mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			262 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Quick and dirty HF gptneox--> gguf conversion
 | |
| 
 | |
| import gguf
 | |
| import gguf_tensor_map as tmap
 | |
| import os
 | |
| import sys
 | |
| import struct
 | |
| import json
 | |
| import numpy as np
 | |
| from typing import Any, List
 | |
| from pathlib import Path
 | |
| from transformers import AutoTokenizer, AutoModelForCausalLM
 | |
| 
 | |
| # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
 | |
| def bytes_to_unicode():
 | |
|     """
 | |
|     Returns list of utf-8 byte and a corresponding list of unicode strings.
 | |
|     The reversible bpe codes work on unicode strings.
 | |
|     This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | |
|     When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | |
|     This is a significant percentage of your normal, say, 32K bpe vocab.
 | |
|     To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | |
|     And avoids mapping to whitespace/control characters the bpe code barfs on.
 | |
|     """
 | |
|     bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
 | |
|     cs = bs[:]
 | |
|     n = 0
 | |
|     for b in range(2**8):
 | |
|         if b not in bs:
 | |
|             bs.append(b)
 | |
|             cs.append(2**8+n)
 | |
|             n += 1
 | |
|     cs = [chr(n) for n in cs]
 | |
|     return dict(zip(bs, cs))
 | |
| 
 | |
| 
 | |
| if len(sys.argv) < 3:
 | |
|     print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | |
|     print("  ftype == 0 -> float32")
 | |
|     print("  ftype == 1 -> float16")
 | |
|     sys.exit(1)
 | |
| 
 | |
| 
 | |
| # output in the same directory as the model
 | |
| dir_model = sys.argv[1]
 | |
| last_dir = os.path.basename(os.path.normpath(dir_model))
 | |
| 
 | |
| # possible tensor data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| #
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| ftype = 1
 | |
| if len(sys.argv) > 2:
 | |
|     ftype = int(sys.argv[2])
 | |
|     if ftype < 0 or ftype > 1:
 | |
|         print("Invalid ftype: " + str(ftype))
 | |
|         sys.exit(1)
 | |
| 
 | |
| fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | |
| 
 | |
| print("gguf: loading model "+last_dir)
 | |
| 
 | |
| with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| if hparams["architectures"][0] != "GPTNeoXForCausalLM":
 | |
|     print("Model architecture not supported: " + hparams["architectures"][0] )
 | |
|     sys.exit()
 | |
| 
 | |
| 
 | |
| model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
 | |
| list_vars = model.state_dict()
 | |
| 
 | |
| gguf_writer = gguf.GGUFWriter.open(fname_out)
 | |
| 
 | |
| print("gguf: get model metadata")
 | |
| 
 | |
| llm_arch    = "gptneox"
 | |
| block_count = hparams["num_hidden_layers"]
 | |
| 
 | |
| gguf_writer.add_name(last_dir)
 | |
| gguf_writer.add_architecture(llm_arch)
 | |
| gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
 | |
| gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
 | |
| gguf_writer.add_layer_count(llm_arch, block_count)
 | |
| gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
 | |
| gguf_writer.add_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
 | |
| gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"])
 | |
| gguf_writer.add_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
 | |
| gguf_writer.add_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
 | |
| 
 | |
| # TOKENIZATION
 | |
| 
 | |
| print("gguf: get tokenizer metadata")
 | |
| 
 | |
| tokens: List[str] = []
 | |
| merges: List[str] = []
 | |
| 
 | |
| 
 | |
| if Path(dir_model + "/tokenizer.json").is_file():
 | |
|     # gpt2 tokenizer
 | |
|     gguf_writer.add_tokenizer_model("gpt2")
 | |
| 
 | |
|     print("gguf: get gpt2 tokenizer merges")
 | |
| 
 | |
|     with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
 | |
|         tokenizer_json = json.load(f)
 | |
|     merges = tokenizer_json["model"]["merges"]
 | |
| 
 | |
|     gguf_writer.add_token_merges(merges)
 | |
| 
 | |
|     print("gguf: get gpt2 tokenizer vocab")
 | |
| 
 | |
|     vocab_size = len( tokenizer_json["model"]["vocab"] )
 | |
| 
 | |
|     # from ggllm.cpp falcon_convert.py
 | |
|     tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | |
| 
 | |
|     reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
 | |
|     byte_encoder = bytes_to_unicode()
 | |
|     byte_decoder = {v:k for k, v in byte_encoder.items()}
 | |
| 
 | |
|     for i in range(vocab_size):
 | |
|         if i in reverse_vocab:
 | |
|             try:
 | |
|                 text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
 | |
|             except KeyError:
 | |
|                 text = bytearray()
 | |
|                 for c in reverse_vocab[i]:
 | |
|                     if ord(c) < 256:  # single byte character
 | |
|                         text.append(byte_decoder[ord(c)])
 | |
|                     else:  # multibyte special token character
 | |
|                         text.extend(c.encode('utf-8'))
 | |
|         else:
 | |
|             print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
 | |
|             padding_token = f"[PAD{i}]".encode("utf8")
 | |
|             text = bytearray(padding_token)
 | |
|         tokens.append(text)
 | |
| 
 | |
|     gguf_writer.add_token_list(tokens)
 | |
| 
 | |
|     if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
 | |
|         print("gguf: get special token ids")
 | |
| 
 | |
|         with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
 | |
|             tokenizer_config = json.load(f)
 | |
| 
 | |
|         # find special token ids
 | |
| 
 | |
|         if "bos_token" in tokenizer_config:
 | |
|             for key in tokenizer_json["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["bos_token"]:
 | |
|                     gguf_writer.add_bos_token_id(key["id"])
 | |
| 
 | |
|         if "eos_token" in tokenizer_config:
 | |
|             for key in tokenizer_json["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["eos_token"]:
 | |
|                     gguf_writer.add_eos_token_id(key["id"])
 | |
| 
 | |
|         if "unk_token" in tokenizer_config:
 | |
|             for key in tokenizer_json["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["unk_token"]:
 | |
|                     gguf_writer.add_unk_token_id(key["id"])
 | |
| 
 | |
|         if "sep_token" in tokenizer_config:
 | |
|             for key in tokenizer_json["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["sep_token"]:
 | |
|                     gguf_writer.add_sep_token_id(key["id"])
 | |
| 
 | |
|         if "pad_token" in tokenizer_config:
 | |
|             for key in tokenizer_json["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["pad_token"]:
 | |
|                     gguf_writer.add_pad_token_id(key["id"])
 | |
| 
 | |
| 
 | |
| # TENSORS
 | |
| 
 | |
| tensor_map = tmap.get_tensor_map(block_count)
 | |
| 
 | |
| # tensor info
 | |
| print("gguf: get tensor metadata")
 | |
| 
 | |
| for name in list_vars.keys():
 | |
|     data = list_vars[name].squeeze().numpy()
 | |
| 
 | |
|     # we don't need these
 | |
|     if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
 | |
|         continue
 | |
| 
 | |
|     # map tensor names
 | |
|     if name.endswith(".weight") and name[:-7] in tensor_map:
 | |
|         name = tensor_map[name[:-7]] + ".weight"
 | |
|     elif name.endswith(".bias") and name[:-5] in tensor_map:
 | |
|         name = tensor_map[name[:-5]] + ".bias"
 | |
|     else:
 | |
|         print( "Can not map tensor '" + name + "'" )
 | |
|         sys.exit()
 | |
| 
 | |
|     n_dims = len(data.shape)
 | |
|     data_dtype = data.dtype 
 | |
| 
 | |
| #    print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
 | |
| 
 | |
|     if data.dtype != np.float16 and data.dtype != np.float32:
 | |
|         # convert any unsupported data types to float32
 | |
|         data_dtype = np.float32
 | |
|     elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|         # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|         data_dtype = np.float16
 | |
| 
 | |
|     nelements = 1
 | |
| 
 | |
|     for i in range(n_dims):
 | |
|         nelements *= data.shape[n_dims - 1 - i]
 | |
| 
 | |
|     data_nbytes = 0
 | |
|     if data_dtype == np.float16:
 | |
|         data_nbytes = nelements * 2
 | |
|     elif data_dtype == np.float32:
 | |
|         data_nbytes = nelements * 4
 | |
| 
 | |
| 
 | |
|     gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
 | |
| 
 | |
| print("gguf: write header")
 | |
| gguf_writer.write_header_to_file()
 | |
| print("gguf: write metadata")
 | |
| gguf_writer.write_kv_data_to_file()
 | |
| print("gguf: write tensor metadata")
 | |
| gguf_writer.write_ti_data_to_file()
 | |
| 
 | |
| # tensor data
 | |
| print("gguf: convert and write tensor data")
 | |
| 
 | |
| for name in list_vars.keys():
 | |
|     data = list_vars[name].squeeze().numpy()
 | |
| 
 | |
|     # we don't need these
 | |
|     if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
 | |
|         continue
 | |
| 
 | |
|     n_dims = len(data.shape)
 | |
|     data_dtype = data.dtype 
 | |
| 
 | |
|     if data_dtype != np.float16 and data_dtype != np.float32:
 | |
|         # convert any unsupported data types to float32
 | |
|         data = data.astype(np.float32)
 | |
|     elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|         # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|         data = data.astype(np.float16)
 | |
| 
 | |
|     gguf_writer.write_tensor_to_file(data)
 | |
| 
 | |
| gguf_writer.close()
 | |
| 
 | |
| 
 | |
| print("gguf: model successfully exported to '" + fname_out + "'" )
 | |
| print("")
 | 
