mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 4a46d2b792
			
		
	
	4a46d2b792
	
	
	
		
			
			* llava: remove prog parameter from ArgumentParser This commit removes the `prog` parameter from `ArgumentParser` so that it uses the default value which is the name of the script. The motivation for this change is that currently the usage output looks like this: ```console $ python examples/llava/convert-image-encoder-to-gguf.py --help usage: convert_hf_to_gguf.py [-h] ... ``` And with this change it will look like this: ```console $ python examples/llava/convert-image-encoder-to-gguf.py --help usage: convert-image-encoder-to-gguf.py [-h] ... ``` Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> * ci: add W503 to flake8 ignore list This commit adds W503 to the ignore list for flake8. This is done to avoid the following error: W503 line break before binary operator Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> --------- Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
LLaVA
Currently this implementation supports llava-v1.5 variants.
The pre-converted 7b and 13b models are available.
After API is confirmed, more models will be supported / uploaded.
Usage
Build with cmake or run make llava-cli to build it.
After building, run: ./llava-cli to see the usage. For example:
./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
note: A lower temperature like 0.1 is recommended for better quality. add --temp 0.1 to the command to do so.
Model conversion
- Clone llava-v15-7bandclip-vit-large-patch14-336locally:
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
- Install the required Python packages:
pip install -r examples/llava/requirements.txt
- Use llava-surgery.pyto split the LLaVA model to LLaMA and multimodel projector constituents:
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
- Use convert-image-encoder-to-gguf.pyto convert the LLaVA image encoder to GGUF:
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
- Use convert.pyto convert the LLaMA part of LLaVA to GGUF:
python ./convert.py ../llava-v1.5-7b
Now both the LLaMA part and the image encoder is in the llava-v1.5-7b directory.
TODO
- Support non-CPU backend for the image encoding part.
- Support different sampling methods.
- Support more model variants.