mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			338 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
			
		
		
	
	
			338 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
import Foundation
 | 
						|
import llama
 | 
						|
 | 
						|
enum LlamaError: Error {
 | 
						|
    case couldNotInitializeContext
 | 
						|
}
 | 
						|
 | 
						|
func llama_batch_clear(_ batch: inout llama_batch) {
 | 
						|
    batch.n_tokens = 0
 | 
						|
}
 | 
						|
 | 
						|
func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) {
 | 
						|
    batch.token   [Int(batch.n_tokens)] = id
 | 
						|
    batch.pos     [Int(batch.n_tokens)] = pos
 | 
						|
    batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count)
 | 
						|
    for i in 0..<seq_ids.count {
 | 
						|
        batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i]
 | 
						|
    }
 | 
						|
    batch.logits  [Int(batch.n_tokens)] = logits ? 1 : 0
 | 
						|
 | 
						|
    batch.n_tokens += 1
 | 
						|
}
 | 
						|
 | 
						|
actor LlamaContext {
 | 
						|
    private var model: OpaquePointer
 | 
						|
    private var context: OpaquePointer
 | 
						|
    private var vocab: OpaquePointer
 | 
						|
    private var sampling: UnsafeMutablePointer<llama_sampler>
 | 
						|
    private var batch: llama_batch
 | 
						|
    private var tokens_list: [llama_token]
 | 
						|
    var is_done: Bool = false
 | 
						|
 | 
						|
    /// This variable is used to store temporarily invalid cchars
 | 
						|
    private var temporary_invalid_cchars: [CChar]
 | 
						|
 | 
						|
    var n_len: Int32 = 1024
 | 
						|
    var n_cur: Int32 = 0
 | 
						|
 | 
						|
    var n_decode: Int32 = 0
 | 
						|
 | 
						|
    init(model: OpaquePointer, context: OpaquePointer) {
 | 
						|
        self.model = model
 | 
						|
        self.context = context
 | 
						|
        self.tokens_list = []
 | 
						|
        self.batch = llama_batch_init(512, 0, 1)
 | 
						|
        self.temporary_invalid_cchars = []
 | 
						|
        let sparams = llama_sampler_chain_default_params()
 | 
						|
        self.sampling = llama_sampler_chain_init(sparams)
 | 
						|
        llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
 | 
						|
        llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
 | 
						|
        vocab = llama_model_get_vocab(model)
 | 
						|
    }
 | 
						|
 | 
						|
    deinit {
 | 
						|
        llama_sampler_free(sampling)
 | 
						|
        llama_batch_free(batch)
 | 
						|
        llama_model_free(model)
 | 
						|
        llama_free(context)
 | 
						|
        llama_backend_free()
 | 
						|
    }
 | 
						|
 | 
						|
    static func create_context(path: String) throws -> LlamaContext {
 | 
						|
        llama_backend_init()
 | 
						|
        var model_params = llama_model_default_params()
 | 
						|
 | 
						|
#if targetEnvironment(simulator)
 | 
						|
        model_params.n_gpu_layers = 0
 | 
						|
        print("Running on simulator, force use n_gpu_layers = 0")
 | 
						|
#endif
 | 
						|
        let model = llama_model_load_from_file(path, model_params)
 | 
						|
        guard let model else {
 | 
						|
            print("Could not load model at \(path)")
 | 
						|
            throw LlamaError.couldNotInitializeContext
 | 
						|
        }
 | 
						|
 | 
						|
        let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2))
 | 
						|
        print("Using \(n_threads) threads")
 | 
						|
 | 
						|
        var ctx_params = llama_context_default_params()
 | 
						|
        ctx_params.n_ctx = 2048
 | 
						|
        ctx_params.n_threads       = Int32(n_threads)
 | 
						|
        ctx_params.n_threads_batch = Int32(n_threads)
 | 
						|
 | 
						|
        let context = llama_init_from_model(model, ctx_params)
 | 
						|
        guard let context else {
 | 
						|
            print("Could not load context!")
 | 
						|
            throw LlamaError.couldNotInitializeContext
 | 
						|
        }
 | 
						|
 | 
						|
        return LlamaContext(model: model, context: context)
 | 
						|
    }
 | 
						|
 | 
						|
    func model_info() -> String {
 | 
						|
        let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256)
 | 
						|
        result.initialize(repeating: Int8(0), count: 256)
 | 
						|
        defer {
 | 
						|
            result.deallocate()
 | 
						|
        }
 | 
						|
 | 
						|
        // TODO: this is probably very stupid way to get the string from C
 | 
						|
 | 
						|
        let nChars = llama_model_desc(model, result, 256)
 | 
						|
        let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars))
 | 
						|
 | 
						|
        var SwiftString = ""
 | 
						|
        for char in bufferPointer {
 | 
						|
            SwiftString.append(Character(UnicodeScalar(UInt8(char))))
 | 
						|
        }
 | 
						|
 | 
						|
        return SwiftString
 | 
						|
    }
 | 
						|
 | 
						|
    func get_n_tokens() -> Int32 {
 | 
						|
        return batch.n_tokens;
 | 
						|
    }
 | 
						|
 | 
						|
    func completion_init(text: String) {
 | 
						|
        print("attempting to complete \"\(text)\"")
 | 
						|
 | 
						|
        tokens_list = tokenize(text: text, add_bos: true)
 | 
						|
        temporary_invalid_cchars = []
 | 
						|
 | 
						|
        let n_ctx = llama_n_ctx(context)
 | 
						|
        let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)
 | 
						|
 | 
						|
        print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)")
 | 
						|
 | 
						|
        if n_kv_req > n_ctx {
 | 
						|
            print("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
 | 
						|
        }
 | 
						|
 | 
						|
        for id in tokens_list {
 | 
						|
            print(String(cString: token_to_piece(token: id) + [0]))
 | 
						|
        }
 | 
						|
 | 
						|
        llama_batch_clear(&batch)
 | 
						|
 | 
						|
        for i1 in 0..<tokens_list.count {
 | 
						|
            let i = Int(i1)
 | 
						|
            llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false)
 | 
						|
        }
 | 
						|
        batch.logits[Int(batch.n_tokens) - 1] = 1 // true
 | 
						|
 | 
						|
        if llama_decode(context, batch) != 0 {
 | 
						|
            print("llama_decode() failed")
 | 
						|
        }
 | 
						|
 | 
						|
        n_cur = batch.n_tokens
 | 
						|
    }
 | 
						|
 | 
						|
    func completion_loop() -> String {
 | 
						|
        var new_token_id: llama_token = 0
 | 
						|
 | 
						|
        new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1)
 | 
						|
 | 
						|
        if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len {
 | 
						|
            print("\n")
 | 
						|
            is_done = true
 | 
						|
            let new_token_str = String(cString: temporary_invalid_cchars + [0])
 | 
						|
            temporary_invalid_cchars.removeAll()
 | 
						|
            return new_token_str
 | 
						|
        }
 | 
						|
 | 
						|
        let new_token_cchars = token_to_piece(token: new_token_id)
 | 
						|
        temporary_invalid_cchars.append(contentsOf: new_token_cchars)
 | 
						|
        let new_token_str: String
 | 
						|
        if let string = String(validatingUTF8: temporary_invalid_cchars + [0]) {
 | 
						|
            temporary_invalid_cchars.removeAll()
 | 
						|
            new_token_str = string
 | 
						|
        } else if (0 ..< temporary_invalid_cchars.count).contains(where: {$0 != 0 && String(validatingUTF8: Array(temporary_invalid_cchars.suffix($0)) + [0]) != nil}) {
 | 
						|
            // in this case, at least the suffix of the temporary_invalid_cchars can be interpreted as UTF8 string
 | 
						|
            let string = String(cString: temporary_invalid_cchars + [0])
 | 
						|
            temporary_invalid_cchars.removeAll()
 | 
						|
            new_token_str = string
 | 
						|
        } else {
 | 
						|
            new_token_str = ""
 | 
						|
        }
 | 
						|
        print(new_token_str)
 | 
						|
        // tokens_list.append(new_token_id)
 | 
						|
 | 
						|
        llama_batch_clear(&batch)
 | 
						|
        llama_batch_add(&batch, new_token_id, n_cur, [0], true)
 | 
						|
 | 
						|
        n_decode += 1
 | 
						|
        n_cur    += 1
 | 
						|
 | 
						|
        if llama_decode(context, batch) != 0 {
 | 
						|
            print("failed to evaluate llama!")
 | 
						|
        }
 | 
						|
 | 
						|
        return new_token_str
 | 
						|
    }
 | 
						|
 | 
						|
    func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String {
 | 
						|
        var pp_avg: Double = 0
 | 
						|
        var tg_avg: Double = 0
 | 
						|
 | 
						|
        var pp_std: Double = 0
 | 
						|
        var tg_std: Double = 0
 | 
						|
 | 
						|
        for _ in 0..<nr {
 | 
						|
            // bench prompt processing
 | 
						|
 | 
						|
            llama_batch_clear(&batch)
 | 
						|
 | 
						|
            let n_tokens = pp
 | 
						|
 | 
						|
            for i in 0..<n_tokens {
 | 
						|
                llama_batch_add(&batch, 0, Int32(i), [0], false)
 | 
						|
            }
 | 
						|
            batch.logits[Int(batch.n_tokens) - 1] = 1 // true
 | 
						|
 | 
						|
            llama_kv_cache_clear(context)
 | 
						|
 | 
						|
            let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
 | 
						|
 | 
						|
            if llama_decode(context, batch) != 0 {
 | 
						|
                print("llama_decode() failed during prompt")
 | 
						|
            }
 | 
						|
            llama_synchronize(context)
 | 
						|
 | 
						|
            let t_pp_end = DispatchTime.now().uptimeNanoseconds / 1000;
 | 
						|
 | 
						|
            // bench text generation
 | 
						|
 | 
						|
            llama_kv_cache_clear(context)
 | 
						|
 | 
						|
            let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
 | 
						|
 | 
						|
            for i in 0..<tg {
 | 
						|
                llama_batch_clear(&batch)
 | 
						|
 | 
						|
                for j in 0..<pl {
 | 
						|
                    llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true)
 | 
						|
                }
 | 
						|
 | 
						|
                if llama_decode(context, batch) != 0 {
 | 
						|
                    print("llama_decode() failed during text generation")
 | 
						|
                }
 | 
						|
                llama_synchronize(context)
 | 
						|
            }
 | 
						|
 | 
						|
            let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
 | 
						|
 | 
						|
            llama_kv_cache_clear(context)
 | 
						|
 | 
						|
            let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
 | 
						|
            let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
 | 
						|
 | 
						|
            let speed_pp = Double(pp)    / t_pp
 | 
						|
            let speed_tg = Double(pl*tg) / t_tg
 | 
						|
 | 
						|
            pp_avg += speed_pp
 | 
						|
            tg_avg += speed_tg
 | 
						|
 | 
						|
            pp_std += speed_pp * speed_pp
 | 
						|
            tg_std += speed_tg * speed_tg
 | 
						|
 | 
						|
            print("pp \(speed_pp) t/s, tg \(speed_tg) t/s")
 | 
						|
        }
 | 
						|
 | 
						|
        pp_avg /= Double(nr)
 | 
						|
        tg_avg /= Double(nr)
 | 
						|
 | 
						|
        if nr > 1 {
 | 
						|
            pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1))
 | 
						|
            tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1))
 | 
						|
        } else {
 | 
						|
            pp_std = 0
 | 
						|
            tg_std = 0
 | 
						|
        }
 | 
						|
 | 
						|
        let model_desc     = model_info();
 | 
						|
        let model_size     = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0);
 | 
						|
        let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9);
 | 
						|
        let backend        = "Metal";
 | 
						|
        let pp_avg_str     = String(format: "%.2f", pp_avg);
 | 
						|
        let tg_avg_str     = String(format: "%.2f", tg_avg);
 | 
						|
        let pp_std_str     = String(format: "%.2f", pp_std);
 | 
						|
        let tg_std_str     = String(format: "%.2f", tg_std);
 | 
						|
 | 
						|
        var result = ""
 | 
						|
 | 
						|
        result += String("| model | size | params | backend | test | t/s |\n")
 | 
						|
        result += String("| --- | --- | --- | --- | --- | --- |\n")
 | 
						|
        result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n")
 | 
						|
        result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n")
 | 
						|
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
 | 
						|
    func clear() {
 | 
						|
        tokens_list.removeAll()
 | 
						|
        temporary_invalid_cchars.removeAll()
 | 
						|
        llama_kv_cache_clear(context)
 | 
						|
    }
 | 
						|
 | 
						|
    private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
 | 
						|
        let utf8Count = text.utf8.count
 | 
						|
        let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
 | 
						|
        let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
 | 
						|
        let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
 | 
						|
 | 
						|
        var swiftTokens: [llama_token] = []
 | 
						|
        for i in 0..<tokenCount {
 | 
						|
            swiftTokens.append(tokens[Int(i)])
 | 
						|
        }
 | 
						|
 | 
						|
        tokens.deallocate()
 | 
						|
 | 
						|
        return swiftTokens
 | 
						|
    }
 | 
						|
 | 
						|
    /// - note: The result does not contain null-terminator
 | 
						|
    private func token_to_piece(token: llama_token) -> [CChar] {
 | 
						|
        let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
 | 
						|
        result.initialize(repeating: Int8(0), count: 8)
 | 
						|
        defer {
 | 
						|
            result.deallocate()
 | 
						|
        }
 | 
						|
        let nTokens = llama_token_to_piece(vocab, token, result, 8, 0, false)
 | 
						|
 | 
						|
        if nTokens < 0 {
 | 
						|
            let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
 | 
						|
            newResult.initialize(repeating: Int8(0), count: Int(-nTokens))
 | 
						|
            defer {
 | 
						|
                newResult.deallocate()
 | 
						|
            }
 | 
						|
            let nNewTokens = llama_token_to_piece(vocab, token, newResult, -nTokens, 0, false)
 | 
						|
            let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
 | 
						|
            return Array(bufferPointer)
 | 
						|
        } else {
 | 
						|
            let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nTokens))
 | 
						|
            return Array(bufferPointer)
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |