | |
|                     // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
 | |
|                     ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
 | |
|                     memcpy(&scvt, &s, sizeof(scvt));
 | |
|                     const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
 | |
|                     sum += (ggml_float)val;
 | |
|                     st[i] = val;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             assert(sum > 0.0);
 | |
|             // sum = 1.0/sum;
 | |
|         }
 | |
|         // avoid log(0) by rescaling from [0..1] to [eps..1]
 | |
|         sum = (1.0 - eps) / sum;
 | |
|         ggml_vec_scale_f32(nc, st, sum);
 | |
|         ggml_vec_add1_f32(nc, st, st, eps);
 | |
|         ggml_vec_log_f32(nc, st, st);
 | |
|         ggml_vec_mul_f32(nc, st, st, s1);
 | |
| 
 | |
|         ggml_vec_sum_f32(nc, sums + ith, st);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int i = 0; i < nc; ++i) {
 | |
|             assert(!isnan(st[i]));
 | |
|             assert(!isinf(st[i]));
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_cross_entropy_loss(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ggml_compute_forward_cross_entropy_loss_back
 | |
| 
 | |
| static void ggml_compute_forward_cross_entropy_loss_back_f32(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(dst));
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     GGML_ASSERT(ggml_is_contiguous(src1));
 | |
|     GGML_ASSERT(ggml_is_contiguous(opt0));
 | |
|     GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
 | |
| 
 | |
|     const int64_t ith = params->ith;
 | |
|     const int64_t nth = params->nth;
 | |
| 
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const float eps = 1e-9f;
 | |
| 
 | |
|     // TODO: handle transposed/permuted matrices
 | |
|     const int64_t nc = src0->ne[0];
 | |
|     const int64_t nr = ggml_nrows(src0);
 | |
| 
 | |
|     // rows per thread
 | |
|     const int64_t dr = (nr + nth - 1)/nth;
 | |
| 
 | |
|     // row range for this thread
 | |
|     const int64_t ir0 = dr*ith;
 | |
|     const int64_t ir1 = MIN(ir0 + dr, nr);
 | |
| 
 | |
|     float * d   = (float *) opt0->data;
 | |
| 
 | |
|     for (int64_t i1 = ir0; i1 < ir1; i1++) {
 | |
|         float * ds0 = (float *)((char *) dst->data  + i1*dst->nb[1]);
 | |
|         float * s0  = (float *)((char *) src0->data + i1*src0->nb[1]);
 | |
|         float * s1  = (float *)((char *) src1->data + i1*src1->nb[1]);
 | |
|         float * sm  = (float *) params->wdata + ith*nc;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int i = 0; i < nc; ++i) {
 | |
|             //printf("p[%d] = %f\n", i, p[i]);
 | |
|             assert(!isnan(s0[i]));
 | |
|             assert(!isnan(s1[i]));
 | |
|         }
 | |
| #endif
 | |
|         // step by step explanation:
 | |
|         {
 | |
|             //float * sums = (float *) params->wdata;
 | |
| 
 | |
|             // forward pass with annotated gradients from backward pass
 | |
|             // (built by going in reverse operation order, adding to gradients of current operation args)
 | |
|             // st0 = exp(s0-max(s0))                                                       grad[st0] = grad[st1]*(1.0 - eps)/sum
 | |
|                                                           // from softmax_back:            grad[s0]  = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
 | |
|             // ggml_vec_scale_f32(nc, st, sum);           // st1 = st0*/sum = softmax(s0)  grad[st1] = grad[st2]*(1.0 - eps)
 | |
|             // ggml_vec_scale_f32(nc, st, (1.0f - eps));  // st2 = st1*(1.0 - eps)         grad[st2] = grad[st3]
 | |
|             // ggml_vec_add1_f32(nc, st, st, eps);        // st3 = st2 + eps               grad[st3] = grad[st4]/st3
 | |
|             // ggml_vec_log_f32(nc, st, st);              // st4 = log(st3)                grad[st4] = grad[st5] * s1
 | |
|             // ggml_vec_mul_f32(nc, st, st, s1);          // st5 = st4 * s1                grad[st5] = grad[sums[ith]]
 | |
|             // ggml_vec_sum_f32(nc, sums + ith, st);      // sums[ith] = st5               grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
 | |
| 
 | |
|             // substitute into grad[st1], because we can reuse softmax_back from this point on
 | |
|             // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
 | |
|             // postorder:
 | |
|             // grad[st1] := softmax(s0)
 | |
|             // grad[st1] := grad[st1]*(1.0 - eps)
 | |
|             // grad[st1] := grad[st1] + eps
 | |
|             // grad[st1] := s1 / grad[st1]
 | |
|             // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
 | |
| 
 | |
|             // src0 gradients by going through softmax_back
 | |
|             // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
 | |
|             //   from softmax_back:
 | |
|             //   dxk = yk * (dyk - dot(y, dy))
 | |
|             //   dot_y_dy := dot(y, dy)
 | |
|             //   dx := dy
 | |
|             //   dx := dx - dot_y_dy
 | |
|             //   dx := dx * y
 | |
|             //   postorder:
 | |
|             //   dot_st1_dst1 := dot(st1, grad[st1])
 | |
|             //   grad[s0] := grad[st1]
 | |
|             //   grad[s0] := grad[s0] - dot_st1_dst1
 | |
|             //   grad[s0] := grad[s0] * st1
 | |
| 
 | |
|             // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
 | |
|             // sm           := softmax(s0)
 | |
|             // grad[s0]     := sm*(1.0 - eps)
 | |
|             // grad[s0]     := grad[s0] + eps
 | |
|             // grad[s0]     := s1 / grad[s0]
 | |
|             // grad[s0]     := grad[s0]*(1.0-eps)*-grad[cel]
 | |
|             // dot_st1_dst1 := dot(sm, grad[s0])
 | |
|             // grad[s0]     := grad[s0] - dot_st1_dst1
 | |
|             // grad[s0]     := grad[s0] * sm
 | |
|         }
 | |
| 
 | |
|         // soft_max
 | |
|         ggml_float sum = 0.0;
 | |
|         {
 | |
|             float max = -INFINITY;
 | |
|             ggml_vec_max_f32(nc, &max, s0);
 | |
| 
 | |
|             uint16_t scvt;
 | |
|             for (int i = 0; i < nc; i++) {
 | |
|                 if (s0[i] == -INFINITY) {
 | |
|                     sm[i] = 0.0f;
 | |
|                 } else {
 | |
|                     // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
 | |
|                     ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
 | |
|                     memcpy(&scvt, &s, sizeof(scvt));
 | |
|                     const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
 | |
|                     sum += (ggml_float)val;
 | |
|                     sm[i] = val;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             assert(sum > 0.0);
 | |
|             sum = 1.0/sum;
 | |
|         }
 | |
| 
 | |
|         float dot_st1_dst1 = 0;
 | |
|         ggml_vec_scale_f32(nc, sm, sum);
 | |
|         ggml_vec_cpy_f32  (nc, ds0, sm);
 | |
|         ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
 | |
|         ggml_vec_add1_f32 (nc, ds0, ds0, eps);
 | |
|         ggml_vec_div_f32  (nc, ds0, s1, ds0);
 | |
|         ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
 | |
|         ggml_vec_dot_f32  (nc, &dot_st1_dst1, sm, ds0);
 | |
|         ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
 | |
|         ggml_vec_mul_f32  (nc, ds0, ds0, sm);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         for (int i = 0; i < nc; ++i) {
 | |
|             assert(!isnan(sm[i]));
 | |
|             assert(!isinf(sm[i]));
 | |
|             assert(!isnan(ds0[i]));
 | |
|             assert(!isinf(ds0[i]));
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_compute_forward_cross_entropy_loss_back(
 | |
|         const struct ggml_compute_params * params,
 | |
|         const struct ggml_tensor * src0,
 | |
|         const struct ggml_tensor * src1,
 | |
|         const struct ggml_tensor * opt0,
 | |
|         struct ggml_tensor * dst) {
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /////////////////////////////////
 | |
| 
 | |
| static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
 | |
|     GGML_ASSERT(params);
 | |
| 
 | |
| #ifdef GGML_USE_CUBLAS
 | |
|     bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
 | |
|     if (skip_cpu) {
 | |
|         return;
 | |
|     }
 | |
|     GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
 | |
|     GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
 | |
| #endif // GGML_USE_CUBLAS
 | |
| 
 | |
|     switch (tensor->op) {
 | |
|         case GGML_OP_DUP:
 | |
|             {
 | |
|                 ggml_compute_forward_dup(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_ADD:
 | |
|             {
 | |
|                 ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_ADD1:
 | |
|             {
 | |
|                 ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_ACC:
 | |
|             {
 | |
|                 ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SUB:
 | |
|             {
 | |
|                 ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_MUL:
 | |
|             {
 | |
|                 ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_DIV:
 | |
|             {
 | |
|                 ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SQR:
 | |
|             {
 | |
|                 ggml_compute_forward_sqr(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SQRT:
 | |
|             {
 | |
|                 ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_LOG:
 | |
|             {
 | |
|                 ggml_compute_forward_log(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SUM:
 | |
|             {
 | |
|                 ggml_compute_forward_sum(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SUM_ROWS:
 | |
|             {
 | |
|                 ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_MEAN:
 | |
|             {
 | |
|                 ggml_compute_forward_mean(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_ARGMAX:
 | |
|             {
 | |
|                 ggml_compute_forward_argmax(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_REPEAT:
 | |
|             {
 | |
|                 ggml_compute_forward_repeat(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_REPEAT_BACK:
 | |
|             {
 | |
|                 ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_ABS:
 | |
|             {
 | |
|                 ggml_compute_forward_abs(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SGN:
 | |
|             {
 | |
|                 ggml_compute_forward_sgn(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_NEG:
 | |
|             {
 | |
|                 ggml_compute_forward_neg(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_STEP:
 | |
|             {
 | |
|                 ggml_compute_forward_step(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_TANH:
 | |
|             {
 | |
|                 ggml_compute_forward_tanh(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_ELU:
 | |
|             {
 | |
|                 ggml_compute_forward_elu(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_RELU:
 | |
|             {
 | |
|                 ggml_compute_forward_relu(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_GELU:
 | |
|             {
 | |
|                 ggml_compute_forward_gelu(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_GELU_QUICK:
 | |
|             {
 | |
|                 ggml_compute_forward_gelu_quick(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SILU:
 | |
|             {
 | |
|                 ggml_compute_forward_silu(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SILU_BACK:
 | |
|             {
 | |
|                 ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_NORM:
 | |
|             {
 | |
|                 ggml_compute_forward_norm(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_RMS_NORM:
 | |
|             {
 | |
|                 ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_RMS_NORM_BACK:
 | |
|             {
 | |
|                 ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_MUL_MAT:
 | |
|             {
 | |
|                 ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_OUT_PROD:
 | |
|             {
 | |
|                 ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SCALE:
 | |
|             {
 | |
|                 ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SET:
 | |
|             {
 | |
|                 ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_CPY:
 | |
|             {
 | |
|                 ggml_compute_forward_cpy(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_CONT:
 | |
|             {
 | |
|                 ggml_compute_forward_cont(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_RESHAPE:
 | |
|             {
 | |
|                 ggml_compute_forward_reshape(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_VIEW:
 | |
|             {
 | |
|                 ggml_compute_forward_view(params, tensor->src[0]);
 | |
|             } break;
 | |
|         case GGML_OP_PERMUTE:
 | |
|             {
 | |
|                 ggml_compute_forward_permute(params, tensor->src[0]);
 | |
|             } break;
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|             {
 | |
|                 ggml_compute_forward_transpose(params, tensor->src[0]);
 | |
|             } break;
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             {
 | |
|                 ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_GET_ROWS_BACK:
 | |
|             {
 | |
|                 ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_DIAG:
 | |
|             {
 | |
|                 ggml_compute_forward_diag(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|             {
 | |
|                 ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_DIAG_MASK_ZERO:
 | |
|             {
 | |
|                 ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|             {
 | |
|                 ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_SOFT_MAX_BACK:
 | |
|             {
 | |
|                 ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_ROPE:
 | |
|             {
 | |
|                 ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_ROPE_BACK:
 | |
|             {
 | |
|                 ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_ALIBI:
 | |
|             {
 | |
|                 ggml_compute_forward_alibi(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_CLAMP:
 | |
|             {
 | |
|                 ggml_compute_forward_clamp(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_CONV_1D:
 | |
|             {
 | |
|                 ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_CONV_2D:
 | |
|             {
 | |
|                 ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_POOL_1D:
 | |
|             {
 | |
|                 ggml_compute_forward_pool_1d(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_POOL_2D:
 | |
|             {
 | |
|                 ggml_compute_forward_pool_2d(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_FLASH_ATTN:
 | |
|             {
 | |
|                 const int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
 | |
|                 GGML_ASSERT(t == 0 || t == 1);
 | |
|                 const bool masked = t != 0;
 | |
|                 ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
 | |
|             } break;
 | |
|         case GGML_OP_FLASH_FF:
 | |
|             {
 | |
|                 ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_FLASH_ATTN_BACK:
 | |
|             {
 | |
|                 int32_t t = ggml_get_i32_1d(tensor->src[4], 0);
 | |
|                 GGML_ASSERT(t == 0 || t == 1);
 | |
|                 bool masked = t != 0;
 | |
|                 ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
 | |
|             } break;
 | |
|         case GGML_OP_WIN_PART:
 | |
|             {
 | |
|                 ggml_compute_forward_win_part(params, tensor->src[0], tensor->src[2], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_WIN_UNPART:
 | |
|             {
 | |
|                 ggml_compute_forward_win_unpart(params, tensor->src[0], tensor->src[2], tensor);
 | |
|             } break;
 | |
|         case GGML_OP_MAP_UNARY:
 | |
|             {
 | |
|                 const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->src[2]->data);
 | |
|                 ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_MAP_BINARY:
 | |
|             {
 | |
|                 const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->src[2]->data);
 | |
|                 ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_MAP_CUSTOM1:
 | |
|             {
 | |
|                 const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->src[2]->data);
 | |
|                 ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_MAP_CUSTOM2:
 | |
|             {
 | |
|                 const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->src[2]->data);
 | |
|                 ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_MAP_CUSTOM3:
 | |
|             {
 | |
|                 const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->src[2]->data);
 | |
|                 ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[3], tensor, fun);
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_CROSS_ENTROPY_LOSS:
 | |
|             {
 | |
|                 ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
 | |
|             {
 | |
|                 ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_NONE:
 | |
|             {
 | |
|                 // nop
 | |
|             } break;
 | |
|         case GGML_OP_COUNT:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
 | |
|     struct ggml_tensor * src0 = tensor->src[0];
 | |
|     struct ggml_tensor * src1 = tensor->src[1];
 | |
| 
 | |
|     switch (tensor->op) {
 | |
|         case GGML_OP_DUP:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_ADD:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_ADD1:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     src1->grad = ggml_add_impl(ctx,
 | |
|                         src1->grad,
 | |
|                         ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
 | |
|                         inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_ACC:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
 | |
|                     GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
 | |
|                     const size_t nb1     = (( int32_t * ) tensor->src[2]->data)[0];
 | |
|                     const size_t nb2     = (( int32_t * ) tensor->src[2]->data)[1];
 | |
|                     const size_t nb3     = (( int32_t * ) tensor->src[2]->data)[2];
 | |
|                     const size_t offset  = (( int32_t * ) tensor->src[2]->data)[3];
 | |
| 
 | |
|                     struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
 | |
|                         tensor->grad,
 | |
|                         src1->grad->ne[0],
 | |
|                         src1->grad->ne[1],
 | |
|                         src1->grad->ne[2],
 | |
|                         src1->grad->ne[3],
 | |
|                         nb1, nb2, nb3, offset);
 | |
| 
 | |
|                     src1->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                             src1->grad,
 | |
|                             ggml_reshape(ctx,
 | |
|                                 ggml_cont(ctx, tensor_grad_view),
 | |
|                                 src1->grad),
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_SUB:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_MUL:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 ggml_mul(ctx, src1, tensor->grad),
 | |
|                                 inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     src1->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src1->grad,
 | |
|                                 ggml_mul(ctx, src0, tensor->grad),
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_DIV:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 ggml_div(ctx, tensor->grad, src1),
 | |
|                                 inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     src1->grad =
 | |
|                         ggml_sub_impl(ctx,
 | |
|                                 src1->grad,
 | |
|                                 ggml_mul(ctx,
 | |
|                                     tensor->grad,
 | |
|                                     ggml_div(ctx, tensor, src1)),
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_SQR:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 ggml_scale(ctx,
 | |
|                                     ggml_mul(ctx, src0, tensor->grad),
 | |
|                                     ggml_new_f32(ctx, 2.0f)),
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_SQRT:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 ggml_scale(ctx,
 | |
|                                     ggml_div(ctx,
 | |
|                                         tensor->grad,
 | |
|                                         tensor),
 | |
|                                     ggml_new_f32(ctx, 0.5f)),
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_LOG:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 ggml_div(ctx,
 | |
|                                     tensor->grad,
 | |
|                                     src0),
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_SUM:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add1_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 tensor->grad,
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_SUM_ROWS:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 ggml_repeat(ctx,
 | |
|                                     tensor->grad,
 | |
|                                     src0->grad),
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_MEAN:
 | |
|         case GGML_OP_ARGMAX:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: implement
 | |
|             } break;
 | |
|         case GGML_OP_REPEAT:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx,
 | |
|                             src0->grad,
 | |
|                             ggml_repeat_back(ctx, tensor->grad, src0->grad),
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_REPEAT_BACK:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     // TODO: test this
 | |
|                     src0->grad = ggml_add_impl(ctx,
 | |
|                             src0->grad,
 | |
|                             ggml_repeat(ctx, tensor->grad, src0->grad),
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_ABS:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 ggml_mul(ctx,
 | |
|                                     ggml_sgn(ctx, src0),
 | |
|                                     tensor->grad),
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_SGN:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     // noop
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_NEG:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_STEP:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     // noop
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_TANH:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_ELU:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_RELU:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_sub_impl(ctx,
 | |
|                             src0->grad,
 | |
|                             ggml_mul(ctx,
 | |
|                                 ggml_step(ctx, src0),
 | |
|                                 tensor->grad),
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_GELU:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_GELU_QUICK:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_SILU:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx,
 | |
|                             src0->grad,
 | |
|                             ggml_silu_back(ctx, src0, tensor->grad),
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_SILU_BACK:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_NORM:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_RMS_NORM:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx,
 | |
|                             src0->grad,
 | |
|                             ggml_rms_norm_back(ctx, src0, tensor->grad),
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_RMS_NORM_BACK:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_MUL_MAT:
 | |
|             {
 | |
|                 // https://cs231n.github.io/optimization-2/#staged
 | |
|                 // # forward pass
 | |
|                 // s0 = np.random.randn(5, 10)
 | |
|                 // s1 = np.random.randn(10, 3)
 | |
|                 // t = s0.dot(s1)
 | |
| 
 | |
|                 // # now suppose we had the gradient on t from above in the circuit
 | |
|                 // dt = np.random.randn(*t.shape) # same shape as t
 | |
|                 // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
 | |
|                 // ds1 = t.T.dot(dt)
 | |
| 
 | |
|                 // tensor.shape [m,p]
 | |
|                 // src0.shape   [n,m]
 | |
|                 // src1.shape   [n,p]
 | |
| 
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 ggml_out_prod(ctx, // [n,m]
 | |
|                                     src1,          // [n,p]
 | |
|                                     tensor->grad), // [m,p]
 | |
|                                 inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     src1->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                                 src1->grad,
 | |
|                                 // ggml_mul_mat(ctx,                   // [n,p]
 | |
|                                 //     ggml_cont(ctx,                  // [m,n]
 | |
|                                 //         ggml_transpose(ctx, src0)), // [m,n]
 | |
|                                 //     tensor->grad),                  // [m,p]
 | |
| 
 | |
|                                 // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
 | |
|                                 // // avoid transpose of src0, rather transpose smaller tensor->grad
 | |
|                                 // // and then use ggml_out_prod
 | |
|                                 ggml_out_prod(ctx,                  // [n,p]
 | |
|                                     src0,                           // [n,m]
 | |
|                                     ggml_transpose(ctx,             // [p,m]
 | |
|                                         tensor->grad)),             // [m,p]
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_OUT_PROD:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_SCALE:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                             src0->grad,
 | |
|                             ggml_scale_impl(ctx, tensor->grad, src1, false),
 | |
|                             inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     src1->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                             src1->grad,
 | |
|                             ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_SET:
 | |
|             {
 | |
|                 GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
 | |
|                 GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
 | |
|                 const size_t nb1     = (( int32_t * ) tensor->src[2]->data)[0];
 | |
|                 const size_t nb2     = (( int32_t * ) tensor->src[2]->data)[1];
 | |
|                 const size_t nb3     = (( int32_t * ) tensor->src[2]->data)[2];
 | |
|                 const size_t offset  = (( int32_t * ) tensor->src[2]->data)[3];
 | |
| 
 | |
|                 struct ggml_tensor * tensor_grad_view = NULL;
 | |
| 
 | |
|                 if (src0->grad || src1->grad) {
 | |
|                     GGML_ASSERT(src0->type == tensor->type);
 | |
|                     GGML_ASSERT(tensor->grad->type == tensor->type);
 | |
|                     GGML_ASSERT(tensor->grad->type == src1->grad->type);
 | |
| 
 | |
|                     tensor_grad_view = ggml_view_4d(ctx,
 | |
|                         tensor->grad,
 | |
|                         src1->grad->ne[0],
 | |
|                         src1->grad->ne[1],
 | |
|                         src1->grad->ne[2],
 | |
|                         src1->grad->ne[3],
 | |
|                         nb1, nb2, nb3, offset);
 | |
|                 }
 | |
| 
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx,
 | |
|                         src0->grad,
 | |
|                         ggml_acc_impl(ctx,
 | |
|                             tensor->grad,
 | |
|                             ggml_neg(ctx, tensor_grad_view),
 | |
|                             nb1, nb2, nb3, offset, false),
 | |
|                         inplace);
 | |
|                 }
 | |
| 
 | |
|                 if (src1->grad) {
 | |
|                     src1->grad =
 | |
|                         ggml_add_impl(ctx,
 | |
|                             src1->grad,
 | |
|                             ggml_reshape(ctx,
 | |
|                                 ggml_cont(ctx, tensor_grad_view),
 | |
|                                 src1->grad),
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_CPY:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 // cpy overwrites value of src1 by src0 and returns view(src1)
 | |
|                 // the overwriting is mathematically equivalent to:
 | |
|                 // tensor = src0 * 1 + src1 * 0
 | |
|                 if (src0->grad) {
 | |
|                     // dsrc0 = dtensor * 1
 | |
|                     src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     // dsrc1 = dtensor * 0 -> noop
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_CONT:
 | |
|             {
 | |
|                 // same as cpy
 | |
|                 if (src0->grad) {
 | |
|                     GGML_ASSERT(ggml_is_contiguous(src0->grad));
 | |
|                     GGML_ASSERT(ggml_is_contiguous(tensor->grad));
 | |
|                     src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_RESHAPE:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx, src0->grad,
 | |
|                             ggml_reshape(ctx, tensor->grad, src0->grad),
 | |
|                         inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_VIEW:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     size_t offset;
 | |
| 
 | |
|                     GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->src[2]));
 | |
|                     memcpy(&offset, tensor->src[2]->data, sizeof(offset));
 | |
| 
 | |
|                     size_t nb1     = tensor->nb[1];
 | |
|                     size_t nb2     = tensor->nb[2];
 | |
|                     size_t nb3     = tensor->nb[3];
 | |
| 
 | |
|                     if (src0->type != src0->grad->type) {
 | |
|                         // gradient is typically F32, but src0 could be other type
 | |
|                         size_t ng = ggml_element_size(src0->grad);
 | |
|                         size_t n0 = ggml_element_size(src0);
 | |
|                         GGML_ASSERT(offset % n0 == 0);
 | |
|                         GGML_ASSERT(nb1 % n0 == 0);
 | |
|                         GGML_ASSERT(nb2 % n0 == 0);
 | |
|                         GGML_ASSERT(nb3 % n0 == 0);
 | |
|                         offset = (offset / n0) * ng;
 | |
|                         nb1 = (nb1 / n0) * ng;
 | |
|                         nb2 = (nb2 / n0) * ng;
 | |
|                         nb3 = (nb3 / n0) * ng;
 | |
|                     }
 | |
| 
 | |
|                     src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_PERMUTE:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     int32_t * axes = (int32_t *) tensor->src[2]->data;
 | |
|                     int axis0 = axes[0] & 0x3;
 | |
|                     int axis1 = axes[1] & 0x3;
 | |
|                     int axis2 = axes[2] & 0x3;
 | |
|                     int axis3 = axes[3] & 0x3;
 | |
|                     int axes_backward[4] = {0,0,0,0};
 | |
|                     axes_backward[axis0] = 0;
 | |
|                     axes_backward[axis1] = 1;
 | |
|                     axes_backward[axis2] = 2;
 | |
|                     axes_backward[axis3] = 3;
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx, src0->grad,
 | |
|                             ggml_permute(ctx,
 | |
|                                 tensor->grad,
 | |
|                                 axes_backward[0],
 | |
|                                 axes_backward[1],
 | |
|                                 axes_backward[2],
 | |
|                                 axes_backward[3]),
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx, src0->grad,
 | |
|                             ggml_transpose(ctx, tensor->grad),
 | |
|                         inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             {
 | |
|                 // necessary for llama (only for tokenizer)
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx, src0->grad,
 | |
|                             ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
 | |
|                         inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     // noop
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_GET_ROWS_BACK:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_DIAG:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     assert(src1->type == GGML_TYPE_I32);
 | |
|                     assert(ggml_nelements(src1) == 2);
 | |
|                     const int n_past = ((int32_t *) src1->data)[0];
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx, src0->grad,
 | |
|                             ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
 | |
|                         inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     // noop
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_DIAG_MASK_ZERO:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     assert(src1->type == GGML_TYPE_I32);
 | |
|                     assert(ggml_nelements(src1) == 2);
 | |
|                     const int n_past = ((int32_t *) src1->data)[0];
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx, src0->grad,
 | |
|                             ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
 | |
|                         inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     // noop
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad =
 | |
|                         ggml_add_impl(ctx, src0->grad,
 | |
|                             ggml_soft_max_back(ctx, tensor->grad, tensor),
 | |
|                         inplace);
 | |
|                 }
 | |
| 
 | |
|             } break;
 | |
|         case GGML_OP_SOFT_MAX_BACK:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_ROPE:
 | |
|             {
 | |
|                 // necessary for llama
 | |
|                 if (src0->grad) {
 | |
|                     assert(src1->type == GGML_TYPE_I32);
 | |
|                     assert(ggml_nelements(src1) == 6);
 | |
|                     const int n_past = ((int32_t *) src1->data)[0];
 | |
|                     const int n_dims = ((int32_t *) src1->data)[1];
 | |
|                     const int mode   = ((int32_t *) src1->data)[2];
 | |
|                     const int n_ctx  = ((int32_t *) src1->data)[3];
 | |
|                     src0->grad = ggml_add_impl(ctx,
 | |
|                             src0->grad,
 | |
|                             ggml_rope_back(ctx,
 | |
|                                 tensor->grad,
 | |
|                                 n_past,
 | |
|                                 n_dims,
 | |
|                                 mode,
 | |
|                                 n_ctx),
 | |
|                             inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     // noop
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_ROPE_BACK:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     assert(src1->type == GGML_TYPE_I32);
 | |
|                     assert(ggml_nelements(src1) == 4);
 | |
|                     const int n_past = ((int32_t *) src1->data)[0];
 | |
|                     const int n_dims = ((int32_t *) src1->data)[1];
 | |
|                     const int mode   = ((int32_t *) src1->data)[2];
 | |
|                     const int n_ctx  = ((int32_t *) src1->data)[3];
 | |
|                     src0->grad = ggml_add_impl(ctx,
 | |
|                             src0->grad,
 | |
|                             ggml_rope(ctx,
 | |
|                                 tensor->grad,
 | |
|                                 n_past,
 | |
|                                 n_dims,
 | |
|                                 mode,
 | |
|                                 n_ctx),
 | |
|                             inplace);
 | |
|                 }
 | |
|                 if (src1->grad) {
 | |
|                     // noop
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_ALIBI:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_CLAMP:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_CONV_1D:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_CONV_2D:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_POOL_1D:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_POOL_2D:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // TODO: not implemented
 | |
|             } break;
 | |
|         case GGML_OP_FLASH_ATTN:
 | |
|             {
 | |
|                 struct ggml_tensor * flash_grad = NULL;
 | |
|                 if (src0->grad || src1->grad || tensor->src[2]->grad) {
 | |
|                     int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
 | |
|                     GGML_ASSERT(t == 0 || t == 1);
 | |
|                     bool masked = t != 0;
 | |
|                     flash_grad =
 | |
|                         ggml_flash_attn_back(ctx,
 | |
|                             src0,
 | |
|                             src1,
 | |
|                             tensor->src[2],
 | |
|                             tensor->grad,
 | |
|                             masked);
 | |
|                 }
 | |
| 
 | |
|                 if (src0->grad) {
 | |
|                     struct ggml_tensor * grad_q = NULL;
 | |
|                     const size_t nb0    = flash_grad->nb[0];
 | |
|                     const size_t offset = 0;
 | |
|                     switch(src0->n_dims) {
 | |
|                         case 2:
 | |
|                             {
 | |
|                                 grad_q = ggml_view_2d(ctx,
 | |
|                                     flash_grad,
 | |
|                                     src0->ne[0],
 | |
|                                     src0->ne[1],
 | |
|                                     nb0*src0->ne[0],
 | |
|                                     offset);
 | |
|                             } break;
 | |
|                         case 3:
 | |
|                             {
 | |
|                                 grad_q = ggml_view_3d(ctx,
 | |
|                                     flash_grad,
 | |
|                                     src0->ne[0],
 | |
|                                     src0->ne[1],
 | |
|                                     src0->ne[2],
 | |
|                                     nb0*src0->ne[0],
 | |
|                                     nb0*src0->ne[0]*src0->ne[1],
 | |
|                                     offset);
 | |
|                             } break;
 | |
|                         case 4:
 | |
|                             {
 | |
|                                 grad_q = ggml_view_4d(ctx,
 | |
|                                     flash_grad,
 | |
|                                     src0->ne[0],
 | |
|                                     src0->ne[1],
 | |
|                                     src0->ne[2],
 | |
|                                     src0->ne[3],
 | |
|                                     nb0*src0->ne[0],
 | |
|                                     nb0*src0->ne[0]*src0->ne[1],
 | |
|                                     nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
 | |
|                                     offset);
 | |
|                             } break;
 | |
|                     }
 | |
| 
 | |
|                     src0->grad = ggml_add_impl(ctx,
 | |
|                             src0->grad,
 | |
|                             grad_q,
 | |
|                             inplace);
 | |
|                 }
 | |
| 
 | |
|                 if (src1->grad) {
 | |
|                     struct ggml_tensor * grad_k = NULL;
 | |
|                     const size_t nb0    = flash_grad->nb[0];
 | |
|                     const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
 | |
|                     switch(src1->n_dims) {
 | |
|                         case 2:
 | |
|                             {
 | |
|                                 grad_k = ggml_view_2d(ctx,
 | |
|                                     flash_grad,
 | |
|                                     src1->ne[0],
 | |
|                                     src1->ne[1],
 | |
|                                     nb0*src1->ne[0],
 | |
|                                     offset);
 | |
|                             } break;
 | |
|                         case 3:
 | |
|                             {
 | |
|                                 grad_k = ggml_view_3d(ctx,
 | |
|                                     flash_grad,
 | |
|                                     src1->ne[0],
 | |
|                                     src1->ne[1],
 | |
|                                     src1->ne[2],
 | |
|                                     nb0*src1->ne[0],
 | |
|                                     nb0*src1->ne[0]*src1->ne[1],
 | |
|                                     offset);
 | |
|                             } break;
 | |
|                         case 4:
 | |
|                             {
 | |
|                                 grad_k = ggml_view_4d(ctx,
 | |
|                                     flash_grad,
 | |
|                                     src1->ne[0],
 | |
|                                     src1->ne[1],
 | |
|                                     src1->ne[2],
 | |
|                                     src1->ne[3],
 | |
|                                     nb0*src1->ne[0],
 | |
|                                     nb0*src1->ne[0]*src1->ne[1],
 | |
|                                     nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
 | |
|                                     offset);
 | |
|                             } break;
 | |
|                     }
 | |
| 
 | |
|                     src1->grad = ggml_add_impl(ctx,
 | |
|                             src1->grad,
 | |
|                             grad_k,
 | |
|                             inplace);
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * opt0 = tensor->src[2];
 | |
| 
 | |
|                 if (opt0->grad) {
 | |
|                     struct ggml_tensor * grad_v = NULL;
 | |
|                     const size_t nb0    = flash_grad->nb[0];
 | |
|                     const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
 | |
|                                         + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
 | |
|                     switch(opt0->n_dims) {
 | |
|                         case 2:
 | |
|                             {
 | |
|                                 grad_v = ggml_view_2d(ctx,
 | |
|                                     flash_grad,
 | |
|                                     opt0->ne[0],
 | |
|                                     opt0->ne[1],
 | |
|                                     nb0*opt0->ne[0],
 | |
|                                     offset);
 | |
|                             } break;
 | |
|                         case 3:
 | |
|                             {
 | |
|                                 grad_v = ggml_view_3d(ctx,
 | |
|                                     flash_grad,
 | |
|                                     opt0->ne[0],
 | |
|                                     opt0->ne[1],
 | |
|                                     opt0->ne[2],
 | |
|                                     nb0*opt0->ne[0],
 | |
|                                     nb0*opt0->ne[0]*opt0->ne[1],
 | |
|                                     offset);
 | |
|                             } break;
 | |
|                         case 4:
 | |
|                             {
 | |
|                                 grad_v = ggml_view_4d(ctx,
 | |
|                                     flash_grad,
 | |
|                                     opt0->ne[0],
 | |
|                                     opt0->ne[1],
 | |
|                                     opt0->ne[2],
 | |
|                                     opt0->ne[3],
 | |
|                                     nb0*opt0->ne[0],
 | |
|                                     nb0*opt0->ne[0]*opt0->ne[1],
 | |
|                                     nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
 | |
|                                     offset);
 | |
|                             } break;
 | |
|                     }
 | |
| 
 | |
|                     opt0->grad = ggml_add_impl(ctx,
 | |
|                             opt0->grad,
 | |
|                             grad_v,
 | |
|                             inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_FLASH_FF:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // not supported
 | |
|             } break;
 | |
|         case GGML_OP_FLASH_ATTN_BACK:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // not supported
 | |
|             } break;
 | |
|         case GGML_OP_WIN_PART:
 | |
|         case GGML_OP_WIN_UNPART:
 | |
|         case GGML_OP_MAP_UNARY:
 | |
|         case GGML_OP_MAP_BINARY:
 | |
|         case GGML_OP_MAP_CUSTOM1:
 | |
|         case GGML_OP_MAP_CUSTOM2:
 | |
|         case GGML_OP_MAP_CUSTOM3:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // not supported
 | |
|             } break;
 | |
|         case GGML_OP_CROSS_ENTROPY_LOSS:
 | |
|             {
 | |
|                 if (src0->grad) {
 | |
|                     src0->grad = ggml_add_impl(ctx,
 | |
|                                 src0->grad,
 | |
|                                 ggml_cross_entropy_loss_back(ctx,
 | |
|                                     src0,
 | |
|                                     src1,
 | |
|                                     tensor->grad),
 | |
|                                 inplace);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
 | |
|             {
 | |
|                 GGML_ASSERT(false); // not supported
 | |
|             } break;
 | |
|         case GGML_OP_NONE:
 | |
|             {
 | |
|                 // nop
 | |
|             } break;
 | |
|         case GGML_OP_COUNT:
 | |
|             {
 | |
|                 GGML_ASSERT(false);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
 | |
|     if (node->grad == NULL) {
 | |
|         // this usually happens when we generate intermediate nodes from constants in the backward pass
 | |
|         // it can also happen during forward pass, if the user performs computations with constants
 | |
|         if (node->op != GGML_OP_NONE) {
 | |
|             //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // check if already visited
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         if (cgraph->nodes[i] == node) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < cgraph->n_leafs; i++) {
 | |
|         if (cgraph->leafs[i] == node) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < GGML_MAX_SRC; ++i) {
 | |
|         if (node->src[i]) {
 | |
|             ggml_visit_parents(cgraph, node->src[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (node->op == GGML_OP_NONE && node->grad == NULL) {
 | |
|         // reached a leaf node, not part of the gradient graph (e.g. a constant)
 | |
|         GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
 | |
| 
 | |
|         if (strlen(node->name) == 0) {
 | |
|             ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
 | |
|         }
 | |
| 
 | |
|         cgraph->leafs[cgraph->n_leafs] = node;
 | |
|         cgraph->n_leafs++;
 | |
|     } else {
 | |
|         GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
 | |
| 
 | |
|         if (strlen(node->name) == 0) {
 | |
|             ggml_format_name(node, "node_%d", cgraph->n_nodes);
 | |
|         }
 | |
| 
 | |
|         cgraph->nodes[cgraph->n_nodes] = node;
 | |
|         cgraph->grads[cgraph->n_nodes] = node->grad;
 | |
|         cgraph->n_nodes++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
 | |
|     if (!expand) {
 | |
|         cgraph->n_nodes = 0;
 | |
|         cgraph->n_leafs = 0;
 | |
|     }
 | |
| 
 | |
|     const int n0 = cgraph->n_nodes;
 | |
|     UNUSED(n0);
 | |
| 
 | |
|     ggml_visit_parents(cgraph, tensor);
 | |
| 
 | |
|     const int n_new = cgraph->n_nodes - n0;
 | |
|     GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
 | |
| 
 | |
|     if (n_new > 0) {
 | |
|         // the last added node should always be starting point
 | |
|         GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
 | |
|     ggml_build_forward_impl(cgraph, tensor, true);
 | |
| }
 | |
| 
 | |
| struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
 | |
|     struct ggml_cgraph result = {
 | |
|         /*.n_nodes      =*/ 0,
 | |
|         /*.n_leafs      =*/ 0,
 | |
|         /*.nodes        =*/ { NULL },
 | |
|         /*.grads        =*/ { NULL },
 | |
|         /*.leafs        =*/ { NULL },
 | |
|         /*.perf_runs    =*/ 0,
 | |
|         /*.perf_cycles  =*/ 0,
 | |
|         /*.perf_time_us =*/ 0,
 | |
|     };
 | |
| 
 | |
|     ggml_build_forward_impl(&result, tensor, false);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
 | |
|     struct ggml_cgraph result = *gf;
 | |
| 
 | |
|     GGML_ASSERT(gf->n_nodes > 0);
 | |
| 
 | |
|     // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
 | |
|     if (keep) {
 | |
|         for (int i = 0; i < gf->n_nodes; i++) {
 | |
|             struct ggml_tensor * node = gf->nodes[i];
 | |
| 
 | |
|             if (node->grad) {
 | |
|                 node->grad = ggml_dup_tensor(ctx, node);
 | |
|                 gf->grads[i] = node->grad;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = gf->n_nodes - 1; i >= 0; i--) {
 | |
|         struct ggml_tensor * node = gf->nodes[i];
 | |
| 
 | |
|         // because we detached the grad nodes from the original graph, we can afford inplace operations
 | |
|         if (node->grad) {
 | |
|             ggml_compute_backward(ctx, node, keep);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = gf->n_nodes - 1; i >= 0; i--) {
 | |
|         struct ggml_tensor * node = gf->nodes[i];
 | |
| 
 | |
|         if (node->is_param) {
 | |
|             GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
 | |
|             ggml_build_forward_impl(&result, node->grad, true);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| //
 | |
| // thread data
 | |
| //
 | |
| // synchronization is done via busy loops
 | |
| // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
 | |
| //
 | |
| 
 | |
| #ifdef __APPLE__
 | |
| 
 | |
| //#include <os/lock.h>
 | |
| //
 | |
| //typedef os_unfair_lock ggml_lock_t;
 | |
| //
 | |
| //#define ggml_lock_init(x)    UNUSED(x)
 | |
| //#define ggml_lock_destroy(x) UNUSED(x)
 | |
| //#define ggml_lock_lock       os_unfair_lock_lock
 | |
| //#define ggml_lock_unlock     os_unfair_lock_unlock
 | |
| //
 | |
| //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
 | |
| 
 | |
| typedef int ggml_lock_t;
 | |
| 
 | |
| #define ggml_lock_init(x)    UNUSED(x)
 | |
| #define ggml_lock_destroy(x) UNUSED(x)
 | |
| #define ggml_lock_lock(x)    UNUSED(x)
 | |
| #define ggml_lock_unlock(x)  UNUSED(x)
 | |
| 
 | |
| #define GGML_LOCK_INITIALIZER 0
 | |
| 
 | |
| typedef pthread_t ggml_thread_t;
 | |
| 
 | |
| #define ggml_thread_create pthread_create
 | |
| #define ggml_thread_join   pthread_join
 | |
| 
 | |
| #else
 | |
| 
 | |
| //typedef pthread_spinlock_t ggml_lock_t;
 | |
| 
 | |
| //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
 | |
| //#define ggml_lock_destroy pthread_spin_destroy
 | |
| //#define ggml_lock_lock    pthread_spin_lock
 | |
| //#define ggml_lock_unlock  pthread_spin_unlock
 | |
| 
 | |
| typedef int ggml_lock_t;
 | |
| 
 | |
| #define ggml_lock_init(x)    UNUSED(x)
 | |
| #define ggml_lock_destroy(x) UNUSED(x)
 | |
| #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
 | |
| #define ggml_lock_lock(x)    _mm_pause()
 | |
| #else
 | |
| #define ggml_lock_lock(x)    UNUSED(x)
 | |
| #endif
 | |
| #define ggml_lock_unlock(x)  UNUSED(x)
 | |
| 
 | |
| #define GGML_LOCK_INITIALIZER 0
 | |
| 
 | |
| typedef pthread_t ggml_thread_t;
 | |
| 
 | |
| #define ggml_thread_create pthread_create
 | |
| #define ggml_thread_join   pthread_join
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // Android's libc implementation "bionic" does not support setting affinity
 | |
| #if defined(__linux__) && !defined(__BIONIC__)
 | |
| void set_numa_thread_affinity(int thread_n, int n_threads) {
 | |
|     if (!ggml_is_numa()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // run thread on node_num thread_n / (threads per node)
 | |
|     const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
 | |
|     struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
 | |
|     size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
 | |
| 
 | |
|     cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
 | |
|     CPU_ZERO_S(setsize, cpus);
 | |
|     for (size_t i = 0; i < node->n_cpus; ++i) {
 | |
|         CPU_SET_S(node->cpus[i], setsize, cpus);
 | |
|     }
 | |
| 
 | |
|     int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
 | |
|     if (rv) {
 | |
|             fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
 | |
|                     strerror(rv));
 | |
|     }
 | |
| 
 | |
|     CPU_FREE(cpus);
 | |
| }
 | |
| 
 | |
| void clear_numa_thread_affinity(void) {
 | |
|     if (!ggml_is_numa()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
 | |
| 
 | |
|     cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
 | |
|     CPU_ZERO_S(setsize, cpus);
 | |
|     for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
 | |
|         CPU_SET_S(i, setsize, cpus);
 | |
|     }
 | |
| 
 | |
|     int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
 | |
|     if (rv) {
 | |
|         fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
 | |
|             strerror(rv));
 | |
|     }
 | |
| 
 | |
|     CPU_FREE(cpus);
 | |
| }
 | |
| #else
 | |
| // TODO: Windows etc.
 | |
| // (the linux implementation may also work on BSD, someone should test)
 | |
| void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads);  }
 | |
| void clear_numa_thread_affinity(void) {}
 | |
| #endif
 | |
| 
 | |
| struct ggml_compute_state_shared {
 | |
|     const struct ggml_cgraph * cgraph;
 | |
|     const struct ggml_cplan  * cplan;
 | |
| 
 | |
|     int64_t perf_node_start_cycles;
 | |
|     int64_t perf_node_start_time_us;
 | |
| 
 | |
|     const int n_threads;
 | |
| 
 | |
|     // synchronization primitives
 | |
|     atomic_int n_active; // num active threads
 | |
|     atomic_int node_n;   // active graph node
 | |
| 
 | |
|     bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
 | |
|     void * abort_callback_data;
 | |
| };
 | |
| 
 | |
| struct ggml_compute_state {
 | |
|     ggml_thread_t thrd;
 | |
|     int ith;
 | |
|     struct ggml_compute_state_shared * shared;
 | |
| };
 | |
| 
 | |
| static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
 | |
|     int64_t cycles_cur  = ggml_perf_cycles()  - st->perf_node_start_cycles;
 | |
|     int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
 | |
| 
 | |
|     node->perf_runs++;
 | |
|     node->perf_cycles  += cycles_cur;
 | |
|     node->perf_time_us += time_us_cur;
 | |
| }
 | |
| 
 | |
| static thread_ret_t ggml_graph_compute_thread(void * data) {
 | |
|     struct ggml_compute_state * state = (struct ggml_compute_state *) data;
 | |
| 
 | |
|     const struct ggml_cgraph * cgraph = state->shared->cgraph;
 | |
|     const struct ggml_cplan  * cplan  = state->shared->cplan;
 | |
| 
 | |
|     const int * n_tasks_arr = cplan->n_tasks;
 | |
|     const int   n_threads   = state->shared->n_threads;
 | |
| 
 | |
|     set_numa_thread_affinity(state->ith, n_threads);
 | |
| 
 | |
|     int node_n = -1;
 | |
| 
 | |
|     while (true) {
 | |
|         if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
 | |
|             state->shared->node_n += 1;
 | |
|             return (thread_ret_t) GGML_EXIT_ABORTED;
 | |
|         }
 | |
|         if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
 | |
|             // all other threads are finished and spinning
 | |
|             // do finalize and init here so we don't have synchronize again
 | |
|             struct ggml_compute_params params = {
 | |
|                 /*.type  =*/ GGML_TASK_FINALIZE,
 | |
|                 /*.ith   =*/ 0,
 | |
|                 /*.nth   =*/ 0,
 | |
|                 /*.wsize =*/ cplan->work_size,
 | |
|                 /*.wdata =*/ cplan->work_data,
 | |
|             };
 | |
| 
 | |
|             if (node_n != -1) {
 | |
|                 /* FINALIZE */
 | |
|                 struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
 | |
|                 if (GGML_OP_HAS_FINALIZE[node->op]) {
 | |
|                     params.nth = n_tasks_arr[node_n];
 | |
|                     ggml_compute_forward(¶ms, node);
 | |
|                 }
 | |
|                 ggml_graph_compute_perf_stats_node(node, state->shared);
 | |
|             }
 | |
| 
 | |
|             // distribute new work or execute it direct if 1T
 | |
|             while (++node_n < cgraph->n_nodes) {
 | |
|                 GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
 | |
| 
 | |
|                 struct ggml_tensor * node = cgraph->nodes[node_n];
 | |
|                 const int n_tasks = n_tasks_arr[node_n];
 | |
| 
 | |
|                 state->shared->perf_node_start_cycles  = ggml_perf_cycles();
 | |
|                 state->shared->perf_node_start_time_us = ggml_perf_time_us();
 | |
| 
 | |
|                 params.nth = n_tasks;
 | |
| 
 | |
|                 /* INIT */
 | |
|                 if (GGML_OP_HAS_INIT[node->op]) {
 | |
|                     params.type = GGML_TASK_INIT;
 | |
|                     ggml_compute_forward(¶ms, node);
 | |
|                 }
 | |
| 
 | |
|                 if (n_tasks == 1) {
 | |
|                     // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
 | |
|                     // they do something more efficient than spinning (?)
 | |
|                     params.type = GGML_TASK_COMPUTE;
 | |
|                     ggml_compute_forward(¶ms, node);
 | |
| 
 | |
|                     if (GGML_OP_HAS_FINALIZE[node->op]) {
 | |
|                         params.type = GGML_TASK_FINALIZE;
 | |
|                         ggml_compute_forward(¶ms, node);
 | |
|                     }
 | |
| 
 | |
|                     ggml_graph_compute_perf_stats_node(node, state->shared);
 | |
|                 } else {
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             atomic_store(&state->shared->n_active, n_threads);
 | |
|             atomic_store(&state->shared->node_n,   node_n);
 | |
|         } else {
 | |
|             // wait for other threads to finish
 | |
|             const int last = node_n;
 | |
|             do {
 | |
|                 //sched_yield();
 | |
|                 node_n = atomic_load(&state->shared->node_n);
 | |
|             } while (node_n == last);
 | |
|         }
 | |
| 
 | |
|         // check if we should stop
 | |
|         if (node_n >= cgraph->n_nodes) break;
 | |
| 
 | |
|         /* COMPUTE */
 | |
|         struct ggml_tensor * node = cgraph->nodes[node_n];
 | |
|         const int n_tasks = n_tasks_arr[node_n];
 | |
| 
 | |
|         struct ggml_compute_params params = {
 | |
|             /*.type  =*/ GGML_TASK_COMPUTE,
 | |
|             /*.ith   =*/ state->ith,
 | |
|             /*.nth   =*/ n_tasks,
 | |
|             /*.wsize =*/ cplan->work_size,
 | |
|             /*.wdata =*/ cplan->work_data,
 | |
|         };
 | |
| 
 | |
|         if (state->ith < n_tasks) {
 | |
|             ggml_compute_forward(¶ms, node);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return GGML_EXIT_SUCCESS;
 | |
| }
 | |
| 
 | |
| struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
 | |
|     if (n_threads <= 0) {
 | |
|         n_threads = GGML_DEFAULT_N_THREADS;
 | |
|     }
 | |
| 
 | |
|     size_t work_size = 0;
 | |
| 
 | |
|     struct ggml_cplan cplan;
 | |
|     memset(&cplan, 0, sizeof(struct ggml_cplan));
 | |
| 
 | |
|     // thread scheduling for the different operations + work buffer size estimation
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         int n_tasks = 1;
 | |
| 
 | |
|         struct ggml_tensor * node = cgraph->nodes[i];
 | |
| 
 | |
|         switch (node->op) {
 | |
|             case GGML_OP_CPY:
 | |
|             case GGML_OP_DUP:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     size_t cur = 0;
 | |
|                     if (ggml_is_quantized(node->type)) {
 | |
|                         cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
 | |
|                     }
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_ADD:
 | |
|             case GGML_OP_ADD1:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     size_t cur = 0;
 | |
| 
 | |
|                     if (ggml_is_quantized(node->src[0]->type)) {
 | |
|                         cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
 | |
|                     }
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_ACC:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     size_t cur = 0;
 | |
| 
 | |
|                     if (ggml_is_quantized(node->src[0]->type)) {
 | |
|                         cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
 | |
|                     }
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_SUB:
 | |
|             case GGML_OP_DIV:
 | |
|             case GGML_OP_SQR:
 | |
|             case GGML_OP_SQRT:
 | |
|             case GGML_OP_LOG:
 | |
|             case GGML_OP_SUM:
 | |
|             case GGML_OP_SUM_ROWS:
 | |
|             case GGML_OP_MEAN:
 | |
|             case GGML_OP_ARGMAX:
 | |
|             case GGML_OP_REPEAT:
 | |
|             case GGML_OP_REPEAT_BACK:
 | |
|             case GGML_OP_ABS:
 | |
|             case GGML_OP_SGN:
 | |
|             case GGML_OP_NEG:
 | |
|             case GGML_OP_STEP:
 | |
|             case GGML_OP_TANH:
 | |
|             case GGML_OP_ELU:
 | |
|             case GGML_OP_RELU:
 | |
|                 {
 | |
|                     n_tasks = 1;
 | |
|                 } break;
 | |
|             case GGML_OP_MUL:
 | |
|             case GGML_OP_GELU:
 | |
|             case GGML_OP_GELU_QUICK:
 | |
|             case GGML_OP_SILU:
 | |
|             case GGML_OP_SILU_BACK:
 | |
|             case GGML_OP_NORM:
 | |
|             case GGML_OP_RMS_NORM:
 | |
|             case GGML_OP_RMS_NORM_BACK:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
|                 } break;
 | |
|             case GGML_OP_MUL_MAT:
 | |
|             case GGML_OP_OUT_PROD:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     // TODO: use different scheduling for different matrix sizes
 | |
|                     //const int nr0 = ggml_nrows(node->src[0]);
 | |
|                     //const int nr1 = ggml_nrows(node->src[1]);
 | |
| 
 | |
|                     //n_tasks = MIN(n_threads, MAX(1, nr0/128));
 | |
|                     //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
 | |
| 
 | |
|                     size_t cur = 0;
 | |
|                     const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
 | |
| 
 | |
| #if defined(GGML_USE_CUBLAS)
 | |
|                     if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
 | |
|                         n_tasks = 1; // TODO: this actually is doing nothing
 | |
|                                      //       the threads are still spinning
 | |
|                     } else
 | |
| #elif defined(GGML_USE_CLBLAST)
 | |
|                     if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
 | |
|                         n_tasks = 1; // TODO: this actually is doing nothing
 | |
|                                      //       the threads are still spinning
 | |
|                         cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
 | |
|                     } else
 | |
| #endif
 | |
| #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
 | |
|                     if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
 | |
|                         n_tasks = 1; // TODO: this actually is doing nothing
 | |
|                                      //       the threads are still spinning
 | |
|                         if (node->src[0]->type != GGML_TYPE_F32) {
 | |
|                             // here we need memory just for single 2D matrix from src0
 | |
|                             cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
 | |
|                         }
 | |
|                     } else
 | |
| #endif
 | |
|                     if (node->src[1]->type != vec_dot_type) {
 | |
|                         cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
 | |
|                     } else {
 | |
|                         cur = 0;
 | |
|                     }
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_SCALE:
 | |
|                 {
 | |
|                     n_tasks = 1;
 | |
|                 } break;
 | |
|             case GGML_OP_SET:
 | |
|             case GGML_OP_CONT:
 | |
|             case GGML_OP_RESHAPE:
 | |
|             case GGML_OP_VIEW:
 | |
|             case GGML_OP_PERMUTE:
 | |
|             case GGML_OP_TRANSPOSE:
 | |
|             case GGML_OP_GET_ROWS:
 | |
|             case GGML_OP_GET_ROWS_BACK:
 | |
|             case GGML_OP_DIAG:
 | |
|             case GGML_OP_DIAG_MASK_ZERO:
 | |
|                 {
 | |
|                     n_tasks = 1;
 | |
|                 } break;
 | |
|             case GGML_OP_DIAG_MASK_INF:
 | |
|             case GGML_OP_SOFT_MAX:
 | |
|             case GGML_OP_SOFT_MAX_BACK:
 | |
|             case GGML_OP_ROPE:
 | |
|             case GGML_OP_ROPE_BACK:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
|                 } break;
 | |
|             case GGML_OP_ALIBI:
 | |
|                 {
 | |
|                     n_tasks = 1; //TODO
 | |
|                 } break;
 | |
|             case GGML_OP_CLAMP:
 | |
|                 {
 | |
|                     n_tasks = 1; //TODO
 | |
|                 } break;
 | |
|             case GGML_OP_CONV_1D:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     GGML_ASSERT(node->src[0]->ne[3] == 1);
 | |
|                     GGML_ASSERT(node->src[1]->ne[2] == 1);
 | |
|                     GGML_ASSERT(node->src[1]->ne[3] == 1);
 | |
| 
 | |
|                     size_t cur = 0;
 | |
|                     const int nk = node->src[0]->ne[0];
 | |
| 
 | |
|                     if (node->src[0]->type == GGML_TYPE_F16 &&
 | |
|                             node->src[1]->type == GGML_TYPE_F32) {
 | |
|                         cur = sizeof(ggml_fp16_t)*(
 | |
|                                 nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
 | |
|                                 ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
 | |
|                                 );
 | |
|                     } else if (node->src[0]->type == GGML_TYPE_F32 &&
 | |
|                             node->src[1]->type == GGML_TYPE_F32) {
 | |
|                         cur = sizeof(float)*(
 | |
|                                 nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
 | |
|                                 ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
 | |
|                                 );
 | |
|                     } else {
 | |
|                         GGML_ASSERT(false);
 | |
|                     }
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_CONV_2D:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     const int64_t ne00 = node->src[0]->ne[0]; // W
 | |
|                     const int64_t ne01 = node->src[0]->ne[1]; // H
 | |
|                     const int64_t ne02 = node->src[0]->ne[2]; // C
 | |
|                     const int64_t ne03 = node->src[0]->ne[3]; // N
 | |
| 
 | |
|                     const int64_t ne10 = node->src[1]->ne[0]; // W
 | |
|                     const int64_t ne11 = node->src[1]->ne[1]; // H
 | |
|                     const int64_t ne12 = node->src[1]->ne[2]; // C
 | |
| 
 | |
|                     const int64_t ne0 = node->ne[0];
 | |
|                     const int64_t ne1 = node->ne[1];
 | |
|                     const int64_t ne2 = node->ne[2];
 | |
|                     const int64_t nk = ne00*ne01;
 | |
|                     const int64_t ew0 = nk * ne02;
 | |
| 
 | |
|                     UNUSED(ne03);
 | |
|                     UNUSED(ne2);
 | |
| 
 | |
|                     size_t cur = 0;
 | |
| 
 | |
|                     if (node->src[0]->type == GGML_TYPE_F16 &&
 | |
|                         node->src[1]->type == GGML_TYPE_F32) {
 | |
|                         cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
 | |
|                     } else if (node->src[0]->type == GGML_TYPE_F32 &&
 | |
|                                node->src[1]->type == GGML_TYPE_F32) {
 | |
|                         cur = sizeof(float)*      (ne10*ne11*ne12);
 | |
|                     } else {
 | |
|                         GGML_ASSERT(false);
 | |
|                     }
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_POOL_1D:
 | |
|             case GGML_OP_POOL_2D:
 | |
|                 {
 | |
|                     n_tasks = 1;
 | |
|                 } break;
 | |
|             case GGML_OP_FLASH_ATTN:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     size_t cur = 0;
 | |
| 
 | |
|                     const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
 | |
| 
 | |
|                     if (node->src[1]->type == GGML_TYPE_F32) {
 | |
|                         cur  = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
 | |
|                         cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
 | |
|                     }
 | |
| 
 | |
|                     if (node->src[1]->type == GGML_TYPE_F16) {
 | |
|                         cur  = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
 | |
|                         cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
 | |
|                     }
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_FLASH_FF:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     size_t cur = 0;
 | |
| 
 | |
|                     if (node->src[1]->type == GGML_TYPE_F32) {
 | |
|                         cur  = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
 | |
|                         cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
 | |
|                     }
 | |
| 
 | |
|                     if (node->src[1]->type == GGML_TYPE_F16) {
 | |
|                         cur  = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
 | |
|                         cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
 | |
|                     }
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_FLASH_ATTN_BACK:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     size_t cur = 0;
 | |
| 
 | |
|                     const int64_t    D = node->src[0]->ne[0];
 | |
|                     const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
 | |
|                     const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
 | |
|                     if (node->src[1]->type == GGML_TYPE_F32) {
 | |
|                         cur  = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
 | |
|                         cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
 | |
|                     }
 | |
| 
 | |
|                     if (node->src[1]->type == GGML_TYPE_F16) {
 | |
|                         cur  = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
 | |
|                         cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
 | |
|                     }
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_WIN_PART:
 | |
|             case GGML_OP_WIN_UNPART:
 | |
|             case GGML_OP_MAP_UNARY:
 | |
|             case GGML_OP_MAP_BINARY:
 | |
|             case GGML_OP_MAP_CUSTOM1:
 | |
|             case GGML_OP_MAP_CUSTOM2:
 | |
|             case GGML_OP_MAP_CUSTOM3:
 | |
|                 {
 | |
|                     n_tasks = 1;
 | |
|                 } break;
 | |
|             case GGML_OP_CROSS_ENTROPY_LOSS:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
 | |
|                 {
 | |
|                     n_tasks = n_threads;
 | |
| 
 | |
|                     size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
 | |
| 
 | |
|                     work_size = MAX(work_size, cur);
 | |
|                 } break;
 | |
|             case GGML_OP_NONE:
 | |
|                 {
 | |
|                     n_tasks = 1;
 | |
|                 } break;
 | |
|             case GGML_OP_COUNT:
 | |
|                 {
 | |
|                     GGML_ASSERT(false);
 | |
|                 } break;
 | |
|         }
 | |
| 
 | |
|         cplan.n_tasks[i] = n_tasks;
 | |
|     }
 | |
| 
 | |
|     if (work_size > 0) {
 | |
|         work_size += CACHE_LINE_SIZE*(n_threads - 1);
 | |
|     }
 | |
| 
 | |
|     cplan.n_threads = n_threads;
 | |
|     cplan.work_size = work_size;
 | |
|     cplan.work_data = NULL;
 | |
| 
 | |
|     return cplan;
 | |
| }
 | |
| 
 | |
| int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
 | |
|     {
 | |
|         GGML_ASSERT(cplan);
 | |
|         GGML_ASSERT(cplan->n_threads > 0);
 | |
| 
 | |
|         if (cplan->work_size > 0) {
 | |
|             GGML_ASSERT(cplan->work_data);
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i < cgraph->n_nodes; ++i) {
 | |
|             if (cgraph->nodes[i]->op != GGML_OP_NONE) {
 | |
|                 GGML_ASSERT(cplan->n_tasks[i] > 0);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const int n_threads = cplan->n_threads;
 | |
| 
 | |
|     struct ggml_compute_state_shared state_shared = {
 | |
|         /*.cgraph                  =*/ cgraph,
 | |
|         /*.cgraph_plan             =*/ cplan,
 | |
|         /*.perf_node_start_cycles  =*/ 0,
 | |
|         /*.perf_node_start_time_us =*/ 0,
 | |
|         /*.n_threads               =*/ n_threads,
 | |
|         /*.n_active                =*/ n_threads,
 | |
|         /*.node_n                  =*/ -1,
 | |
|         /*.abort_callback          =*/ NULL,
 | |
|         /*.abort_callback_data     =*/ NULL,
 | |
|     };
 | |
|     struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
 | |
| 
 | |
|     // create thread pool
 | |
|     if (n_threads > 1) {
 | |
|         for (int j = 1; j < n_threads; ++j) {
 | |
|             workers[j] = (struct ggml_compute_state) {
 | |
|                 .thrd   = 0,
 | |
|                 .ith = j,
 | |
|                 .shared = &state_shared,
 | |
|             };
 | |
| 
 | |
|             const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
 | |
|             GGML_ASSERT(rc == 0);
 | |
|         }
 | |
|     }
 | |
|     workers[0].ith = 0;
 | |
|     workers[0].shared = &state_shared;
 | |
| 
 | |
|     const int64_t perf_start_cycles  = ggml_perf_cycles();
 | |
|     const int64_t perf_start_time_us = ggml_perf_time_us();
 | |
| 
 | |
|     // this is a work thread too
 | |
|     int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
 | |
| 
 | |
|     // don't leave affinity set on the main thread
 | |
|     clear_numa_thread_affinity();
 | |
| 
 | |
|     // join or kill thread pool
 | |
|     if (n_threads > 1) {
 | |
|         for (int j = 1; j < n_threads; j++) {
 | |
|             const int rc = ggml_thread_join(workers[j].thrd, NULL);
 | |
|             GGML_ASSERT(rc == 0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // performance stats (graph)
 | |
|     {
 | |
|         int64_t perf_cycles_cur  = ggml_perf_cycles()  - perf_start_cycles;
 | |
|         int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
 | |
| 
 | |
|         cgraph->perf_runs++;
 | |
|         cgraph->perf_cycles  += perf_cycles_cur;
 | |
|         cgraph->perf_time_us += perf_time_us_cur;
 | |
| 
 | |
|         GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
 | |
|                 __func__, cgraph->perf_runs,
 | |
|                 (double) perf_cycles_cur      / (double) ggml_cycles_per_ms(),
 | |
|                 (double) cgraph->perf_cycles  / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
 | |
|                 (double) perf_time_us_cur     / 1000.0,
 | |
|                 (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
 | |
|     }
 | |
| 
 | |
|     return compute_status;
 | |
| }
 | |
| 
 | |
| void ggml_graph_reset(struct ggml_cgraph * cgraph) {
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         struct ggml_tensor * grad = cgraph->grads[i];
 | |
| 
 | |
|         if (grad) {
 | |
|             ggml_set_zero(grad);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
 | |
|     struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
 | |
| 
 | |
|     struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
 | |
|     GGML_ASSERT(buf);
 | |
| 
 | |
|     cplan.work_data = buf->data;
 | |
| 
 | |
|     ggml_graph_compute(cgraph, &cplan);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
 | |
|     for (int i = 0; i < cgraph->n_leafs; i++) {
 | |
|         struct ggml_tensor * leaf = cgraph->leafs[i];
 | |
| 
 | |
|         if (strcmp(leaf->name, name) == 0) {
 | |
|             return leaf;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = cgraph->nodes[i];
 | |
| 
 | |
|         if (strcmp(node->name, name) == 0) {
 | |
|             return node;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
 | |
|     const int64_t * ne = tensor->ne;
 | |
|     const size_t  * nb = tensor->nb;
 | |
| 
 | |
|     fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
 | |
|             ggml_type_name(tensor->type),
 | |
|             ggml_op_name  (tensor->op),
 | |
|             tensor->n_dims,
 | |
|             ne[0], ne[1], ne[2], ne[3],
 | |
|             nb[0], nb[1], nb[2], nb[3],
 | |
|             tensor->data,
 | |
|             tensor->name);
 | |
| }
 | |
| 
 | |
| static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
 | |
|     const int64_t * ne = tensor->ne;
 | |
|     const size_t  * nb = tensor->nb;
 | |
| 
 | |
|     fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
 | |
|             arg,
 | |
|             ggml_type_name(tensor->type),
 | |
|             ggml_op_name  (tensor->op),
 | |
|             tensor->n_dims,
 | |
|             ne[0], ne[1], ne[2], ne[3],
 | |
|             nb[0], nb[1], nb[2], nb[3],
 | |
|             tensor->data,
 | |
|             tensor->name);
 | |
| }
 | |
| 
 | |
| void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
 | |
|     uint64_t size_eval = 0;
 | |
| 
 | |
|     // compute size of intermediate results
 | |
|     // TODO: does not take into account scratch buffers !!!!
 | |
|     for (int i = 0; i < cgraph->n_nodes; ++i) {
 | |
|         size_eval += ggml_nbytes(cgraph->nodes[i]);
 | |
|     }
 | |
| 
 | |
|     // print
 | |
|     {
 | |
|         FILE * fout = stdout;
 | |
| 
 | |
|         fprintf(fout, "\n");
 | |
|         fprintf(fout, "%-16s %8x\n", "magic",        GGML_FILE_MAGIC);
 | |
|         fprintf(fout, "%-16s %8d\n", "version",      GGML_FILE_VERSION);
 | |
|         fprintf(fout, "%-16s %8d\n", "leafs",        cgraph->n_leafs);
 | |
|         fprintf(fout, "%-16s %8d\n", "nodes",        cgraph->n_nodes);
 | |
|         fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
 | |
| 
 | |
|         // header
 | |
|         fprintf(fout, "\n");
 | |
|         fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
 | |
|                 "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
 | |
| 
 | |
|         for (int i = 0; i < cgraph->n_leafs; ++i) {
 | |
|             ggml_graph_export_leaf(cgraph->leafs[i], fout);
 | |
| 
 | |
|             GGML_ASSERT(cgraph->leafs[i]->op   == GGML_OP_NONE);
 | |
|             GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
 | |
|             GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
 | |
|         }
 | |
| 
 | |
|         // header
 | |
|         fprintf(fout, "\n");
 | |
|         fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
 | |
|                 "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
 | |
| 
 | |
|         for (int i = 0; i < cgraph->n_nodes; ++i) {
 | |
|             ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
 | |
| 
 | |
|             for (int j = 0; j < GGML_MAX_SRC; ++j) {
 | |
|                 if (cgraph->nodes[i]->src[j]) {
 | |
|                     ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             fprintf(fout, "\n");
 | |
|         }
 | |
| 
 | |
|         fprintf(fout, "\n");
 | |
|     }
 | |
| 
 | |
|     // write binary data
 | |
|     {
 | |
|         FILE * fout = fopen(fname, "wb");
 | |
| 
 | |
|         if (!fout) {
 | |
|             fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         // header
 | |
|         {
 | |
|             const uint32_t magic   = GGML_FILE_MAGIC;
 | |
|             const uint32_t version = GGML_FILE_VERSION;
 | |
|             const uint32_t n_leafs = cgraph->n_leafs;
 | |
|             const uint32_t nodes   = cgraph->n_nodes;
 | |
| 
 | |
|             fwrite(&magic,     sizeof(uint32_t), 1, fout);
 | |
|             fwrite(&version,   sizeof(uint32_t), 1, fout);
 | |
|             fwrite(&n_leafs,   sizeof(uint32_t), 1, fout);
 | |
|             fwrite(&nodes,     sizeof(uint32_t), 1, fout);
 | |
|             fwrite(&size_eval, sizeof(uint64_t), 1, fout);
 | |
|         }
 | |
| 
 | |
|         // leafs
 | |
|         {
 | |
|             for (int i = 0; i < cgraph->n_leafs; ++i) {
 | |
|                 const struct ggml_tensor * tensor = cgraph->leafs[i];
 | |
| 
 | |
|                 const uint32_t type   = tensor->type;
 | |
|                 const uint32_t op     = tensor->op;
 | |
|                 const uint32_t n_dims = tensor->n_dims;
 | |
| 
 | |
|                 fwrite(&type,   sizeof(uint32_t), 1, fout);
 | |
|                 fwrite(&op,     sizeof(uint32_t), 1, fout);
 | |
|                 fwrite(&n_dims, sizeof(uint32_t), 1, fout);
 | |
| 
 | |
|                 for (int j = 0; j < GGML_MAX_DIMS; ++j) {
 | |
|                     const uint64_t ne = tensor->ne[j];
 | |
|                     const uint64_t nb = tensor->nb[j];
 | |
| 
 | |
|                     fwrite(&ne, sizeof(uint64_t), 1, fout);
 | |
|                     fwrite(&nb, sizeof(uint64_t), 1, fout);
 | |
|                 }
 | |
| 
 | |
|                 fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
 | |
| 
 | |
|                 // dump the data
 | |
|                 // TODO: pad this to 32 byte boundary
 | |
|                 {
 | |
|                     const size_t size = ggml_nbytes(tensor);
 | |
| 
 | |
|                     fwrite(tensor->data, sizeof(char), size, fout);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // nodes
 | |
|         {
 | |
|             for (int i = 0; i < cgraph->n_nodes; ++i) {
 | |
|                 const struct ggml_tensor * tensor = cgraph->nodes[i];
 | |
| 
 | |
|                 const uint32_t type   = tensor->type;
 | |
|                 const uint32_t op     = tensor->op;
 | |
|                 const uint32_t n_dims = tensor->n_dims;
 | |
| 
 | |
|                 fwrite(&type,   sizeof(uint32_t), 1, fout);
 | |
|                 fwrite(&op,     sizeof(uint32_t), 1, fout);
 | |
|                 fwrite(&n_dims, sizeof(uint32_t), 1, fout);
 | |
| 
 | |
|                 for (int j = 0; j < GGML_MAX_DIMS; ++j) {
 | |
|                     const uint64_t ne = tensor->ne[j];
 | |
|                     const uint64_t nb = tensor->nb[j];
 | |
| 
 | |
|                     fwrite(&ne, sizeof(uint64_t), 1, fout);
 | |
|                     fwrite(&nb, sizeof(uint64_t), 1, fout);
 | |
|                 }
 | |
| 
 | |
|                 fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
 | |
| 
 | |
|                 // output the op arguments
 | |
|                 {
 | |
|                     struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
 | |
| 
 | |
|                     for (int j = 0; j < GGML_MAX_SRC; ++j) {
 | |
|                         args[j] = tensor->src[j];
 | |
|                     }
 | |
| 
 | |
|                     for (int j = 0; j < GGML_MAX_SRC; ++j) {
 | |
|                         if (args[j]) {
 | |
|                             int32_t idx = -1;
 | |
| 
 | |
|                             // check if leaf
 | |
|                             {
 | |
|                                 for (int k = 0; k < cgraph->n_leafs; ++k) {
 | |
|                                     if (args[j] == cgraph->leafs[k]) {
 | |
|                                         idx = k;
 | |
|                                         break;
 | |
|                                     }
 | |
|                                 }
 | |
|                             }
 | |
| 
 | |
|                             // check if node
 | |
|                             if (idx == -1) {
 | |
|                                 for (int k = 0; k < cgraph->n_nodes; ++k) {
 | |
|                                     if (args[j] == cgraph->nodes[k]) {
 | |
|                                         idx = GGML_MAX_NODES + k;
 | |
|                                         break;
 | |
|                                     }
 | |
|                                 }
 | |
|                             }
 | |
| 
 | |
|                             if (idx == -1) {
 | |
|                                 fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
 | |
|                                 return;
 | |
|                             }
 | |
| 
 | |
|                             fwrite(&idx, sizeof(int32_t), 1, fout);
 | |
|                         } else {
 | |
|                             const int32_t nul = -1;
 | |
| 
 | |
|                             fwrite(&nul, sizeof(int32_t), 1, fout);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         fclose(fout);
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
 | |
|     assert(*ctx_data == NULL);
 | |
|     assert(*ctx_eval == NULL);
 | |
| 
 | |
|     struct ggml_cgraph result = { 0 };
 | |
| 
 | |
|     struct ggml_tensor * data = NULL;
 | |
| 
 | |
|     // read file into data
 | |
|     {
 | |
|         FILE * fin = fopen(fname, "rb");
 | |
|         if (!fin) {
 | |
|             fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         size_t fsize = 0;
 | |
| 
 | |
|         fseek(fin, 0, SEEK_END);
 | |
|         fsize = ftell(fin);
 | |
|         fseek(fin, 0, SEEK_SET);
 | |
| 
 | |
|         // create the data context
 | |
|         {
 | |
|             const size_t overhead = 1*ggml_tensor_overhead();
 | |
| 
 | |
|             struct ggml_init_params params = {
 | |
|                 .mem_size   = fsize + overhead,
 | |
|                 .mem_buffer = NULL,
 | |
|                 .no_alloc   = false,
 | |
|             };
 | |
| 
 | |
|             *ctx_data = ggml_init(params);
 | |
| 
 | |
|             if (!*ctx_data) {
 | |
|                 fprintf(stderr, "%s: failed to create ggml context\n", __func__);
 | |
|                 fclose(fin);
 | |
|                 return result;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
 | |
| 
 | |
|         {
 | |
|             const size_t ret = fread(data->data, sizeof(char), fsize, fin);
 | |
|             if (ret != fsize) {
 | |
|                 fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
 | |
|                 fclose(fin);
 | |
|                 return result;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         fclose(fin);
 | |
|     }
 | |
| 
 | |
|     // populate result
 | |
|     {
 | |
|         char * ptr = (char *) data->data;
 | |
| 
 | |
|         const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
 | |
| 
 | |
|         if (magic != GGML_FILE_MAGIC) {
 | |
|             fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
 | |
| 
 | |
|         if (version != GGML_FILE_VERSION) {
 | |
|             fprintf(stderr, "%s: invalid version number\n", __func__);
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         const uint32_t n_leafs   = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
 | |
|         const uint32_t n_nodes   = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
 | |
|         const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
 | |
| 
 | |
|         result.n_leafs = n_leafs;
 | |
|         result.n_nodes = n_nodes;
 | |
| 
 | |
|         // create the data context
 | |
|         {
 | |
|             const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
 | |
| 
 | |
|             struct ggml_init_params params = {
 | |
|                 .mem_size   = size_eval + overhead,
 | |
|                 .mem_buffer = NULL,
 | |
|                 .no_alloc   = true,
 | |
|             };
 | |
| 
 | |
|             *ctx_eval = ggml_init(params);
 | |
| 
 | |
|             if (!*ctx_eval) {
 | |
|                 fprintf(stderr, "%s: failed to create ggml context\n", __func__);
 | |
|                 return result;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // leafs
 | |
|         {
 | |
|             uint32_t type;
 | |
|             uint32_t op;
 | |
|             uint32_t n_dims;
 | |
| 
 | |
|             for (uint32_t i = 0; i < n_leafs; ++i) {
 | |
|                 type   = *(const uint32_t *) ptr; ptr += sizeof(type);
 | |
|                 op     = *(const uint32_t *) ptr; ptr += sizeof(op);
 | |
|                 n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
 | |
| 
 | |
|                 int64_t ne[GGML_MAX_DIMS];
 | |
|                 size_t  nb[GGML_MAX_DIMS];
 | |
| 
 | |
|                 for (int j = 0; j < GGML_MAX_DIMS; ++j) {
 | |
|                     uint64_t ne_cur;
 | |
|                     uint64_t nb_cur;
 | |
| 
 | |
|                     ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
 | |
|                     nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
 | |
| 
 | |
|                     ne[j] = ne_cur;
 | |
|                     nb[j] = nb_cur;
 | |
|                 }
 | |
| 
 | |
|                 struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
 | |
| 
 | |
|                 tensor->op = (enum ggml_op) op;
 | |
| 
 | |
|                 memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
 | |
| 
 | |
|                 tensor->data = (void *) ptr;
 | |
| 
 | |
|                 for (int j = 0; j < GGML_MAX_DIMS; ++j) {
 | |
|                     tensor->nb[j] = nb[j];
 | |
|                 }
 | |
| 
 | |
|                 result.leafs[i] = tensor;
 | |
| 
 | |
|                 ptr += ggml_nbytes(tensor);
 | |
| 
 | |
|                 fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ggml_set_no_alloc(*ctx_eval, false);
 | |
| 
 | |
|         // nodes
 | |
|         {
 | |
|             uint32_t type;
 | |
|             uint32_t op;
 | |
|             uint32_t n_dims;
 | |
| 
 | |
|             for (uint32_t i = 0; i < n_nodes; ++i) {
 | |
|                 type   = *(const uint32_t *) ptr; ptr += sizeof(type);
 | |
|                 op     = *(const uint32_t *) ptr; ptr += sizeof(op);
 | |
|                 n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
 | |
| 
 | |
|                 enum ggml_op eop = (enum ggml_op) op;
 | |
| 
 | |
|                 int64_t ne[GGML_MAX_DIMS];
 | |
|                 size_t  nb[GGML_MAX_DIMS];
 | |
| 
 | |
|                 for (int j = 0; j < GGML_MAX_DIMS; ++j) {
 | |
|                     uint64_t ne_cur;
 | |
|                     uint64_t nb_cur;
 | |
| 
 | |
|                     ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
 | |
|                     nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
 | |
| 
 | |
|                     ne[j] = ne_cur;
 | |
|                     nb[j] = nb_cur;
 | |
|                 }
 | |
| 
 | |
|                 const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
 | |
| 
 | |
|                 const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
 | |
| 
 | |
|                 struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
 | |
| 
 | |
|                 // parse args
 | |
|                 for (int j = 0; j < GGML_MAX_SRC; ++j) {
 | |
|                     const int32_t arg_idx = ptr_arg_idx[j];
 | |
| 
 | |
|                     if (arg_idx == -1) {
 | |
|                         continue;
 | |
|                     }
 | |
| 
 | |
|                     if (arg_idx < GGML_MAX_NODES) {
 | |
|                         args[j] = result.leafs[arg_idx];
 | |
|                     } else {
 | |
|                         args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // create the tensor
 | |
|                 // "view" operations are handled differently
 | |
|                 // TODO: handle inplace ops - currently a copy is always made
 | |
| 
 | |
|                 struct ggml_tensor * tensor = NULL;
 | |
| 
 | |
|                 switch (eop) {
 | |
|                     // TODO: implement other view ops
 | |
|                     case GGML_OP_RESHAPE:
 | |
|                         {
 | |
|                             tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
 | |
|                         } break;
 | |
|                     case GGML_OP_VIEW:
 | |
|                         {
 | |
|                             tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
 | |
| 
 | |
|                             uint64_t offs;
 | |
|                             memcpy(&offs, args[2]->data, sizeof(offs));
 | |
| 
 | |
|                             tensor->data = ((char *) tensor->data) + offs;
 | |
|                         } break;
 | |
|                     case GGML_OP_TRANSPOSE:
 | |
|                         {
 | |
|                             tensor = ggml_transpose(*ctx_eval, args[0]);
 | |
|                         } break;
 | |
|                     case GGML_OP_PERMUTE:
 | |
|                         {
 | |
|                             tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
 | |
|                         } break;
 | |
|                     default:
 | |
|                         {
 | |
|                             tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
 | |
| 
 | |
|                             tensor->op = eop;
 | |
|                         } break;
 | |
|                 }
 | |
| 
 | |
|                 memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
 | |
| 
 | |
|                 for (int j = 0; j < GGML_MAX_DIMS; ++j) {
 | |
|                     tensor->nb[j] = nb[j];
 | |
|                 }
 | |
| 
 | |
|                 for (int j = 0; j < GGML_MAX_SRC; ++j) {
 | |
|                     tensor->src[j] = args[j];
 | |
|                 }
 | |
| 
 | |
|                 result.nodes[i] = tensor;
 | |
| 
 | |
|                 fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void ggml_graph_print(const struct ggml_cgraph * cgraph) {
 | |
|     int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
 | |
| 
 | |
|     GGML_PRINT("=== GRAPH ===\n");
 | |
| 
 | |
|     GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = cgraph->nodes[i];
 | |
| 
 | |
|         perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
 | |
| 
 | |
|         GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
 | |
|                 i,
 | |
|                 node->ne[0], node->ne[1], node->ne[2],
 | |
|                 GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
 | |
|                 (double) node->perf_cycles  / (double) ggml_cycles_per_ms(),
 | |
|                 (double) node->perf_cycles  / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
 | |
|                 (double) node->perf_time_us / 1000.0,
 | |
|                 (double) node->perf_time_us / 1000.0 / node->perf_runs);
 | |
|     }
 | |
| 
 | |
|     GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
 | |
|     for (int i = 0; i < cgraph->n_leafs; i++) {
 | |
|         struct ggml_tensor * node = cgraph->leafs[i];
 | |
| 
 | |
|         GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
 | |
|                 i,
 | |
|                 node->ne[0], node->ne[1],
 | |
|                 GGML_OP_NAME[node->op]);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < GGML_OP_COUNT; i++) {
 | |
|         if (perf_total_per_op_us[i] == 0) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
 | |
|     }
 | |
| 
 | |
|     GGML_PRINT("========================================\n");
 | |
| }
 | |
| 
 | |
| // check if node is part of the graph
 | |
| static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
 | |
|     if (cgraph == NULL) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         if (cgraph->nodes[i] == node) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         struct ggml_tensor * parent = cgraph->nodes[i];
 | |
| 
 | |
|         if (parent->grad == node) {
 | |
|             return parent;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label)  {
 | |
|     struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
 | |
|     struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
 | |
|     fprintf(fp, "  \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
 | |
|             gparent0 ? (void *) gparent0 : (void *) parent,
 | |
|             gparent0 ? "g" : "x",
 | |
|             gparent ? (void *) gparent : (void *) node,
 | |
|             gparent ? "g" : "x",
 | |
|             gparent ? "empty" : "vee",
 | |
|             gparent ? "dashed" : "solid",
 | |
|             label);
 | |
| }
 | |
| 
 | |
| static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label)  {
 | |
|     fprintf(fp, "  \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
 | |
|             (void *) parent, "x",
 | |
|             (void *) node, "x",
 | |
|             label);
 | |
| }
 | |
| 
 | |
| void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
 | |
|     char color[16];
 | |
| 
 | |
|     FILE * fp = fopen(filename, "w");
 | |
|     GGML_ASSERT(fp);
 | |
| 
 | |
|     fprintf(fp, "digraph G {\n");
 | |
|     fprintf(fp, "  newrank = true;\n");
 | |
|     fprintf(fp, "  rankdir = LR;\n");
 | |
| 
 | |
|     for (int i = 0; i < gb->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = gb->nodes[i];
 | |
| 
 | |
|         if (ggml_graph_get_parent(gb, node) != NULL) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (node->is_param) {
 | |
|             snprintf(color, sizeof(color), "yellow");
 | |
|         } else if (node->grad) {
 | |
|             if (ggml_graph_find(gf, node)) {
 | |
|                 snprintf(color, sizeof(color), "green");
 | |
|             } else {
 | |
|                 snprintf(color, sizeof(color), "lightblue");
 | |
|             }
 | |
|         } else {
 | |
|             snprintf(color, sizeof(color), "white");
 | |
|         }
 | |
| 
 | |
|         fprintf(fp, "  \"%p\" [ "
 | |
|                     "style = filled; fillcolor = %s; shape = record; "
 | |
|                     "label=\"",
 | |
|                 (void *) node, color);
 | |
| 
 | |
|         if (strlen(node->name) > 0) {
 | |
|             fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
 | |
|         } else {
 | |
|             fprintf(fp, "(%s)|", ggml_type_name(node->type));
 | |
|         }
 | |
| 
 | |
|         if (node->n_dims == 2) {
 | |
|             fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
 | |
|         } else {
 | |
|             fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
 | |
|         }
 | |
| 
 | |
|         if (node->grad) {
 | |
|             fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
 | |
|         } else {
 | |
|             fprintf(fp, "\"; ]\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < gb->n_leafs; i++) {
 | |
|         struct ggml_tensor * node = gb->leafs[i];
 | |
| 
 | |
|         snprintf(color, sizeof(color), "pink");
 | |
| 
 | |
|         fprintf(fp, "  \"%p\" [ "
 | |
|                     "style = filled; fillcolor = %s; shape = record; "
 | |
|                     "label=\"<x>",
 | |
|                 (void *) node, color);
 | |
| 
 | |
|         if (strlen(node->name) > 0) {
 | |
|             fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
 | |
|         } else {
 | |
|             fprintf(fp, "(%s)|", ggml_type_name(node->type));
 | |
|         }
 | |
| 
 | |
|         fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
 | |
|         if (ggml_nelements(node) < 5) {
 | |
|             fprintf(fp, " | (");
 | |
|             for (int j = 0; j < ggml_nelements(node); j++) {
 | |
|                 if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
 | |
|                     fprintf(fp, "%d", ggml_get_i32_1d(node, j));
 | |
|                 }
 | |
|                 else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
 | |
|                     fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
 | |
|                 }
 | |
|                 else {
 | |
|                     fprintf(fp, "#");
 | |
|                 }
 | |
|                 if (j < ggml_nelements(node) - 1) {
 | |
|                     fprintf(fp, ", ");
 | |
|                 }
 | |
|             }
 | |
|             fprintf(fp, ")");
 | |
|         }
 | |
|         fprintf(fp, "\"; ]\n");
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < gb->n_nodes; i++) {
 | |
|         struct ggml_tensor * node = gb->nodes[i];
 | |
| 
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             if (node->src[j]) {
 | |
|                 char label[16];
 | |
|                 snprintf(label, sizeof(label), "src %d", j);
 | |
|                 ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < gb->n_leafs; i++) {
 | |
|         struct ggml_tensor * node = gb->leafs[i];
 | |
| 
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             if (node->src[j]) {
 | |
|                 char label[16];
 | |
|                 snprintf(label, sizeof(label), "src %d", j);
 | |
|                 ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(fp, "}\n");
 | |
| 
 | |
|     fclose(fp);
 | |
| 
 | |
|     GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
 | |
|     int i = 0;
 | |
|     for (int p = 0; p < np; ++p) {
 | |
|         const int64_t ne = ggml_nelements(ps[p]) ;
 | |
|         // TODO: add function to set tensor from array
 | |
|         for (int64_t j = 0; j < ne; ++j) {
 | |
|             ggml_set_f32_1d(ps[p], j, x[i++]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
 | |
|     int i = 0;
 | |
|     for (int p = 0; p < np; ++p) {
 | |
|         const int64_t ne = ggml_nelements(ps[p]) ;
 | |
|         // TODO: add function to get all elements at once
 | |
|         for (int64_t j = 0; j < ne; ++j) {
 | |
|             x[i++] = ggml_get_f32_1d(ps[p], j);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
 | |
|     int i = 0;
 | |
|     for (int p = 0; p < np; ++p) {
 | |
|         const int64_t ne = ggml_nelements(ps[p]) ;
 | |
|         // TODO: add function to get all elements at once
 | |
|         for (int64_t j = 0; j < ne; ++j) {
 | |
|             g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // ADAM
 | |
| //
 | |
| //   ref: https://arxiv.org/pdf/1412.6980.pdf
 | |
| //
 | |
| 
 | |
| static enum ggml_opt_result ggml_opt_adam(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_opt_context * opt,
 | |
|         struct ggml_opt_params params,
 | |
|         struct ggml_tensor * f,
 | |
|         struct ggml_cgraph * gf,
 | |
|         struct ggml_cgraph * gb) {
 | |
|     GGML_ASSERT(ggml_is_scalar(f));
 | |
| 
 | |
|     // these will store the parameters we want to optimize
 | |
|     struct ggml_tensor * ps[GGML_MAX_PARAMS];
 | |
| 
 | |
|     int np = 0;
 | |
|     int nx = 0;
 | |
|     for (int i = 0; i < gf->n_nodes; ++i) {
 | |
|         if (gf->nodes[i]->is_param) {
 | |
|             GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
 | |
| 
 | |
|             GGML_ASSERT(np < GGML_MAX_PARAMS);
 | |
| 
 | |
|             ps[np++] = gf->nodes[i];
 | |
|             nx += ggml_nelements(gf->nodes[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
 | |
|         int iter = opt->iter;
 | |
|         ggml_opt_init(opt->ctx, opt, params, nx);
 | |
|         opt->iter = iter;
 | |
|     }
 | |
| 
 | |
|     // constants
 | |
|     const float sched = params.adam.sched;
 | |
|     const float decay = params.adam.decay * sched;
 | |
|     const float alpha = params.adam.alpha * sched;
 | |
|     const float beta1 = params.adam.beta1;
 | |
|     const float beta2 = params.adam.beta2;
 | |
|     const float eps   = params.adam.eps;
 | |
| 
 | |
|     float * x  = opt->adam.x->data;  // view of the parameters
 | |
|     float * g1 = opt->adam.g1->data; // gradient
 | |
|     float * g2 = opt->adam.g2->data; // gradient squared
 | |
|     float * m  = opt->adam.m->data;  // first moment
 | |
|     float * v  = opt->adam.v->data;  // second moment
 | |
|     float * mh = opt->adam.mh->data; // first moment hat
 | |
|     float * vh = opt->adam.vh->data; // second moment hat
 | |
| 
 | |
|     float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
 | |
| 
 | |
|     // update view
 | |
|     ggml_opt_get_params(np, ps, x);
 | |
| 
 | |
|     // compute the function value
 | |
|     ggml_graph_reset  (gf);
 | |
|     ggml_set_f32      (f->grad, 1.0f);
 | |
| 
 | |
|     ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
 | |
| 
 | |
|     opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
 | |
|     opt->adam.fx_best = opt->adam.fx_prev;
 | |
|     if (pf) {
 | |
|         pf[opt->iter % params.past] = opt->adam.fx_prev;
 | |
|     }
 | |
| 
 | |
|     // initialize
 | |
|     if (opt->just_initialized) {
 | |
|         opt->adam.n_no_improvement = 0;
 | |
|         opt->just_initialized = false;
 | |
|     }
 | |
| 
 | |
|     float * fx_best = &opt->adam.fx_best;
 | |
|     float * fx_prev = &opt->adam.fx_prev;
 | |
|     int * n_no_improvement = &opt->adam.n_no_improvement;
 | |
| 
 | |
|     int iter0 = opt->iter;
 | |
| 
 | |
|     // run the optimizer
 | |
|     for (int t = 0; t < params.adam.n_iter; ++t) {
 | |
|         opt->iter = iter0 + t + 1;
 | |
|         GGML_PRINT_DEBUG  ("=== iter %d ===\n", t);
 | |
| 
 | |
|         GGML_PRINT_DEBUG  ("f      = %10.6f\n", ggml_get_f32_1d(f, 0));
 | |
|         GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
 | |
|         GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
 | |
| 
 | |
|         for (int i = 0; i < np; ++i) {
 | |
|             GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
 | |
|                     ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
 | |
|         }
 | |
| 
 | |
|         const int64_t t_start_wall = ggml_time_us();
 | |
|         const int64_t t_start_cpu = ggml_cycles();
 | |
|         UNUSED(t_start_wall);
 | |
|         UNUSED(t_start_cpu);
 | |
| 
 | |
|         {
 | |
|             // update the gradient
 | |
|             ggml_opt_get_grad(np, ps, g1);
 | |
| 
 | |
|             // m_t = beta1*m_t-1 + (1 - beta1)*g_t
 | |
|             ggml_vec_scale_f32(nx, m, beta1);
 | |
|             ggml_vec_mad_f32  (nx, m, g1, 1.0f - beta1);
 | |
| 
 | |
|             // g2 = g1^2
 | |
|             ggml_vec_sqr_f32  (nx, g2, g1);
 | |
| 
 | |
|             // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
 | |
|             ggml_vec_scale_f32(nx, v, beta2);
 | |
|             ggml_vec_mad_f32  (nx, v, g2, 1.0f - beta2);
 | |
| 
 | |
|             // m^hat = m_t / (1 - beta1^t)
 | |
|             // v^hat = v_t / (1 - beta2^t)
 | |
|             // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
 | |
|             // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
 | |
|             // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
 | |
|             // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
 | |
|             // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
 | |
|             ggml_vec_cpy_f32  (nx, mh, m);
 | |
|             ggml_vec_cpy_f32  (nx, vh, v);
 | |
| 
 | |
|             ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
 | |
|             ggml_vec_scale_f32(nx, vh,  1.0f/(1.0f - powf(beta2, opt->iter)));
 | |
| 
 | |
|             ggml_vec_sqrt_f32 (nx, vh, vh);
 | |
|             ggml_vec_acc1_f32 (nx, vh, eps);
 | |
| 
 | |
|             ggml_vec_div_f32  (nx, mh, mh, vh);
 | |
|             ggml_vec_scale_f32(nx, x,  1.0f - decay);
 | |
|             ggml_vec_sub_f32  (nx, x,  x,  mh);
 | |
| 
 | |
|             // update the parameters
 | |
|             ggml_opt_set_params(np, ps, x);
 | |
|         }
 | |
| 
 | |
|         ggml_graph_reset  (gf);
 | |
|         ggml_set_f32      (f->grad, 1.0f);
 | |
| 
 | |
|         ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
 | |
| 
 | |
|         const float fx = ggml_get_f32_1d(f, 0);
 | |
| 
 | |
|         // check convergence
 | |
|         if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
 | |
|             GGML_PRINT_DEBUG("converged\n");
 | |
| 
 | |
|             return GGML_OPT_OK;
 | |
|         }
 | |
| 
 | |
|         // delta-based convergence test
 | |
|         if (pf != NULL) {
 | |
|             // need at least params.past iterations to start checking for convergence
 | |
|             if (params.past <= iter0 + t) {
 | |
|                 const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
 | |
| 
 | |
|                 if (fabsf(rate) < params.delta) {
 | |
|                     return GGML_OPT_OK;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             pf[(iter0 + t)%params.past] = fx;
 | |
|         }
 | |
| 
 | |
|         // check for improvement
 | |
|         if (params.max_no_improvement > 0) {
 | |
|             if (fx_best[0] > fx) {
 | |
|                 fx_best[0] = fx;
 | |
|                 n_no_improvement[0] = 0;
 | |
|             } else {
 | |
|                 ++n_no_improvement[0];
 | |
| 
 | |
|                 if (n_no_improvement[0] >= params.max_no_improvement) {
 | |
|                     return GGML_OPT_OK;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         fx_prev[0] = fx;
 | |
| 
 | |
|         {
 | |
|             const int64_t t_end_cpu = ggml_cycles();
 | |
|             GGML_PRINT_DEBUG("time iter:      %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
 | |
|             UNUSED(t_end_cpu);
 | |
| 
 | |
|             const int64_t t_end_wall = ggml_time_us();
 | |
|             GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
 | |
|             UNUSED(t_end_wall);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return GGML_OPT_DID_NOT_CONVERGE;
 | |
| }
 | |
| 
 | |
| //
 | |
| // L-BFGS
 | |
| //
 | |
| // the L-BFGS implementation below is based on the following implementation:
 | |
| //
 | |
| //   https://github.com/chokkan/liblbfgs
 | |
| //
 | |
| 
 | |
| struct ggml_lbfgs_iteration_data {
 | |
|     float alpha;
 | |
|     float ys;
 | |
|     float * s;
 | |
|     float * y;
 | |
| };
 | |
| 
 | |
| static enum ggml_opt_result linesearch_backtracking(
 | |
|         struct ggml_context * ctx,
 | |
|         const struct ggml_opt_params * params,
 | |
|         int nx,
 | |
|         float * x,
 | |
|         float * fx,
 | |
|         float * g,
 | |
|         float * d,
 | |
|         float * step,
 | |
|         const float * xp,
 | |
|         struct ggml_tensor * f,
 | |
|         struct ggml_cgraph * gf,
 | |
|         struct ggml_cgraph * gb,
 | |
|         const int np,
 | |
|         struct ggml_tensor * ps[]) {
 | |
|     int count = 0;
 | |
| 
 | |
|     float width  = 0.0f;
 | |
|     float dg     = 0.0f;
 | |
|     float finit  = 0.0f;
 | |
|     float dginit = 0.0f;
 | |
|     float dgtest = 0.0f;
 | |
| 
 | |
|     const float dec = 0.5f;
 | |
|     const float inc = 2.1f;
 | |
| 
 | |
|     if (*step <= 0.f) {
 | |
|         return GGML_LINESEARCH_INVALID_PARAMETERS;
 | |
|     }
 | |
| 
 | |
|     // compute the initial gradient in the search direction
 | |
|     ggml_vec_dot_f32(nx, &dginit, g, d);
 | |
| 
 | |
|     // make sure that d points to a descent direction
 | |
|     if (0 < dginit) {
 | |
|         return GGML_LINESEARCH_FAIL;
 | |
|     }
 | |
| 
 | |
|     // initialize local variables
 | |
|     finit = *fx;
 | |
|     dgtest = params->lbfgs.ftol*dginit;
 | |
| 
 | |
|     while (true) {
 | |
|         ggml_vec_cpy_f32(nx, x, xp);
 | |
|         ggml_vec_mad_f32(nx, x, d, *step);
 | |
| 
 | |
|         // evaluate the function and gradient values
 | |
|         {
 | |
|             ggml_opt_set_params(np, ps, x);
 | |
| 
 | |
|             ggml_graph_reset  (gf);
 | |
|             ggml_set_f32      (f->grad, 1.0f);
 | |
| 
 | |
|             ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
 | |
| 
 | |
|             ggml_opt_get_grad(np, ps, g);
 | |
| 
 | |
|             *fx = ggml_get_f32_1d(f, 0);
 | |
|         }
 | |
| 
 | |
|         ++count;
 | |
| 
 | |
|         if (*fx > finit + (*step)*dgtest) {
 | |
|             width = dec;
 | |
|         } else {
 | |
|             // Armijo condition is satisfied
 | |
|             if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
 | |
|                 return count;
 | |
|             }
 | |
| 
 | |
|             ggml_vec_dot_f32(nx, &dg, g, d);
 | |
| 
 | |
|             // check the Wolfe condition
 | |
|             if (dg < params->lbfgs.wolfe * dginit) {
 | |
|                 width = inc;
 | |
|             } else {
 | |
|                 if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
 | |
|                     // regular Wolfe conditions
 | |
|                     return count;
 | |
|                 }
 | |
| 
 | |
|                 if(dg > -params->lbfgs.wolfe*dginit) {
 | |
|                     width = dec;
 | |
|                 } else {
 | |
|                     // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
 | |
|                     return count;
 | |
|                 }
 | |
|                 return count;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (*step < params->lbfgs.min_step) {
 | |
|             return GGML_LINESEARCH_MINIMUM_STEP;
 | |
|         }
 | |
|         if (*step > params->lbfgs.max_step) {
 | |
|             return GGML_LINESEARCH_MAXIMUM_STEP;
 | |
|         }
 | |
|         if (params->lbfgs.max_linesearch <= count) {
 | |
|             return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
 | |
|         }
 | |
| 
 | |
|         (*step) *= width;
 | |
|     }
 | |
| 
 | |
|     return GGML_LINESEARCH_FAIL;
 | |
| }
 | |
| 
 | |
| static enum ggml_opt_result ggml_opt_lbfgs(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_opt_context * opt,
 | |
|         struct ggml_opt_params params,
 | |
|         struct ggml_tensor * f,
 | |
|         struct ggml_cgraph * gf,
 | |
|         struct ggml_cgraph * gb) {
 | |
|     if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
 | |
|         params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
 | |
|         if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
 | |
|             return GGML_OPT_INVALID_WOLFE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const int m = params.lbfgs.m;
 | |
| 
 | |
|     // these will store the parameters we want to optimize
 | |
|     struct ggml_tensor * ps[GGML_MAX_PARAMS];
 | |
| 
 | |
|     int np = 0;
 | |
|     int nx = 0;
 | |
|     for (int i = 0; i < gf->n_nodes; ++i) {
 | |
|         if (gf->nodes[i]->is_param) {
 | |
|             GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
 | |
| 
 | |
|             GGML_ASSERT(np < GGML_MAX_PARAMS);
 | |
| 
 | |
|             ps[np++] = gf->nodes[i];
 | |
|             nx += ggml_nelements(gf->nodes[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
 | |
|         int iter = opt->iter;
 | |
|         ggml_opt_init(ctx, opt, params, nx);
 | |
|         opt->iter = iter;
 | |
|     }
 | |
| 
 | |
|     float * x  = opt->lbfgs.x->data;  // current parameters
 | |
|     float * xp = opt->lbfgs.xp->data; // previous parameters
 | |
|     float * g  = opt->lbfgs.g->data;  // current gradient
 | |
|     float * gp = opt->lbfgs.gp->data; // previous gradient
 | |
|     float * d  = opt->lbfgs.d->data;  // search direction
 | |
| 
 | |
|     float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
 | |
| 
 | |
|     float fx    = 0.0f; // cost function value
 | |
|     float xnorm = 0.0f; // ||x||
 | |
|     float gnorm = 0.0f; // ||g||
 | |
| 
 | |
|     // initialize x from the graph nodes
 | |
|     ggml_opt_get_params(np, ps, x);
 | |
| 
 | |
|     // the L-BFGS memory
 | |
|     float * lm_alpha = opt->lbfgs.lmal->data;
 | |
|     float * lm_ys    = opt->lbfgs.lmys->data;
 | |
|     float * lm_s     = opt->lbfgs.lms->data;
 | |
|     float * lm_y     = opt->lbfgs.lmy->data;
 | |
| 
 | |
|     // evaluate the function value and its gradient
 | |
|     {
 | |
|         ggml_opt_set_params(np, ps, x);
 | |
| 
 | |
|         ggml_graph_reset  (gf);
 | |
|         ggml_set_f32      (f->grad, 1.0f);
 | |
| 
 | |
|         ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
 | |
| 
 | |
|         ggml_opt_get_grad(np, ps, g);
 | |
| 
 | |
|         fx = ggml_get_f32_1d(f, 0);
 | |
|     }
 | |
| 
 | |
|     // search direction = -gradient
 | |
|     ggml_vec_neg_f32(nx, d, g);
 | |
| 
 | |
|     // ||x||, ||g||
 | |
|     ggml_vec_norm_f32(nx, &xnorm, x);
 | |
|     ggml_vec_norm_f32(nx, &gnorm, g);
 | |
| 
 | |
|     if (xnorm < 1.0f) {
 | |
|         xnorm = 1.0f;
 | |
|     }
 | |
| 
 | |
|     // already optimized
 | |
|     if (gnorm/xnorm <= params.lbfgs.eps) {
 | |
|         return GGML_OPT_OK;
 | |
|     }
 | |
| 
 | |
|     if (opt->just_initialized) {
 | |
|         if (pf) {
 | |
|             pf[0] = fx;
 | |
|         }
 | |
|         opt->lbfgs.fx_best = fx;
 | |
| 
 | |
|         // initial step
 | |
|         ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
 | |
|         opt->lbfgs.j                = 0;
 | |
|         opt->lbfgs.k                = 1;
 | |
|         opt->lbfgs.end              = 0;
 | |
|         opt->lbfgs.n_no_improvement = 0;
 | |
|         opt->just_initialized       = false;
 | |
|     }
 | |
| 
 | |
|     float * fx_best        = &opt->lbfgs.fx_best;
 | |
|     float * step           = &opt->lbfgs.step;
 | |
|     int * j                = &opt->lbfgs.j;
 | |
|     int * k                = &opt->lbfgs.k;
 | |
|     int * end              = &opt->lbfgs.end;
 | |
|     int * n_no_improvement = &opt->lbfgs.n_no_improvement;
 | |
| 
 | |
|     int ls     = 0;
 | |
|     int bound  = 0;
 | |
| 
 | |
|     float ys   = 0.0f;
 | |
|     float yy   = 0.0f;
 | |
|     float beta = 0.0f;
 | |
| 
 | |
|     int it = 0;
 | |
| 
 | |
|     while (true) {
 | |
|         // store the current position and gradient vectors
 | |
|         ggml_vec_cpy_f32(nx, xp, x);
 | |
|         ggml_vec_cpy_f32(nx, gp, g);
 | |
| 
 | |
|         ls = linesearch_backtracking(ctx, ¶ms, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
 | |
| 
 | |
|         if (ls < 0) {
 | |
|             // linesearch failed - go back to the previous point and return
 | |
|             ggml_vec_cpy_f32(nx, x, xp);
 | |
|             ggml_vec_cpy_f32(nx, g, gp);
 | |
| 
 | |
|             return ls;
 | |
|         }
 | |
| 
 | |
|         ggml_vec_norm_f32(nx, &xnorm, x);
 | |
|         ggml_vec_norm_f32(nx, &gnorm, g);
 | |
| 
 | |
|         GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
 | |
| 
 | |
|         if (xnorm < 1.0f) {
 | |
|             xnorm = 1.0f;
 | |
|         }
 | |
|         if (gnorm/xnorm <= params.lbfgs.eps) {
 | |
|             // converged
 | |
|             return GGML_OPT_OK;
 | |
|         }
 | |
| 
 | |
|         // delta-based convergence test
 | |
|         if (pf != NULL) {
 | |
|             // need at least params.past iterations to start checking for convergence
 | |
|             if (params.past <= k[0]) {
 | |
|                 const float rate = (pf[k[0]%params.past] - fx)/fx;
 | |
| 
 | |
|                 if (fabsf(rate) < params.delta) {
 | |
|                     return GGML_OPT_OK;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             pf[k[0]%params.past] = fx;
 | |
|         }
 | |
| 
 | |
|         // check for improvement
 | |
|         if (params.max_no_improvement > 0) {
 | |
|             if (fx < fx_best[0]) {
 | |
|                 fx_best[0] = fx;
 | |
|                 n_no_improvement[0] = 0;
 | |
|             } else {
 | |
|                 n_no_improvement[0]++;
 | |
| 
 | |
|                 if (n_no_improvement[0] >= params.max_no_improvement) {
 | |
|                     return GGML_OPT_OK;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
 | |
|             // reached the maximum number of iterations
 | |
|             return GGML_OPT_DID_NOT_CONVERGE;
 | |
|         }
 | |
| 
 | |
|         // update vectors s and y:
 | |
|         //   s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
 | |
|         //   y_{k+1} = g_{k+1} - g_{k}.
 | |
|         //
 | |
|         ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
 | |
|         ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
 | |
| 
 | |
|         // compute scalars ys and yy:
 | |
|         //     ys = y^t \cdot s    -> 1 / \rho.
 | |
|         //     yy = y^t \cdot y.
 | |
|         //
 | |
|         ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
 | |
|         ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
 | |
| 
 | |
|         lm_ys[end[0]] = ys;
 | |
| 
 | |
|         // find new search direction
 | |
|         //   ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
 | |
| 
 | |
|         bound = (m <= k[0]) ? m : k[0];
 | |
|         k[0]++;
 | |
|         it++;
 | |
|         end[0] = (end[0] + 1)%m;
 | |
| 
 | |
|         // initialize search direction with -g
 | |
|         ggml_vec_neg_f32(nx, d, g);
 | |
| 
 | |
|         j[0] = end[0];
 | |
|         for (int i = 0; i < bound; ++i) {
 | |
|             j[0] = (j[0] + m - 1) % m;
 | |
|             // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
 | |
|             ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
 | |
|             lm_alpha[j[0]] /= lm_ys[j[0]];
 | |
|             // q_{i} = q_{i+1} - \alpha_{i} y_{i}
 | |
|             ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
 | |
|         }
 | |
| 
 | |
|         ggml_vec_scale_f32(nx, d, ys/yy);
 | |
| 
 | |
|         for (int i = 0; i < bound; ++i) {
 | |
|             // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
 | |
|             ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
 | |
|             beta /= lm_ys[j[0]];
 | |
|             // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
 | |
|             ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
 | |
|             j[0] = (j[0] + 1)%m;
 | |
|         }
 | |
| 
 | |
|         step[0] = 1.0;
 | |
|     }
 | |
| 
 | |
|     return GGML_OPT_DID_NOT_CONVERGE;
 | |
| }
 | |
| 
 | |
| struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
 | |
|     struct ggml_opt_params result;
 | |
| 
 | |
|     switch (type) {
 | |
|         case GGML_OPT_ADAM:
 | |
|             {
 | |
|                 result = (struct ggml_opt_params) {
 | |
|                     .type      = GGML_OPT_ADAM,
 | |
|                     .n_threads = 1,
 | |
|                     .past      = 0,
 | |
|                     .delta     = 1e-5f,
 | |
| 
 | |
|                     .max_no_improvement = 100,
 | |
| 
 | |
|                     .print_forward_graph  = true,
 | |
|                     .print_backward_graph = true,
 | |
| 
 | |
|                     .adam = {
 | |
|                         .n_iter = 10000,
 | |
|                         .sched  = 1.000f,
 | |
|                         .decay  = 0.001f,
 | |
|                         .alpha  = 0.001f,
 | |
|                         .beta1  = 0.9f,
 | |
|                         .beta2  = 0.999f,
 | |
|                         .eps    = 1e-8f,
 | |
|                         .eps_f  = 1e-5f,
 | |
|                         .eps_g  = 1e-3f,
 | |
|                     },
 | |
|                 };
 | |
|             } break;
 | |
|         case GGML_OPT_LBFGS:
 | |
|             {
 | |
|                 result = (struct ggml_opt_params) {
 | |
|                     .type      = GGML_OPT_LBFGS,
 | |
|                     .n_threads = 1,
 | |
|                     .past      = 0,
 | |
|                     .delta     = 1e-5f,
 | |
| 
 | |
|                     .max_no_improvement = 0,
 | |
| 
 | |
|                     .print_forward_graph  = true,
 | |
|                     .print_backward_graph = true,
 | |
| 
 | |
|                     .lbfgs = {
 | |
|                         .m              = 6,
 | |
|                         .n_iter         = 100,
 | |
|                         .max_linesearch = 20,
 | |
| 
 | |
|                         .eps      = 1e-5f,
 | |
|                         .ftol     = 1e-4f,
 | |
|                         .wolfe    = 0.9f,
 | |
|                         .min_step = 1e-20f,
 | |
|                         .max_step = 1e+20f,
 | |
| 
 | |
|                         .linesearch = GGML_LINESEARCH_DEFAULT,
 | |
|                     },
 | |
|                 };
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| GGML_API void ggml_opt_init(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_opt_context * opt,
 | |
|         struct ggml_opt_params params,
 | |
|         int64_t nx) {
 | |
|     opt->ctx = ctx;
 | |
|     opt->params = params;
 | |
|     opt->iter = 0;
 | |
|     opt->nx = nx;
 | |
|     opt->just_initialized = true;
 | |
|     switch (opt->params.type) {
 | |
|         case GGML_OPT_ADAM:
 | |
|             {
 | |
|                 opt->adam.x  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->adam.m  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->adam.v  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->adam.pf = params.past > 0
 | |
|                     ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
 | |
|                     : NULL;
 | |
|                 ggml_set_zero(opt->adam.x);
 | |
|                 ggml_set_zero(opt->adam.g1);
 | |
|                 ggml_set_zero(opt->adam.g2);
 | |
|                 ggml_set_zero(opt->adam.m);
 | |
|                 ggml_set_zero(opt->adam.v);
 | |
|                 ggml_set_zero(opt->adam.mh);
 | |
|                 ggml_set_zero(opt->adam.vh);
 | |
|                 if (opt->adam.pf) {
 | |
|                     ggml_set_zero(opt->adam.pf);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OPT_LBFGS:
 | |
|             {
 | |
|                 opt->lbfgs.x  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->lbfgs.g  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->lbfgs.d  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
 | |
|                 opt->lbfgs.pf = params.past > 0
 | |
|                     ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
 | |
|                     : NULL;
 | |
|                 opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
 | |
|                 opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
 | |
|                 opt->lbfgs.lms  = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
 | |
|                 opt->lbfgs.lmy  = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
 | |
|                 ggml_set_zero(opt->lbfgs.x);
 | |
|                 ggml_set_zero(opt->lbfgs.xp);
 | |
|                 ggml_set_zero(opt->lbfgs.g);
 | |
|                 ggml_set_zero(opt->lbfgs.gp);
 | |
|                 ggml_set_zero(opt->lbfgs.d);
 | |
|                 if (opt->lbfgs.pf) {
 | |
|                     ggml_set_zero(opt->lbfgs.pf);
 | |
|                 }
 | |
|                 ggml_set_zero(opt->lbfgs.lmal);
 | |
|                 ggml_set_zero(opt->lbfgs.lmys);
 | |
|                 ggml_set_zero(opt->lbfgs.lms);
 | |
|                 ggml_set_zero(opt->lbfgs.lmy);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| enum ggml_opt_result ggml_opt(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_opt_params params,
 | |
|         struct ggml_tensor * f) {
 | |
|     bool free_ctx = false;
 | |
|     if (ctx == NULL) {
 | |
|         struct ggml_init_params params_ctx = {
 | |
|             .mem_size   = 16*1024*1024,
 | |
|             .mem_buffer = NULL,
 | |
|             .no_alloc   = false,
 | |
|         };
 | |
| 
 | |
|         ctx = ggml_init(params_ctx);
 | |
|         if (ctx == NULL) {
 | |
|             return GGML_OPT_NO_CONTEXT;
 | |
|         }
 | |
| 
 | |
|         free_ctx = true;
 | |
|     }
 | |
| 
 | |
|     enum ggml_opt_result result = GGML_OPT_OK;
 | |
| 
 | |
|     struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
 | |
| 
 | |
|     ggml_opt_init(ctx, opt, params, 0);
 | |
|     result = ggml_opt_resume(ctx, opt, f);
 | |
| 
 | |
|     if (free_ctx) {
 | |
|         ggml_free(ctx);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| enum ggml_opt_result ggml_opt_resume(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_opt_context * opt,
 | |
|         struct ggml_tensor * f) {
 | |
| 
 | |
|     // build forward + backward compute graphs
 | |
|     struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
 | |
|     struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
 | |
| 
 | |
|     struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
 | |
|     struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
 | |
| 
 | |
|     *gf = ggml_build_forward (f);
 | |
|     *gb = ggml_build_backward(ctx, gf, true);
 | |
| 
 | |
|     return ggml_opt_resume_g(ctx, opt, f, gf, gb);
 | |
| }
 | |
| 
 | |
| enum ggml_opt_result ggml_opt_resume_g(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_opt_context * opt,
 | |
|         struct ggml_tensor * f,
 | |
|         struct ggml_cgraph * gf,
 | |
|         struct ggml_cgraph * gb) {
 | |
| 
 | |
|     // build forward + backward compute graphs
 | |
|     enum ggml_opt_result result = GGML_OPT_OK;
 | |
| 
 | |
|     switch (opt->params.type) {
 | |
|         case GGML_OPT_ADAM:
 | |
|             {
 | |
|                 result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
 | |
|             } break;
 | |
|         case GGML_OPT_LBFGS:
 | |
|             {
 | |
|                 result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
 | |
|             } break;
 | |
|     }
 | |
| 
 | |
|     if (opt->params.print_forward_graph) {
 | |
|         ggml_graph_print   (gf);
 | |
|         ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
 | |
|     }
 | |
| 
 | |
|     if (opt->params.print_backward_graph) {
 | |
|         ggml_graph_print   (gb);
 | |
|         ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
 | |
|     assert(k % QK4_0 == 0);
 | |
|     const int nb = k / QK4_0;
 | |
| 
 | |
|     for (int b = 0; b < n; b += k) {
 | |
|         block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
 | |
| 
 | |
|         quantize_row_q4_0_reference(src + b, y, k);
 | |
| 
 | |
|         for (int i = 0; i < nb; i++) {
 | |
|             for (int j = 0; j < QK4_0; j += 2) {
 | |
|                 const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
 | |
|                 const uint8_t vi1 = y[i].qs[j/2] >> 4;
 | |
| 
 | |
|                 hist[vi0]++;
 | |
|                 hist[vi1]++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (n/QK4_0*sizeof(block_q4_0));
 | |
| }
 | |
| 
 | |
| size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
 | |
|     assert(k % QK4_1 == 0);
 | |
|     const int nb = k / QK4_1;
 | |
| 
 | |
|     for (int b = 0; b < n; b += k) {
 | |
|         block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
 | |
| 
 | |
|         quantize_row_q4_1_reference(src + b, y, k);
 | |
| 
 | |
|         for (int i = 0; i < nb; i++) {
 | |
|             for (int j = 0; j < QK4_1; j += 2) {
 | |
|                 const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
 | |
|                 const uint8_t vi1 = y[i].qs[j/2] >> 4;
 | |
| 
 | |
|                 hist[vi0]++;
 | |
|                 hist[vi1]++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (n/QK4_1*sizeof(block_q4_1));
 | |
| }
 | |
| 
 | |
| size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
 | |
|     assert(k % QK5_0 == 0);
 | |
|     const int nb = k / QK5_0;
 | |
| 
 | |
|     for (int b = 0; b < n; b += k) {
 | |
|         block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
 | |
| 
 | |
|         quantize_row_q5_0_reference(src + b, y, k);
 | |
| 
 | |
|         for (int i = 0; i < nb; i++) {
 | |
|             uint32_t qh;
 | |
|             memcpy(&qh, &y[i].qh, sizeof(qh));
 | |
| 
 | |
|             for (int j = 0; j < QK5_0; j += 2) {
 | |
|                 const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
 | |
|                 const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
 | |
| 
 | |
|                 // cast to 16 bins
 | |
|                 const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
 | |
|                 const uint8_t vi1 = ((y[i].qs[j/2] >>   4) | vh1) / 2;
 | |
| 
 | |
|                 hist[vi0]++;
 | |
|                 hist[vi1]++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (n/QK5_0*sizeof(block_q5_0));
 | |
| }
 | |
| 
 | |
| size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
 | |
|     assert(k % QK5_1 == 0);
 | |
|     const int nb = k / QK5_1;
 | |
| 
 | |
|     for (int b = 0; b < n; b += k) {
 | |
|         block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
 | |
| 
 | |
|         quantize_row_q5_1_reference(src + b, y, k);
 | |
| 
 | |
|         for (int i = 0; i < nb; i++) {
 | |
|             uint32_t qh;
 | |
|             memcpy(&qh, &y[i].qh, sizeof(qh));
 | |
| 
 | |
|             for (int j = 0; j < QK5_1; j += 2) {
 | |
|                 const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
 | |
|                 const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
 | |
| 
 | |
|                 // cast to 16 bins
 | |
|                 const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
 | |
|                 const uint8_t vi1 = ((y[i].qs[j/2] >>   4) | vh1) / 2;
 | |
| 
 | |
|                 hist[vi0]++;
 | |
|                 hist[vi1]++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (n/QK5_1*sizeof(block_q5_1));
 | |
| }
 | |
| 
 | |
| size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
 | |
|     assert(k % QK8_0 == 0);
 | |
|     const int nb = k / QK8_0;
 | |
| 
 | |
|     for (int b = 0; b < n; b += k) {
 | |
|         block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
 | |
| 
 | |
|         quantize_row_q8_0_reference(src + b, y, k);
 | |
| 
 | |
|         for (int i = 0; i < nb; i++) {
 | |
|             for (int j = 0; j < QK8_0; ++j) {
 | |
|                 const int8_t vi = y[i].qs[j];
 | |
| 
 | |
|                 hist[vi/16 + 8]++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (n/QK8_0*sizeof(block_q8_0));
 | |
| }
 | |
| 
 | |
| size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
 | |
|     size_t result = 0;
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK4_0 == 0);
 | |
|                 block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
 | |
|                 result = ggml_quantize_q4_0(src + start, block, n, n, hist);
 | |
|             } break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK4_1 == 0);
 | |
|                 block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
 | |
|                 result = ggml_quantize_q4_1(src + start, block, n, n, hist);
 | |
|             } break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK5_0 == 0);
 | |
|                 block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
 | |
|                 result = ggml_quantize_q5_0(src + start, block, n, n, hist);
 | |
|             } break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK5_1 == 0);
 | |
|                 block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
 | |
|                 result = ggml_quantize_q5_1(src + start, block, n, n, hist);
 | |
|             } break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK8_0 == 0);
 | |
|                 block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
 | |
|                 result = ggml_quantize_q8_0(src + start, block, n, n, hist);
 | |
|             } break;
 | |
| #ifdef GGML_USE_K_QUANTS
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK_K == 0);
 | |
|                 block_q2_K * block = (block_q2_K*)dst + start / QK_K;
 | |
|                 result = ggml_quantize_q2_K(src + start, block, n, n, hist);
 | |
|             } break;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK_K == 0);
 | |
|                 block_q3_K * block = (block_q3_K*)dst + start / QK_K;
 | |
|                 result = ggml_quantize_q3_K(src + start, block, n, n, hist);
 | |
|             } break;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK_K == 0);
 | |
|                 block_q4_K * block = (block_q4_K*)dst + start / QK_K;
 | |
|                 result = ggml_quantize_q4_K(src + start, block, n, n, hist);
 | |
|             } break;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK_K == 0);
 | |
|                 block_q5_K * block = (block_q5_K*)dst + start / QK_K;
 | |
|                 result = ggml_quantize_q5_K(src + start, block, n, n, hist);
 | |
|             } break;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             {
 | |
|                 GGML_ASSERT(start % QK_K == 0);
 | |
|                 block_q6_K * block = (block_q6_K*)dst + start / QK_K;
 | |
|                 result = ggml_quantize_q6_K(src + start, block, n, n, hist);
 | |
|             } break;
 | |
| #endif
 | |
|         case GGML_TYPE_F16:
 | |
|             {
 | |
|                 int elemsize = sizeof(ggml_fp16_t);
 | |
|                 ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
 | |
|                 result = n * elemsize;
 | |
|             } break;
 | |
|         case GGML_TYPE_F32:
 | |
|             {
 | |
|                 int elemsize = sizeof(float);
 | |
|                 result = n * elemsize;
 | |
|                 memcpy((uint8_t *)dst + start * elemsize, src + start, result);
 | |
|             } break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| int ggml_cpu_has_avx(void) {
 | |
| #if defined(__AVX__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_avx2(void) {
 | |
| #if defined(__AVX2__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_avx512(void) {
 | |
| #if defined(__AVX512F__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_avx512_vbmi(void) {
 | |
| #if defined(__AVX512VBMI__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_avx512_vnni(void) {
 | |
| #if defined(__AVX512VNNI__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_fma(void) {
 | |
| #if defined(__FMA__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_neon(void) {
 | |
| #if defined(__ARM_NEON)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_arm_fma(void) {
 | |
| #if defined(__ARM_FEATURE_FMA)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_f16c(void) {
 | |
| #if defined(__F16C__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_fp16_va(void) {
 | |
| #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_wasm_simd(void) {
 | |
| #if defined(__wasm_simd128__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_blas(void) {
 | |
| #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_cublas(void) {
 | |
| #if defined(GGML_USE_CUBLAS)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_clblast(void) {
 | |
| #if defined(GGML_USE_CLBLAST)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_gpublas(void) {
 | |
|     return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_sse3(void) {
 | |
| #if defined(__SSE3__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int ggml_cpu_has_vsx(void) {
 | |
| #if defined(__POWER9_VECTOR__)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | 
