mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 4753791e70
			
		
	
	4753791e70
	
	
	
		
			
			* clip : improve projector naming * no more kv has_llava_projector * rm unused kv * rm more unused
		
			
				
	
	
		
			3198 lines
		
	
	
		
			136 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3198 lines
		
	
	
		
			136 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // NOTE: This is modified from clip.cpp only for LLaVA,
 | |
| // so there might be still unnecessary artifacts hanging around
 | |
| // I'll gradually clean and extend it
 | |
| // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
 | |
| #include "clip.h"
 | |
| #include "clip-impl.h"
 | |
| #include "ggml.h"
 | |
| #include "ggml-cpp.h"
 | |
| #include "ggml-cpu.h"
 | |
| #include "ggml-alloc.h"
 | |
| #include "ggml-backend.h"
 | |
| #include "gguf.h"
 | |
| 
 | |
| #define STB_IMAGE_IMPLEMENTATION
 | |
| #include "stb_image.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <fstream>
 | |
| #include <map>
 | |
| #include <regex>
 | |
| #include <stdexcept>
 | |
| #include <unordered_set>
 | |
| #include <vector>
 | |
| #include <sstream>
 | |
| #include <cinttypes>
 | |
| #include <limits>
 | |
| #include <array>
 | |
| 
 | |
| struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
 | |
| 
 | |
| //#define CLIP_DEBUG_FUNCTIONS
 | |
| 
 | |
| #ifdef CLIP_DEBUG_FUNCTIONS
 | |
| static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
 | |
|     std::ofstream file(filename, std::ios::binary);
 | |
|     if (!file.is_open()) {
 | |
|         LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // PPM header: P6 format, width, height, and max color value
 | |
|     file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
 | |
| 
 | |
|     // Write pixel data
 | |
|     for (size_t i = 0; i < img.buf.size(); i += 3) {
 | |
|         // PPM expects binary data in RGB format, which matches our image buffer
 | |
|         file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
 | |
|     }
 | |
| 
 | |
|     file.close();
 | |
| }
 | |
| 
 | |
| static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
 | |
|     std::ofstream file(filename, std::ios::binary);
 | |
|     if (!file.is_open()) {
 | |
|         LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
 | |
|     int bytesPerPixel = 3;
 | |
|     int widthInBytes = img.nx * bytesPerPixel;
 | |
|     int paddingAmount = (4 - (widthInBytes % 4)) % 4;
 | |
|     int stride = widthInBytes + paddingAmount;
 | |
| 
 | |
|     // Bitmap file header
 | |
|     unsigned char fileHeader[14] = {
 | |
|         'B','M',     // Signature
 | |
|         0,0,0,0,    // Image file size in bytes
 | |
|         0,0,0,0,    // Reserved
 | |
|         54,0,0,0    // Start of pixel array
 | |
|     };
 | |
| 
 | |
|     // Total file size
 | |
|     fileSize = 54 + (stride * img.ny);
 | |
|     fileHeader[2] = (unsigned char)(fileSize);
 | |
|     fileHeader[3] = (unsigned char)(fileSize >> 8);
 | |
|     fileHeader[4] = (unsigned char)(fileSize >> 16);
 | |
|     fileHeader[5] = (unsigned char)(fileSize >> 24);
 | |
| 
 | |
|     // Bitmap information header (BITMAPINFOHEADER)
 | |
|     unsigned char infoHeader[40] = {
 | |
|         40,0,0,0,   // Size of this header (40 bytes)
 | |
|         0,0,0,0,    // Image width
 | |
|         0,0,0,0,    // Image height
 | |
|         1,0,        // Number of color planes
 | |
|         24,0,       // Bits per pixel
 | |
|         0,0,0,0,    // No compression
 | |
|         0,0,0,0,    // Image size (can be 0 for no compression)
 | |
|         0,0,0,0,    // X pixels per meter (not specified)
 | |
|         0,0,0,0,    // Y pixels per meter (not specified)
 | |
|         0,0,0,0,    // Total colors (color table not used)
 | |
|         0,0,0,0     // Important colors (all are important)
 | |
|     };
 | |
| 
 | |
|     // Width and height in the information header
 | |
|     infoHeader[4] = (unsigned char)(img.nx);
 | |
|     infoHeader[5] = (unsigned char)(img.nx >> 8);
 | |
|     infoHeader[6] = (unsigned char)(img.nx >> 16);
 | |
|     infoHeader[7] = (unsigned char)(img.nx >> 24);
 | |
|     infoHeader[8] = (unsigned char)(img.ny);
 | |
|     infoHeader[9] = (unsigned char)(img.ny >> 8);
 | |
|     infoHeader[10] = (unsigned char)(img.ny >> 16);
 | |
|     infoHeader[11] = (unsigned char)(img.ny >> 24);
 | |
| 
 | |
|     // Write file headers
 | |
|     file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
 | |
|     file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
 | |
| 
 | |
|     // Pixel data
 | |
|     std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
 | |
|     for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
 | |
|         for (int x = 0; x < img.nx; ++x) {
 | |
|             // Each pixel
 | |
|             size_t pixelIndex = (y * img.nx + x) * 3;
 | |
|             unsigned char pixel[3] = {
 | |
|                 img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
 | |
|                 img.buf[pixelIndex + 1],
 | |
|                 img.buf[pixelIndex]
 | |
|             };
 | |
|             file.write(reinterpret_cast<char*>(pixel), 3);
 | |
|         }
 | |
|         // Write padding for the row
 | |
|         file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
 | |
|     }
 | |
| 
 | |
|     file.close();
 | |
| }
 | |
| 
 | |
| // debug function to convert f32 to u8
 | |
| static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
 | |
|     dst.nx = src.nx;
 | |
|     dst.ny = src.ny;
 | |
|     dst.buf.resize(3 * src.nx * src.ny);
 | |
|     for (size_t i = 0; i < src.buf.size(); ++i) {
 | |
|         dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| //
 | |
| // clip layers
 | |
| //
 | |
| 
 | |
| enum patch_merge_type {
 | |
|     PATCH_MERGE_FLAT,
 | |
|     PATCH_MERGE_SPATIAL_UNPAD,
 | |
| };
 | |
| 
 | |
| struct clip_hparams {
 | |
|     int32_t image_size;
 | |
|     int32_t patch_size;
 | |
|     int32_t hidden_size;
 | |
|     int32_t n_intermediate;
 | |
|     int32_t projection_dim;
 | |
|     int32_t n_head;
 | |
|     int32_t n_layer;
 | |
|     int32_t proj_scale_factor = 0; // idefics3
 | |
| 
 | |
|     patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
 | |
| 
 | |
|     float eps = 1e-6;
 | |
|     float rope_theta = 0.0;
 | |
| 
 | |
|     std::vector<int32_t> image_grid_pinpoints;
 | |
|     int32_t image_crop_resolution;
 | |
|     std::unordered_set<int32_t> vision_feature_layer;
 | |
| };
 | |
| 
 | |
| struct clip_layer {
 | |
|     // attention
 | |
|     struct ggml_tensor * k_w = nullptr;
 | |
|     struct ggml_tensor * k_b = nullptr;
 | |
|     struct ggml_tensor * q_w = nullptr;
 | |
|     struct ggml_tensor * q_b = nullptr;
 | |
|     struct ggml_tensor * v_w = nullptr;
 | |
|     struct ggml_tensor * v_b = nullptr;
 | |
| 
 | |
|     struct ggml_tensor * o_w = nullptr;
 | |
|     struct ggml_tensor * o_b = nullptr;
 | |
| 
 | |
|     // layernorm 1
 | |
|     struct ggml_tensor * ln_1_w = nullptr;
 | |
|     struct ggml_tensor * ln_1_b = nullptr;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * ff_i_w = nullptr; // legacy naming
 | |
|     struct ggml_tensor * ff_i_b = nullptr; // legacy naming
 | |
|     struct ggml_tensor * ff_o_w = nullptr; // legacy naming
 | |
|     struct ggml_tensor * ff_o_b = nullptr; // legacy naming
 | |
| 
 | |
|     struct ggml_tensor * ff_up_w = nullptr;
 | |
|     struct ggml_tensor * ff_up_b = nullptr;
 | |
|     struct ggml_tensor * ff_gate_w = nullptr;
 | |
|     struct ggml_tensor * ff_gate_b = nullptr;
 | |
|     struct ggml_tensor * ff_down_w = nullptr;
 | |
|     struct ggml_tensor * ff_down_b = nullptr;
 | |
| 
 | |
|     // layernorm 2
 | |
|     struct ggml_tensor * ln_2_w = nullptr;
 | |
|     struct ggml_tensor * ln_2_b = nullptr;
 | |
| };
 | |
| 
 | |
| struct clip_vision_model {
 | |
|     struct clip_hparams hparams;
 | |
| 
 | |
|     // embeddings
 | |
|     struct ggml_tensor * class_embedding = nullptr;
 | |
|     struct ggml_tensor * patch_embeddings_0 = nullptr;
 | |
|     struct ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
 | |
|     struct ggml_tensor * patch_bias = nullptr;
 | |
|     struct ggml_tensor * position_embeddings = nullptr;
 | |
| 
 | |
|     struct ggml_tensor * pre_ln_w = nullptr;
 | |
|     struct ggml_tensor * pre_ln_b = nullptr;
 | |
| 
 | |
|     std::vector<clip_layer> layers;
 | |
| 
 | |
|     struct ggml_tensor * post_ln_w;
 | |
|     struct ggml_tensor * post_ln_b;
 | |
| 
 | |
|     struct ggml_tensor * projection;
 | |
| 
 | |
|     // LLaVA projection
 | |
|     struct ggml_tensor * mm_0_w = nullptr;
 | |
|     struct ggml_tensor * mm_0_b = nullptr;
 | |
|     struct ggml_tensor * mm_2_w = nullptr;
 | |
|     struct ggml_tensor * mm_2_b = nullptr;
 | |
| 
 | |
|     struct ggml_tensor * image_newline = nullptr;
 | |
| 
 | |
|     // Yi type models with mlp+normalization projection
 | |
|     struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
 | |
|     struct ggml_tensor * mm_1_b = nullptr;
 | |
|     struct ggml_tensor * mm_3_w = nullptr;
 | |
|     struct ggml_tensor * mm_3_b = nullptr;
 | |
|     struct ggml_tensor * mm_4_w = nullptr;
 | |
|     struct ggml_tensor * mm_4_b = nullptr;
 | |
| 
 | |
|     //GLMV-Edge projection
 | |
|     struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
 | |
| 
 | |
|     // MobileVLM projection
 | |
|     struct ggml_tensor * mm_model_mlp_1_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_mlp_1_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_mlp_3_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_mlp_3_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
 | |
| 
 | |
|     // MobileVLM_V2 projection
 | |
|     struct ggml_tensor * mm_model_mlp_0_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_mlp_0_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_mlp_2_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_mlp_2_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_peg_0_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_peg_0_b = nullptr;
 | |
| 
 | |
|     // MINICPMV projection
 | |
|     struct ggml_tensor * mm_model_pos_embed_k = nullptr;
 | |
|     struct ggml_tensor * mm_model_query = nullptr;
 | |
|     struct ggml_tensor * mm_model_proj = nullptr;
 | |
|     struct ggml_tensor * mm_model_kv_proj = nullptr;
 | |
|     struct ggml_tensor * mm_model_attn_q_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_attn_q_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_attn_k_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_attn_k_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_attn_v_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_attn_v_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_attn_o_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_attn_o_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_ln_q_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_ln_q_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_ln_kv_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_ln_kv_b = nullptr;
 | |
|     struct ggml_tensor * mm_model_ln_post_w = nullptr;
 | |
|     struct ggml_tensor * mm_model_ln_post_b = nullptr;
 | |
| 
 | |
|     // gemma3
 | |
|     struct ggml_tensor * mm_input_proj_w = nullptr;
 | |
|     struct ggml_tensor * mm_soft_emb_norm_w = nullptr;
 | |
| 
 | |
|     // pixtral
 | |
|     struct ggml_tensor * token_embd_img_break = nullptr;
 | |
| };
 | |
| 
 | |
| struct clip_ctx {
 | |
|     bool has_llava_projector = false;
 | |
|     int minicpmv_version = 0;
 | |
| 
 | |
|     struct clip_vision_model vision_model;
 | |
|     projector_type proj_type = PROJECTOR_TYPE_MLP;
 | |
| 
 | |
|     int32_t max_feature_layer; // unused in newer models like gemma3
 | |
|     float image_mean[3];
 | |
|     float image_std[3];
 | |
|     bool use_gelu = false;
 | |
|     bool use_silu = false;
 | |
| 
 | |
|     gguf_context_ptr ctx_gguf;
 | |
|     ggml_context_ptr ctx_data;
 | |
| 
 | |
|     std::vector<uint8_t> buf_compute_meta;
 | |
| 
 | |
|     std::vector<ggml_backend_t> backend_ptrs;
 | |
|     std::vector<ggml_backend_buffer_type_t> backend_buft;
 | |
| 
 | |
|     ggml_backend_t backend;
 | |
|     ggml_backend_t backend_cpu;
 | |
|     ggml_backend_buffer_ptr buf;
 | |
| 
 | |
|     int max_nodes = 8192;
 | |
|     ggml_backend_sched_ptr sched;
 | |
| 
 | |
|     clip_image_size load_image_size;
 | |
| 
 | |
|     clip_ctx(clip_context_params & ctx_params) {
 | |
|         backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
 | |
|         backend     = ctx_params.use_gpu
 | |
|                         ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
 | |
|                         : nullptr;
 | |
| 
 | |
|         if (backend) {
 | |
|             LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
 | |
|             backend_ptrs.push_back(backend);
 | |
|             backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
 | |
|         } else {
 | |
|             backend = backend_cpu;
 | |
|             LOG_INF("%s: CLIP using CPU backend\n", __func__);
 | |
|         }
 | |
| 
 | |
|         backend_ptrs.push_back(backend_cpu);
 | |
|         backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
 | |
| 
 | |
|         sched.reset(
 | |
|             ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     ~clip_ctx() {
 | |
|         ggml_backend_free(backend);
 | |
|         if (backend != backend_cpu) {
 | |
|             ggml_backend_free(backend_cpu);
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32 & img) {
 | |
|     const auto & model = ctx->vision_model;
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     int image_size_width  = img.nx;
 | |
|     int image_size_height = img.ny;
 | |
| 
 | |
|     const int patch_size  = hparams.patch_size;
 | |
|     const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
 | |
|     const int hidden_size = hparams.hidden_size;
 | |
|     const int n_head      = hparams.n_head;
 | |
|     const int d_head      = hidden_size / n_head;
 | |
|     const int n_layer     = hparams.n_layer;
 | |
|     const float eps       = hparams.eps;
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ ctx->buf_compute_meta.size(),
 | |
|         /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
 | |
|         /*.no_alloc   =*/ true,
 | |
|     };
 | |
| 
 | |
|     ggml_context_ptr ctx0_ptr(ggml_init(params));
 | |
|     auto ctx0 = ctx0_ptr.get();
 | |
| 
 | |
|     struct ggml_cgraph * gf = ggml_new_graph(ctx0);
 | |
| 
 | |
|     // input raw
 | |
|     struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
 | |
|     ggml_set_name(inp_raw, "inp_raw");
 | |
|     ggml_set_input(inp_raw);
 | |
| 
 | |
|     struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
 | |
|     inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
 | |
|     inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
 | |
|     inp = ggml_add(ctx0, inp, model.patch_bias);
 | |
| 
 | |
|     // position embeddings
 | |
|     struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);
 | |
| 
 | |
|     // loop over layers
 | |
|     for (int il = 0; il < n_layer; il++) {
 | |
|         struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
 | |
| 
 | |
|         // layernorm1
 | |
|         {
 | |
|             cur = ggml_norm(ctx0, cur, eps);
 | |
|             cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
 | |
|         }
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
| 
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
 | |
| 
 | |
|             Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
 | |
|             Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
 | |
| 
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
 | |
| 
 | |
|             K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
 | |
|             K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
 | |
| 
 | |
|             struct ggml_tensor * V =
 | |
|                 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
 | |
| 
 | |
|             V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
 | |
|             V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
 | |
| 
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
|             KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
 | |
| 
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
 | |
|             KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
 | |
|             KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
| 
 | |
|             cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
 | |
|         }
 | |
| 
 | |
|         // attention output
 | |
|         cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
 | |
| 
 | |
|         // re-add the layer input, e.g., residual
 | |
|         cur = ggml_add(ctx0, cur, embeddings);
 | |
| 
 | |
|         embeddings = cur; // embeddings = residual, cur = hidden_states
 | |
| 
 | |
|         // layernorm2
 | |
|         {
 | |
|             cur = ggml_norm(ctx0, cur, eps);
 | |
|             cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
 | |
|         }
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
 | |
|         cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
 | |
| 
 | |
|         // siglip uses gelu
 | |
|         cur = ggml_gelu(ctx0, cur);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
 | |
|         cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
 | |
| 
 | |
|         // residual 2
 | |
|         cur = ggml_add(ctx0, embeddings, cur);
 | |
| 
 | |
|         embeddings = cur;
 | |
|     }
 | |
| 
 | |
|     // post-layernorm
 | |
|     if (model.post_ln_w) {
 | |
|         embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|         ggml_set_name(embeddings, "post_ln");
 | |
| 
 | |
|         embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
 | |
|     }
 | |
| 
 | |
|     if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
 | |
|         const int batch_size = 1;
 | |
|         const int mm_tokens_per_image = 256; // default value for gemma3
 | |
|         const int tokens_per_side = sqrt(mm_tokens_per_image);
 | |
|         const int patches_per_image = sqrt(num_patches);
 | |
|         const int kernel_size = patches_per_image / tokens_per_side;
 | |
| 
 | |
|         embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
 | |
|         embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);
 | |
| 
 | |
|         // doing a pool2d to reduce the number of output tokens to 256
 | |
|         embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
 | |
|         embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
 | |
|         embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
 | |
| 
 | |
|         // apply norm before projection
 | |
|         embeddings = ggml_rms_norm(ctx0, embeddings, eps);
 | |
|         embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);
 | |
| 
 | |
|         // apply projection
 | |
|         embeddings = ggml_mul_mat(ctx0,
 | |
|             ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
 | |
|             embeddings);
 | |
| 
 | |
|     } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
 | |
|         // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
 | |
| 
 | |
|         ggml_tensor * cur = embeddings;
 | |
|         const int scale_factor = model.hparams.proj_scale_factor;
 | |
|         const int n_embd = cur->ne[0];
 | |
|         const int seq    = cur->ne[1];
 | |
|         const int bsz    = 1; // batch size, always 1 for now since we don't support batching
 | |
|         const int height = std::sqrt(seq);
 | |
|         const int width  = std::sqrt(seq);
 | |
|         GGML_ASSERT(scale_factor != 0);
 | |
|         cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
 | |
|         cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
 | |
|         cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
 | |
|             n_embd * scale_factor * scale_factor,
 | |
|             height / scale_factor,
 | |
|             width / scale_factor,
 | |
|             bsz);
 | |
|         cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
 | |
|         cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
 | |
|             n_embd * scale_factor * scale_factor,
 | |
|             seq / (scale_factor * scale_factor),
 | |
|             bsz);
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.projection, cur);
 | |
|         embeddings = cur;
 | |
|     } else {
 | |
|         GGML_ABORT("SigLIP: Unsupported projector type");
 | |
|     }
 | |
| 
 | |
|     // build the graph
 | |
|     ggml_build_forward_expand(gf, embeddings);
 | |
| 
 | |
|     return gf;
 | |
| }
 | |
| 
 | |
| // implementation of the 2D RoPE without adding a new op in ggml
 | |
| // this is not efficient (use double the memory), but works on all backends
 | |
| // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
 | |
| static ggml_tensor * build_rope_2d(
 | |
|     ggml_context * ctx0,
 | |
|     ggml_tensor * cur,
 | |
|     ggml_tensor * pos_h,
 | |
|     ggml_tensor * pos_w,
 | |
|     const float freq_base
 | |
| ) {
 | |
|     const int64_t n_dim  = cur->ne[0];
 | |
|     const int64_t n_head = cur->ne[1];
 | |
|     const int64_t n_pos  = cur->ne[2];
 | |
| 
 | |
|     // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
 | |
|     // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
 | |
|     // first half of cur will use 1e-0, 1e-2 (even)
 | |
|     // second half of cur will use 1e-1, 1e-3 (odd)
 | |
|     // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
 | |
|     //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
 | |
|     // then for the second half, we use freq_scale to shift the inv_freq
 | |
|     //  ^ why? replace (2i) with (2i+1) in the above equation
 | |
|     const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
 | |
| 
 | |
|     // first half
 | |
|     ggml_tensor * first;
 | |
|     {
 | |
|         first = ggml_view_3d(ctx0, cur,
 | |
|             n_dim/2, n_head, n_pos,
 | |
|             ggml_row_size(cur->type, n_dim),
 | |
|             ggml_row_size(cur->type, n_dim*n_head),
 | |
|             0);
 | |
|         first = ggml_rope_ext(
 | |
|             ctx0,
 | |
|             first,
 | |
|             pos_h,      // positions
 | |
|             nullptr,    // freq factors
 | |
|             n_dim/2,    // n_dims
 | |
|             0, 0, freq_base,
 | |
|             1.0f, 0.0f, 1.0f, 0.0f, 0.0f
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     // second half
 | |
|     ggml_tensor * second;
 | |
|     {
 | |
|         second = ggml_view_3d(ctx0, cur,
 | |
|             n_dim/2, n_head, n_pos,
 | |
|             ggml_row_size(cur->type, n_dim),
 | |
|             ggml_row_size(cur->type, n_dim*n_head),
 | |
|             n_dim/2 * ggml_element_size(cur));
 | |
|         second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
 | |
|         second = ggml_rope_ext(
 | |
|             ctx0,
 | |
|             second,
 | |
|             pos_w,      // positions
 | |
|             nullptr,    // freq factors
 | |
|             n_dim/2,    // n_dims
 | |
|             0, 0, freq_base,
 | |
|             freq_scale_odd,
 | |
|             0.0f, 1.0f, 0.0f, 0.0f
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     cur = ggml_concat(ctx0, first, second, 0);
 | |
|     return cur;
 | |
| }
 | |
| 
 | |
| static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_image_f32 & img) {
 | |
|     const auto & model = ctx->vision_model;
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     GGML_ASSERT(ctx->proj_type == PROJECTOR_TYPE_PIXTRAL);
 | |
| 
 | |
|     int image_size_width  = img.nx;
 | |
|     int image_size_height = img.ny;
 | |
| 
 | |
|     const int patch_size  = hparams.patch_size;
 | |
|     const int n_patches_x = image_size_width  / patch_size;
 | |
|     const int n_patches_y = image_size_height / patch_size;
 | |
|     const int num_patches = n_patches_x * n_patches_y;
 | |
|     const int hidden_size = hparams.hidden_size;
 | |
|     const int n_head      = hparams.n_head;
 | |
|     const int d_head      = hidden_size / n_head;
 | |
|     const int n_layer     = hparams.n_layer;
 | |
|     const float eps       = hparams.eps;
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ ctx->buf_compute_meta.size(),
 | |
|         /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
 | |
|         /*.no_alloc   =*/ true,
 | |
|     };
 | |
| 
 | |
|     ggml_context_ptr ctx0_ptr(ggml_init(params));
 | |
|     auto ctx0 = ctx0_ptr.get();
 | |
| 
 | |
|     struct ggml_cgraph * gf = ggml_new_graph(ctx0);
 | |
| 
 | |
|     // input raw
 | |
|     struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
 | |
|     ggml_set_name(inp_raw, "inp_raw");
 | |
|     ggml_set_input(inp_raw);
 | |
| 
 | |
|     // 2D input positions
 | |
|     struct ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
 | |
|     ggml_set_name(pos_h, "pos_h");
 | |
|     ggml_set_input(pos_h);
 | |
|     struct ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
 | |
|     ggml_set_name(pos_w, "pos_w");
 | |
|     ggml_set_input(pos_w);
 | |
| 
 | |
|     struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
 | |
|     inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
 | |
|     inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
 | |
| 
 | |
|     struct ggml_tensor * embeddings = inp;
 | |
| 
 | |
|     // pre-layer norm
 | |
|     embeddings = ggml_mul(ctx0, ggml_rms_norm(ctx0, embeddings, eps), model.pre_ln_w);
 | |
| 
 | |
|     // loop over layers
 | |
|     for (int il = 0; il < n_layer; il++) {
 | |
|         struct ggml_tensor * cur = embeddings;
 | |
| 
 | |
|         // pre-attention norm
 | |
|         cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_1_w);
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
|             struct ggml_tensor * Q = ggml_mul_mat(ctx0, model.layers[il].q_w, cur);
 | |
| 
 | |
|             Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
 | |
|             Q = build_rope_2d(ctx0, Q, pos_h, pos_w, hparams.rope_theta);
 | |
|             Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
 | |
| 
 | |
|             struct ggml_tensor * K = ggml_mul_mat(ctx0, model.layers[il].k_w, cur);
 | |
| 
 | |
|             K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
 | |
|             K = build_rope_2d(ctx0, K, pos_h, pos_w, hparams.rope_theta);
 | |
|             K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
 | |
| 
 | |
|             struct ggml_tensor * V = ggml_mul_mat(ctx0, model.layers[il].v_w, cur);
 | |
| 
 | |
|             V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
 | |
|             V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
 | |
| 
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
|             KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
 | |
| 
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
 | |
|             KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
 | |
|             KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
| 
 | |
|             cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
 | |
| 
 | |
|             cur = ggml_mul_mat(ctx0, model.layers[il].o_w, cur);
 | |
|         }
 | |
| 
 | |
|         // re-add the layer input, e.g., residual
 | |
|         cur = ggml_add(ctx0, cur, embeddings);
 | |
| 
 | |
|         embeddings = cur; // embeddings = residual, cur = hidden_states
 | |
| 
 | |
|         // pre-ffn norm
 | |
|         cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.layers[il].ln_2_w);
 | |
| 
 | |
|         // feed-forward
 | |
|         {
 | |
|             ggml_tensor * gate_proj = ggml_mul_mat(ctx0, model.layers[il].ff_gate_w, cur);
 | |
|             ggml_tensor * up_proj   = ggml_mul_mat(ctx0, model.layers[il].ff_up_w,   cur);
 | |
|             gate_proj = ggml_silu(ctx0, gate_proj); // pixtral uses silu
 | |
|             cur = ggml_mul(ctx0, up_proj, gate_proj);
 | |
|             cur = ggml_mul_mat(ctx0, model.layers[il].ff_down_w, cur);
 | |
|         }
 | |
| 
 | |
|         // residual 2
 | |
|         cur = ggml_add(ctx0, embeddings, cur);
 | |
| 
 | |
|         embeddings = cur;
 | |
|     }
 | |
| 
 | |
|     // LlavaMultiModalProjector (with GELU activation)
 | |
|     {
 | |
|         embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
 | |
|         embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
 | |
| 
 | |
|         embeddings = ggml_gelu(ctx0, embeddings);
 | |
|         embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
 | |
|         embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
 | |
|     }
 | |
| 
 | |
|     // arrangement of the [IMG_BREAK] token
 | |
|     {
 | |
|         // not efficient, but works
 | |
|         // the trick is to view the embeddings as a 3D tensor with shape [hidden_size, n_patches_per_row, n_rows]
 | |
|         // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
 | |
|         // after the concatenation, we have a tensor with shape [hidden_size, n_patches_per_row + 1, n_rows]
 | |
| 
 | |
|         const int n_embd_text     = embeddings->ne[0];
 | |
|         const int n_tokens_output = num_patches + n_patches_y - 1; // one [IMG_BREAK] per row, except the last row
 | |
| 
 | |
|         ggml_tensor * cur = ggml_reshape_3d(ctx0, embeddings, n_embd_text, n_patches_x, n_patches_y);
 | |
|         ggml_tensor * tok = ggml_new_tensor_3d(ctx0, embeddings->type, n_embd_text, 1, n_patches_y);
 | |
|         tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
 | |
|         tok = ggml_add(ctx0, tok, model.token_embd_img_break);
 | |
|         cur = ggml_concat(ctx0, cur, tok, 1);
 | |
|         embeddings = ggml_view_2d(ctx0, cur,
 | |
|             n_embd_text, n_tokens_output,
 | |
|             ggml_row_size(cur->type, n_embd_text), 0);
 | |
|     }
 | |
| 
 | |
|     // build the graph
 | |
|     ggml_build_forward_expand(gf, embeddings);
 | |
| 
 | |
|     return gf;
 | |
| }
 | |
| 
 | |
| static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
 | |
|     const auto & model = ctx->vision_model;
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     const int image_size = hparams.image_size;
 | |
|     int image_size_width  = image_size;
 | |
|     int image_size_height = image_size;
 | |
| 
 | |
|     if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
 | |
|         LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height);
 | |
|         image_size_width  = load_image_size.width;
 | |
|         image_size_height = load_image_size.height;
 | |
|         if (is_inf) {
 | |
|             image_size_width  = imgs.entries[0]->nx;
 | |
|             image_size_height = imgs.entries[0]->ny;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
 | |
|         // use the image's native resolution when image is avaible
 | |
|         if (is_inf) {
 | |
|         // if (imgs->data->nx && imgs->data->ny) {
 | |
|             image_size_width  = imgs.entries[0]->nx;
 | |
|             image_size_height = imgs.entries[0]->ny;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const int patch_size           = hparams.patch_size;
 | |
|     const int num_patches          = ((image_size_width / patch_size) * (image_size_height / patch_size));
 | |
|     const int patches_w            = image_size_width / patch_size;
 | |
|     const int patches_h            = image_size_height / patch_size;
 | |
|     const int num_positions        = num_patches + (model.class_embedding ? 1 : 0);
 | |
|     const int num_position_ids     = ctx->proj_type == PROJECTOR_TYPE_QWEN2VL ? num_positions * 4 : num_positions;
 | |
|     const int hidden_size          = hparams.hidden_size;
 | |
|     const int n_head               = hparams.n_head;
 | |
|     const int d_head               = hidden_size / n_head;
 | |
|     const float eps                = hparams.eps;
 | |
|     int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
 | |
| 
 | |
|     const int batch_size = imgs.entries.size();
 | |
| 
 | |
|     if (ctx->has_llava_projector
 | |
|             || ctx->proj_type == PROJECTOR_TYPE_MINICPMV
 | |
|             || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
 | |
|         GGML_ASSERT(batch_size == 1);
 | |
|     }
 | |
| 
 | |
|     struct ggml_init_params params = {
 | |
|         /*.mem_size   =*/ ctx->buf_compute_meta.size(),
 | |
|         /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
 | |
|         /*.no_alloc   =*/ true,
 | |
|     };
 | |
| 
 | |
|     ggml_context_ptr ctx0_ptr(ggml_init(params));
 | |
|     auto ctx0 = ctx0_ptr.get();
 | |
| 
 | |
|     struct ggml_cgraph * gf = ggml_new_graph(ctx0);
 | |
| 
 | |
|     struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
 | |
|     ggml_set_name(inp_raw, "inp_raw");
 | |
|     ggml_set_input(inp_raw);
 | |
| 
 | |
|     struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
 | |
| 
 | |
|     if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
 | |
|         GGML_ASSERT(image_size_width  % (patch_size * 2) == 0);
 | |
|         GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
 | |
| 
 | |
|         auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
 | |
|         inp = ggml_add(ctx0, inp, inp_1);
 | |
|         inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3));  // [w, h, c, b] -> [c, w, h, b]
 | |
|         inp = ggml_reshape_4d(
 | |
|             ctx0, inp,
 | |
|             hidden_size * 2, patches_w / 2, patches_h, batch_size);
 | |
|         inp = ggml_reshape_4d(
 | |
|             ctx0, inp,
 | |
|             hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
 | |
|         inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
 | |
|         inp = ggml_reshape_3d(
 | |
|             ctx0, inp,
 | |
|             hidden_size, patches_w * patches_h, batch_size);
 | |
|     }
 | |
|     else {
 | |
|         inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
 | |
|         inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
 | |
|     }
 | |
| 
 | |
|     if (model.patch_bias) {
 | |
|         // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
 | |
|         inp = ggml_add(ctx0, inp, model.patch_bias);
 | |
|     }
 | |
|     struct ggml_tensor * embeddings = inp;
 | |
|     struct ggml_tensor * pos_embed = nullptr;
 | |
| 
 | |
|     // concat class_embeddings and patch_embeddings
 | |
|     if (model.class_embedding) {
 | |
|         embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
 | |
|         embeddings = ggml_scale(ctx0, embeddings, 0.0f); // set to all zeros
 | |
|         embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
 | |
|                 embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
 | |
|         embeddings = ggml_acc(ctx0, embeddings, inp,
 | |
|                 embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
 | |
|     ggml_set_name(positions, "positions");
 | |
|     ggml_set_input(positions);
 | |
| 
 | |
|     if (ctx->proj_type != PROJECTOR_TYPE_QWEN2VL) { // qwen2vl does NOT use learned position embeddings
 | |
|         embeddings =
 | |
|             ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
 | |
|     }
 | |
| 
 | |
|     if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
 | |
|         int pos_w = image_size_width/patch_size;
 | |
|         int pos_h = image_size_height/patch_size;
 | |
|         if (ctx->minicpmv_version == 2) {
 | |
|             pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
 | |
|         }
 | |
|         else if (ctx->minicpmv_version == 3) {
 | |
|             pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
 | |
|         }
 | |
|         else if (ctx->minicpmv_version == 4) {
 | |
|             pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
 | |
|         }
 | |
|         ggml_set_name(pos_embed, "pos_embed");
 | |
|         ggml_set_input(pos_embed);
 | |
|     }
 | |
| 
 | |
|     // pre-layernorm
 | |
|     if (model.pre_ln_w) {
 | |
|         embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|         ggml_set_name(embeddings, "pre_ln");
 | |
| 
 | |
|         embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
 | |
|     }
 | |
| 
 | |
|     std::vector<struct ggml_tensor *> embedding_stack;
 | |
|     const auto & vision_feature_layer = hparams.vision_feature_layer;
 | |
| 
 | |
|     // loop over layers
 | |
|     for (int il = 0; il < ctx->max_feature_layer; il++) {
 | |
|         struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
 | |
| 
 | |
|         // If this is an embedding feature layer, save the output.
 | |
|         // NOTE: 0 index here refers to the input to the encoder.
 | |
|         if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
 | |
|             embedding_stack.push_back(embeddings);
 | |
|         }
 | |
| 
 | |
|         //const size_t nb_q_w = model.layers[il].q_w->nb[0];
 | |
| 
 | |
|         // layernorm1
 | |
|         {
 | |
|             cur = ggml_norm(ctx0, cur, eps);
 | |
| 
 | |
|             cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
 | |
|                            model.layers[il].ln_1_b);
 | |
|         }
 | |
| 
 | |
|         // self-attention
 | |
|         {
 | |
| 
 | |
|             struct ggml_tensor * Q =
 | |
|                 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
 | |
| 
 | |
|             Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
 | |
|             if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
 | |
|                 Q = ggml_rope_multi(
 | |
|                     ctx0, Q, positions, nullptr,
 | |
|                     d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
 | |
|             }
 | |
|             Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
 | |
|             Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
 | |
| 
 | |
|             struct ggml_tensor * K =
 | |
|                 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
 | |
| 
 | |
|             K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
 | |
|             if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
 | |
|                 K = ggml_rope_multi(
 | |
|                     ctx0, K, positions, nullptr,
 | |
|                     d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
 | |
|             }
 | |
|             K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
 | |
|             K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
 | |
| 
 | |
|             struct ggml_tensor * V =
 | |
|                 ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
 | |
| 
 | |
|             V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
 | |
|             V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
 | |
|             V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
 | |
| 
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
|             KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
 | |
|             KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
 | |
|             KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
| 
 | |
|             cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
 | |
|         }
 | |
| 
 | |
|         // attention output
 | |
|         cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
 | |
| 
 | |
|         // re-add the layer input, e.g., residual
 | |
|         cur = ggml_add(ctx0, cur, embeddings);
 | |
| 
 | |
|         embeddings = cur; // embeddings = residual, cur = hidden_states
 | |
| 
 | |
|         // layernorm2
 | |
|         {
 | |
|             cur = ggml_norm(ctx0, cur, eps);
 | |
| 
 | |
|             cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
 | |
|         }
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
 | |
|         cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
 | |
| 
 | |
|         if (ctx->use_gelu) {
 | |
|             cur = ggml_gelu_inplace(ctx0, cur);
 | |
|         } else if (ctx->use_silu) {
 | |
|             cur = ggml_silu_inplace(ctx0, cur);
 | |
|         } else {
 | |
|             cur = ggml_gelu_quick_inplace(ctx0, cur);
 | |
|         }
 | |
| 
 | |
|         cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
 | |
|         cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
 | |
| 
 | |
|         // residual 2
 | |
|         cur = ggml_add(ctx0, embeddings, cur);
 | |
| 
 | |
|         embeddings = cur;
 | |
|     }
 | |
| 
 | |
|     // post-layernorm
 | |
|     if (model.post_ln_w) {
 | |
|         embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|         ggml_set_name(embeddings, "post_ln");
 | |
| 
 | |
|         embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
 | |
|     }
 | |
| 
 | |
|     // final layer is a vision feature layer
 | |
|     if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
 | |
|         embedding_stack.push_back(embeddings);
 | |
|     }
 | |
| 
 | |
|     // If feature layers are explicitly set, stack them (if we have multiple)
 | |
|     if (!embedding_stack.empty()) {
 | |
|         embeddings = embedding_stack[0];
 | |
|         for (size_t i = 1; i < embedding_stack.size(); i++) {
 | |
|             embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // llava projector
 | |
|     if (ctx->has_llava_projector) {
 | |
|         embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
 | |
| 
 | |
|         struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
 | |
|         ggml_set_name(patches, "patches");
 | |
|         ggml_set_input(patches);
 | |
| 
 | |
|         // shape [1, 576, 1024]
 | |
|         // ne is whcn, ne = [1024, 576, 1, 1]
 | |
|         embeddings = ggml_get_rows(ctx0, embeddings, patches);
 | |
| 
 | |
|         // print_tensor_info(embeddings, "embeddings");
 | |
| 
 | |
|         // llava projector
 | |
|         if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
 | |
|             embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
 | |
| 
 | |
|             embeddings = ggml_gelu(ctx0, embeddings);
 | |
|             if (model.mm_2_w) {
 | |
|                 embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
 | |
|                 embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
 | |
|             }
 | |
|         }
 | |
|         else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
 | |
|             embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
 | |
|             // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
 | |
|             // First LayerNorm
 | |
|             embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|             embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
 | |
|                                 model.mm_1_b);
 | |
| 
 | |
|             // GELU activation
 | |
|             embeddings = ggml_gelu(ctx0, embeddings);
 | |
| 
 | |
|             // Second linear layer
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
 | |
|             embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
 | |
| 
 | |
|             // Second LayerNorm
 | |
|             embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|             embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
 | |
|                                 model.mm_4_b);
 | |
|         }
 | |
|         else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
 | |
|             // MobileVLM projector
 | |
|             int n_patch = 24;
 | |
|             struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
 | |
|             mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
 | |
|             mlp_1 = ggml_gelu(ctx0, mlp_1);
 | |
|             struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
 | |
|             mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
 | |
|             // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
 | |
| 
 | |
|             // block 1
 | |
|             struct ggml_tensor * block_1 = nullptr;
 | |
|             {
 | |
|                 // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
 | |
|                 mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
 | |
|                 mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
 | |
|                 // stride = 1, padding = 1, bias is nullptr
 | |
|                 block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
 | |
| 
 | |
|                 // layer norm
 | |
|                 // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
 | |
|                 // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
 | |
|                 block_1 = ggml_norm(ctx0, block_1, eps);
 | |
|                 block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
 | |
| 
 | |
|                 // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
 | |
|                 // hardswish
 | |
|                 struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
 | |
| 
 | |
|                 block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
 | |
|                 // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
 | |
|                 // pointwise conv
 | |
|                 block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
 | |
|                 block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
 | |
|                 block_1 = ggml_relu(ctx0, block_1);
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
 | |
|                 block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
 | |
|                 block_1 = ggml_hardsigmoid(ctx0, block_1);
 | |
|                 // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
 | |
|                 block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
 | |
|                 block_1 = ggml_mul(ctx0, block_1_hw, block_1);
 | |
| 
 | |
|                 int w = block_1->ne[0], h = block_1->ne[1];
 | |
|                 block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
 | |
| 
 | |
|                 // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
 | |
|                 block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
 | |
| 
 | |
|                 // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
 | |
|                 block_1 = ggml_norm(ctx0, block_1, eps);
 | |
|                 block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
 | |
|                 // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
 | |
|                 // residual
 | |
|                 block_1 = ggml_add(ctx0, mlp_3, block_1);
 | |
|             }
 | |
| 
 | |
|             // block_2
 | |
|             {
 | |
|                 // stride = 2
 | |
|                 block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
 | |
| 
 | |
|                 // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
 | |
|                 // layer norm
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
 | |
|                 // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
 | |
|                 block_1 = ggml_norm(ctx0, block_1, eps);
 | |
|                 block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
 | |
|                 // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
 | |
|                 // hardswish
 | |
|                 struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
 | |
| 
 | |
|                 // not sure the parameters is right for globalAvgPooling
 | |
|                 block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
 | |
|                 // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
 | |
|                 // pointwise conv
 | |
|                 block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
 | |
|                 block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
 | |
|                 block_1 = ggml_relu(ctx0, block_1);
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
 | |
|                 block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
 | |
|                 block_1 = ggml_hardsigmoid(ctx0, block_1);
 | |
| 
 | |
|                 // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
 | |
|                 block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
 | |
|                 block_1 = ggml_mul(ctx0, block_1_hw, block_1);
 | |
| 
 | |
|                 int w = block_1->ne[0], h = block_1->ne[1];
 | |
|                 block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
 | |
|                 block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
 | |
|                 // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
 | |
|                 block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
 | |
|                 block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
 | |
| 
 | |
| 
 | |
|                 // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
 | |
|                 block_1 = ggml_norm(ctx0, block_1, eps);
 | |
|                 block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
 | |
|                 block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
 | |
|                 // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
 | |
|             }
 | |
|             embeddings = block_1;
 | |
|         }
 | |
|         else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
 | |
|         {
 | |
|             int n_patch = 24;
 | |
|             struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
 | |
|             mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
 | |
|             mlp_0 = ggml_gelu(ctx0, mlp_0);
 | |
|             struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
 | |
|             mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
 | |
|             // mlp_2 ne = [2048, 576, 1, 1]
 | |
|             // // AVG Pool Layer 2*2, strides = 2
 | |
|             mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
 | |
|             // mlp_2 ne = [576, 2048, 1, 1]
 | |
|             mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
 | |
|             // mlp_2 ne [24, 24, 2048, 1]
 | |
|             mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
 | |
|             // weight ne = [3, 3, 2048, 1]
 | |
|             struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
 | |
|             peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
 | |
|             peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
 | |
|             mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
 | |
|             peg_0 = ggml_add(ctx0, peg_0, mlp_2);
 | |
|             peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
 | |
|             embeddings = peg_0;
 | |
|         }
 | |
|         else {
 | |
|             GGML_ABORT("fatal error");
 | |
|         }
 | |
|     }
 | |
|     // minicpmv projector
 | |
|     else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
 | |
|         struct ggml_tensor * q = model.mm_model_query;
 | |
|         { // layernorm
 | |
|             q = ggml_norm(ctx0, q, eps);
 | |
|             q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
 | |
|         }
 | |
|         struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
 | |
|         { // layernorm
 | |
|             v = ggml_norm(ctx0, v, eps);
 | |
|             v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
 | |
|         }
 | |
|         struct ggml_tensor * k;
 | |
|         { // position
 | |
|             // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
 | |
|             k = ggml_add(ctx0, v, pos_embed);
 | |
|         }
 | |
| 
 | |
|         { // attention
 | |
|             int hidden_size = 4096;
 | |
|             const int d_head = 128;
 | |
|             int n_head = hidden_size/d_head;
 | |
|             int num_query = 96;
 | |
|             if (ctx->minicpmv_version == 2) {
 | |
|                 hidden_size = 4096;
 | |
|                 n_head = hidden_size/d_head;
 | |
|                 num_query = 96;
 | |
|             }
 | |
|             else if (ctx->minicpmv_version == 3) {
 | |
|                 hidden_size = 3584;
 | |
|                 n_head = hidden_size/d_head;
 | |
|                 num_query = 64;
 | |
|             }
 | |
|             else if (ctx->minicpmv_version == 4) {
 | |
|                 hidden_size = 3584;
 | |
|                 n_head = hidden_size/d_head;
 | |
|                 num_query = 64;
 | |
|             }
 | |
| 
 | |
|             struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
 | |
|             struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
 | |
|             struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
 | |
|             // permute
 | |
|             Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
 | |
|             Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
 | |
|             Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
 | |
|             K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
 | |
|             K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
 | |
|             K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
 | |
|             V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
 | |
|             V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
 | |
|             V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
 | |
|             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
 | |
|             KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
 | |
|             struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
 | |
|             KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
 | |
|             KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
 | |
|             KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
 | |
| 
 | |
|             embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
 | |
|         }
 | |
|         { // layernorm
 | |
|             embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|             embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
 | |
|         }
 | |
|         embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
 | |
|     }
 | |
| 
 | |
|     // glm projector
 | |
|     else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
 | |
|         size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
 | |
|         embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
 | |
|         embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
 | |
|         embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
 | |
|         embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
 | |
|         embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
 | |
|         embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
 | |
|         // GLU
 | |
|         {
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
 | |
|             embeddings = ggml_norm(ctx0, embeddings, eps);
 | |
|             embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
 | |
|             embeddings = ggml_gelu_inplace(ctx0, embeddings);
 | |
|             struct ggml_tensor * x = embeddings;
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
 | |
|             x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
 | |
|             embeddings = ggml_silu_inplace(ctx0, embeddings);
 | |
|             embeddings = ggml_mul(ctx0, embeddings,x);
 | |
|             embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
 | |
|         embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
 | |
| 
 | |
|         embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
 | |
|         embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
 | |
| 
 | |
|         // GELU activation
 | |
|         embeddings = ggml_gelu(ctx0, embeddings);
 | |
| 
 | |
|         // Second linear layer
 | |
|         embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
 | |
|         embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
 | |
|     }
 | |
| 
 | |
|     // build the graph
 | |
|     ggml_build_forward_expand(gf, embeddings);
 | |
| 
 | |
|     return gf;
 | |
| }
 | |
| 
 | |
| static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
 | |
|     ggml_cgraph * res;
 | |
|     switch (ctx->proj_type) {
 | |
|         case PROJECTOR_TYPE_GEMMA3:
 | |
|         case PROJECTOR_TYPE_IDEFICS3:
 | |
|             {
 | |
|                 GGML_ASSERT(imgs.entries.size() == 1);
 | |
|                 res = clip_image_build_graph_siglip(ctx, *imgs.entries[0]);
 | |
|             } break;
 | |
|         case PROJECTOR_TYPE_PIXTRAL:
 | |
|             {
 | |
|                 GGML_ASSERT(imgs.entries.size() == 1);
 | |
|                 res = clip_image_build_graph_pixtral(ctx, *imgs.entries[0]);
 | |
|             } break;
 | |
|         default:
 | |
|             {
 | |
|                 // TODO: we should have one build_* function per model
 | |
|                 res = clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
 | |
|             } break;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| struct clip_model_loader {
 | |
|     ggml_context_ptr ctx_meta;
 | |
|     gguf_context_ptr ctx_gguf;
 | |
| 
 | |
|     clip_ctx & ctx_clip;
 | |
|     std::string fname;
 | |
| 
 | |
|     size_t model_size; // in bytes
 | |
| 
 | |
|     // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
 | |
|     clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
 | |
|         struct ggml_context * meta = nullptr;
 | |
| 
 | |
|         struct gguf_init_params params = {
 | |
|             /*.no_alloc = */ true,
 | |
|             /*.ctx      = */ &meta,
 | |
|         };
 | |
| 
 | |
|         ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
 | |
|         if (!ctx_gguf.get()) {
 | |
|             throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
 | |
|         }
 | |
| 
 | |
|         ctx_meta.reset(meta);
 | |
| 
 | |
|         const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
 | |
| 
 | |
|         // print gguf info
 | |
|         {
 | |
|             std::string name;
 | |
|             get_string(KEY_NAME, name, false);
 | |
|             std::string description;
 | |
|             get_string(KEY_DESCRIPTION, description, false);
 | |
|             LOG_INF("%s: model name:   %s\n",  __func__, name.c_str());
 | |
|             LOG_INF("%s: description:  %s\n",  __func__, description.c_str());
 | |
|             LOG_INF("%s: GGUF version: %d\n",  __func__, gguf_get_version(ctx_gguf.get()));
 | |
|             LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
 | |
|             LOG_INF("%s: n_tensors:    %d\n",  __func__, n_tensors);
 | |
|             LOG_INF("%s: n_kv:         %d\n",  __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
 | |
|             LOG_INF("\n");
 | |
|         }
 | |
| 
 | |
|         // tensors
 | |
|         {
 | |
|             for (int i = 0; i < n_tensors; ++i) {
 | |
|                 const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
 | |
|                 const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
 | |
|                 enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
 | |
|                 struct ggml_tensor * cur = ggml_get_tensor(meta, name);
 | |
|                 size_t tensor_size = ggml_nbytes(cur);
 | |
|                 model_size += tensor_size;
 | |
|                 LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
 | |
|                     __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void load_hparams() {
 | |
|         auto & hparams = ctx_clip.vision_model.hparams;
 | |
| 
 | |
|         // projector type
 | |
|         std::string proj_type;
 | |
|         {
 | |
|             get_string(KEY_PROJ_TYPE, proj_type, false);
 | |
|             if (!proj_type.empty()) {
 | |
|                 ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
 | |
|             }
 | |
|             if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
 | |
|                 throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // other hparams
 | |
|         {
 | |
|             get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false);
 | |
| 
 | |
|             get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
 | |
|             get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);
 | |
| 
 | |
|             get_u32(KEY_N_EMBD,         hparams.hidden_size);
 | |
|             get_u32(KEY_N_HEAD,         hparams.n_head);
 | |
|             get_u32(KEY_N_FF,           hparams.n_intermediate);
 | |
|             get_u32(KEY_N_BLOCK,        hparams.n_layer);
 | |
|             get_u32(KEY_PROJ_DIM,       hparams.projection_dim);
 | |
|             get_f32(KEY_LAYER_NORM_EPS, hparams.eps);
 | |
|             get_u32(KEY_IMAGE_SIZE,     hparams.image_size);
 | |
|             get_u32(KEY_PATCH_SIZE,     hparams.patch_size);
 | |
|             get_u32(KEY_IMAGE_CROP_RESOLUTION,    hparams.image_crop_resolution, false);
 | |
|             get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
 | |
| 
 | |
|             ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP
 | |
|                                         || ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM
 | |
|                                         || ctx_clip.proj_type == PROJECTOR_TYPE_LDP
 | |
|                                         || ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2;
 | |
| 
 | |
|             {
 | |
|                 std::string mm_patch_merge_type;
 | |
|                 get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
 | |
|                 if (mm_patch_merge_type == "spatial_unpad") {
 | |
|                     hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             {
 | |
|                 int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
 | |
|                 int idx_std  = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
 | |
|                 GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
 | |
|                 GGML_ASSERT(idx_std >= 0  && "image_std not found");
 | |
|                 const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
 | |
|                 const float * std_data  = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
 | |
|                 for (int i = 0; i < 3; ++i) {
 | |
|                     ctx_clip.image_mean[i] = mean_data[i];
 | |
|                     ctx_clip.image_std[i]  = std_data[i];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Load the vision feature layer indices if they are explicitly provided;
 | |
|             // if multiple vision feature layers are present, the values will be concatenated
 | |
|             // to form the final visual features.
 | |
|             // NOTE: gguf conversions should standardize the values of the vision feature layer to
 | |
|             // be non-negative, since we use -1 to mark values as unset here.
 | |
|             std::vector<int> vision_feature_layer;
 | |
|             get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
 | |
|             // convert std::vector to std::unordered_set
 | |
|             for (auto & layer : vision_feature_layer) {
 | |
|                 hparams.vision_feature_layer.insert(layer);
 | |
|             }
 | |
| 
 | |
|             // Calculate the deepest feature layer based on hparams and projector type
 | |
|             // NOTE: This is only used by build_graph_legacy()
 | |
|             {
 | |
|                 // Get the index of the second to last layer; this is the default for models that have a llava projector
 | |
|                 int n_layer = hparams.n_layer - 1;
 | |
|                 int deepest_feature_layer = -1;
 | |
| 
 | |
|                 if (ctx_clip.proj_type == PROJECTOR_TYPE_MINICPMV
 | |
|                         || ctx_clip.proj_type == PROJECTOR_TYPE_GLM_EDGE
 | |
|                         || ctx_clip.proj_type == PROJECTOR_TYPE_QWEN2VL) {
 | |
|                     n_layer += 1;
 | |
|                 }
 | |
| 
 | |
|                 // If we set explicit vision feature layers, only go up to the deepest one
 | |
|                 // NOTE: only used by granite-vision models for now
 | |
|                 for (const auto & feature_layer : hparams.vision_feature_layer) {
 | |
|                     if (feature_layer > deepest_feature_layer) {
 | |
|                         deepest_feature_layer = feature_layer;
 | |
|                     }
 | |
|                 }
 | |
|                 ctx_clip.max_feature_layer = deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
 | |
|             }
 | |
| 
 | |
|             // model-specific params
 | |
|             switch (ctx_clip.proj_type) {
 | |
|                 case PROJECTOR_TYPE_MINICPMV:
 | |
|                     {
 | |
|                         if (ctx_clip.minicpmv_version == 0) {
 | |
|                             ctx_clip.minicpmv_version = 2; // default to 2 if not set
 | |
|                         }
 | |
|                     } break;
 | |
|                 case PROJECTOR_TYPE_IDEFICS3:
 | |
|                     {
 | |
|                         get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
 | |
|                     } break;
 | |
|                 case PROJECTOR_TYPE_PIXTRAL:
 | |
|                     {
 | |
|                         hparams.rope_theta = 10000.0f;
 | |
|                     } break;
 | |
|                 default:
 | |
|                     break;
 | |
|             }
 | |
| 
 | |
|             LOG_INF("%s: projector:          %s\n", __func__, proj_type.c_str());
 | |
|             LOG_INF("%s: has_llava_proj:     %d\n", __func__, ctx_clip.has_llava_projector);
 | |
|             LOG_INF("%s: minicpmv_version:   %d\n", __func__, ctx_clip.minicpmv_version);
 | |
|             LOG_INF("%s: model size:         %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
 | |
|             LOG_INF("%s: metadata size:      %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void load_tensors() {
 | |
|         std::map<std::string, size_t> tensor_offset;
 | |
|         std::vector<ggml_tensor *> tensors_to_load;
 | |
| 
 | |
|         // get offsets
 | |
|         for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
 | |
|             const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
 | |
|             tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
 | |
|         }
 | |
| 
 | |
|         // create data context
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
 | |
|             /*.mem_buffer =*/ NULL,
 | |
|             /*.no_alloc =*/ true,
 | |
|         };
 | |
|         ctx_clip.ctx_data.reset(ggml_init(params));
 | |
|         if (!ctx_clip.ctx_data) {
 | |
|             throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
 | |
|         }
 | |
| 
 | |
|         // helper function
 | |
|         auto get_tensor = [&](const std::string & name, bool required = true) {
 | |
|             struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
 | |
|             if (!cur && required) {
 | |
|                 throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
 | |
|             }
 | |
|             if (cur) {
 | |
|                 tensors_to_load.push_back(cur);
 | |
|                 // add tensors to context
 | |
|                 struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
 | |
|                 ggml_set_name(data_tensor, cur->name);
 | |
|                 cur = data_tensor;
 | |
|             }
 | |
|             return cur;
 | |
|         };
 | |
| 
 | |
|         auto & vision_model = ctx_clip.vision_model;
 | |
| 
 | |
|         vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
 | |
| 
 | |
|         vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
 | |
|         vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"),   false);
 | |
| 
 | |
|         vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
 | |
|         vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"),   false);
 | |
| 
 | |
|         vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
 | |
|         vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD,   false);
 | |
|         vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
 | |
| 
 | |
|         vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
 | |
| 
 | |
|         // layers
 | |
|         vision_model.layers.resize(vision_model.hparams.n_layer);
 | |
|         for (int il = 0; il < vision_model.hparams.n_layer; ++il) {
 | |
|             auto & layer = vision_model.layers[il];
 | |
|             layer.k_w    = get_tensor(string_format(TN_ATTN_K,      "v", il, "weight"));
 | |
|             layer.q_w    = get_tensor(string_format(TN_ATTN_Q,      "v", il, "weight"));
 | |
|             layer.v_w    = get_tensor(string_format(TN_ATTN_V,      "v", il, "weight"));
 | |
|             layer.o_w    = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
 | |
|             layer.ln_1_w = get_tensor(string_format(TN_LN_1,        "v", il, "weight"), false);
 | |
|             layer.ln_2_w = get_tensor(string_format(TN_LN_2,        "v", il, "weight"), false);
 | |
|             layer.k_b    = get_tensor(string_format(TN_ATTN_K,      "v", il, "bias"), false);
 | |
|             layer.q_b    = get_tensor(string_format(TN_ATTN_Q,      "v", il, "bias"), false);
 | |
|             layer.v_b    = get_tensor(string_format(TN_ATTN_V,      "v", il, "bias"), false);
 | |
|             layer.o_b    = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
 | |
|             layer.ln_1_b = get_tensor(string_format(TN_LN_1,        "v", il, "bias"), false);
 | |
|             layer.ln_2_b = get_tensor(string_format(TN_LN_2,        "v", il, "bias"), false);
 | |
| 
 | |
|             // new naming
 | |
|             layer.ff_up_w   = get_tensor(string_format(TN_FFN_UP,   "v", il, "weight"));
 | |
|             layer.ff_up_b   = get_tensor(string_format(TN_FFN_UP,   "v", il, "bias"),   false);
 | |
|             layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, "v", il, "weight"), false);
 | |
|             layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, "v", il, "bias"),   false);
 | |
|             layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
 | |
|             layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"),   false);
 | |
| 
 | |
|             // legacy naming (the in and out is reversed! don't ask me why)
 | |
|             layer.ff_i_w = layer.ff_down_w;
 | |
|             layer.ff_o_w = layer.ff_up_w;
 | |
|             layer.ff_i_b = layer.ff_down_b;
 | |
|             layer.ff_o_b = layer.ff_up_b;
 | |
|         }
 | |
| 
 | |
|         switch (ctx_clip.proj_type) {
 | |
|             case PROJECTOR_TYPE_MLP:
 | |
|             case PROJECTOR_TYPE_MLP_NORM:
 | |
|                 {
 | |
|                     // LLaVA projection
 | |
|                     vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
 | |
|                     vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
 | |
|                     // Yi-type llava
 | |
|                     vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
 | |
|                     vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
 | |
|                     // missing in Yi-type llava
 | |
|                     vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
 | |
|                     vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
 | |
|                     // Yi-type llava
 | |
|                     vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
 | |
|                     vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
 | |
|                     vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
 | |
|                     vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
 | |
|                     if (vision_model.mm_3_w) {
 | |
|                         // TODO: this is a hack to support Yi-type llava
 | |
|                         ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
 | |
|                     }
 | |
|                     vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
 | |
|                 } break;
 | |
|             case PROJECTOR_TYPE_LDP:
 | |
|                 {
 | |
|                     // MobileVLM projection
 | |
|                     vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
 | |
|                     vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
 | |
|                     vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
 | |
|                     vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
 | |
|                     vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
 | |
|                     vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
 | |
|                     vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
 | |
|                     vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
 | |
|                     vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
 | |
|                     vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
 | |
|                     vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
 | |
|                     vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
 | |
|                     vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
 | |
|                     vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
 | |
|                     vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
 | |
|                     vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
 | |
|                     vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
 | |
|                     vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
 | |
|                     vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
 | |
|                     vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
 | |
|                     vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
 | |
|                     vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
 | |
|                     vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
 | |
|                     vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
 | |
|                 } break;
 | |
|             case PROJECTOR_TYPE_LDPV2:
 | |
|                 {
 | |
|                     // MobilVLM_V2 projection
 | |
|                     vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
 | |
|                     vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
 | |
|                     vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
 | |
|                     vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
 | |
|                     vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
 | |
|                     vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
 | |
|                 } break;
 | |
|             case PROJECTOR_TYPE_MINICPMV:
 | |
|                 {
 | |
|                     // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
 | |
|                     vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
 | |
|                     vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
 | |
|                     vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
 | |
|                     vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
 | |
|                     vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
 | |
|                     vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
 | |
|                     vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
 | |
|                     vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
 | |
|                     vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
 | |
|                     vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
 | |
|                     vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
 | |
|                     vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
 | |
|                     vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
 | |
|                     vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
 | |
|                     vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
 | |
|                     vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
 | |
|                     vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
 | |
|                     vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
 | |
|                 } break;
 | |
|             case PROJECTOR_TYPE_GLM_EDGE:
 | |
|                 {
 | |
|                     vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
 | |
|                     vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
 | |
|                     vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight"));
 | |
|                     vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight"));
 | |
|                     vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias"));
 | |
|                     vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
 | |
|                     vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight"));
 | |
|                     vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
 | |
|                 } break;
 | |
|             case PROJECTOR_TYPE_QWEN2VL:
 | |
|                 {
 | |
|                     vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
 | |
|                     vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
 | |
|                     vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
 | |
|                     vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
 | |
|                 } break;
 | |
|             case PROJECTOR_TYPE_GEMMA3:
 | |
|                 {
 | |
|                     vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
 | |
|                     vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
 | |
|                 } break;
 | |
|             case PROJECTOR_TYPE_IDEFICS3:
 | |
|                 {
 | |
|                     vision_model.projection = get_tensor(TN_MM_PROJECTOR);
 | |
|                 } break;
 | |
|             case PROJECTOR_TYPE_PIXTRAL:
 | |
|                 {
 | |
|                     vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
 | |
|                     vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
 | |
|                     vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
 | |
|                     vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
 | |
|                     // [IMG_BREAK] token embedding
 | |
|                     vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
 | |
|                 } break;
 | |
|             default:
 | |
|                 GGML_ASSERT(false && "unknown projector type");
 | |
|         }
 | |
| 
 | |
|         // load data
 | |
|         {
 | |
|             std::vector<uint8_t> read_buf;
 | |
| 
 | |
|             auto fin = std::ifstream(fname, std::ios::binary);
 | |
|             if (!fin) {
 | |
|                 throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
 | |
|             }
 | |
| 
 | |
|             // alloc memory and offload data
 | |
|             ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
 | |
|             ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
 | |
|             ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
 | |
|             for (auto & t : tensors_to_load) {
 | |
|                 struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
 | |
|                 const size_t offset = tensor_offset[t->name];
 | |
|                 fin.seekg(offset, std::ios::beg);
 | |
|                 if (!fin) {
 | |
|                     throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
 | |
|                 }
 | |
|                 size_t num_bytes = ggml_nbytes(cur);
 | |
|                 if (ggml_backend_buft_is_host(buft)) {
 | |
|                     // for the CPU and Metal backend, we can read directly into the tensor
 | |
|                     fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
 | |
|                 } else {
 | |
|                     // read into a temporary buffer first, then copy to device memory
 | |
|                     read_buf.resize(num_bytes);
 | |
|                     fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
 | |
|                     ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
 | |
|                 }
 | |
|             }
 | |
|             fin.close();
 | |
| 
 | |
|             LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void alloc_compute_meta() {
 | |
|         ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
 | |
| 
 | |
|         // create a fake batch
 | |
|         clip_image_f32_batch batch;
 | |
|         clip_image_f32_ptr img(clip_image_f32_init());
 | |
|         clip_image_size image_size;
 | |
|         image_size.width  = ctx_clip.vision_model.hparams.image_size;
 | |
|         image_size.height = ctx_clip.vision_model.hparams.image_size;
 | |
|         img->nx = image_size.width;
 | |
|         img->ny = image_size.height;
 | |
|         img->buf.resize(image_size.width * image_size.height * 3);
 | |
|         batch.entries.push_back(std::move(img));
 | |
| 
 | |
|         ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false);
 | |
|         ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
 | |
|         for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
 | |
|             ggml_backend_t backend = ctx_clip.backend_ptrs[i];
 | |
|             ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
 | |
|             size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
 | |
|             if (size > 1) {
 | |
|                 LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
 | |
|                         ggml_backend_buft_name(buft),
 | |
|                         size / 1024.0 / 1024.0);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void get_bool(const std::string & key, bool & output, bool required = true) {
 | |
|         const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
 | |
|         if (i < 0) {
 | |
|             if (required) throw std::runtime_error("Key not found: " + key);
 | |
|             return;
 | |
|         }
 | |
|         output = gguf_get_val_bool(ctx_gguf.get(), i);
 | |
|     }
 | |
| 
 | |
|     void get_i32(const std::string & key, int & output, bool required = true) {
 | |
|         const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
 | |
|         if (i < 0) {
 | |
|             if (required) throw std::runtime_error("Key not found: " + key);
 | |
|             return;
 | |
|         }
 | |
|         output = gguf_get_val_i32(ctx_gguf.get(), i);
 | |
|     }
 | |
| 
 | |
|     void get_u32(const std::string & key, int & output, bool required = true) {
 | |
|         const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
 | |
|         if (i < 0) {
 | |
|             if (required) throw std::runtime_error("Key not found: " + key);
 | |
|             return;
 | |
|         }
 | |
|         output = gguf_get_val_u32(ctx_gguf.get(), i);
 | |
|     }
 | |
| 
 | |
|     void get_f32(const std::string & key, float & output, bool required = true) {
 | |
|         const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
 | |
|         if (i < 0) {
 | |
|             if (required) throw std::runtime_error("Key not found: " + key);
 | |
|             return;
 | |
|         }
 | |
|         output = gguf_get_val_f32(ctx_gguf.get(), i);
 | |
|     }
 | |
| 
 | |
|     void get_string(const std::string & key, std::string & output, bool required = true) {
 | |
|         const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
 | |
|         if (i < 0) {
 | |
|             if (required) throw std::runtime_error("Key not found: " + key);
 | |
|             return;
 | |
|         }
 | |
|         output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
 | |
|     }
 | |
| 
 | |
|     void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
 | |
|         const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
 | |
|         if (i < 0) {
 | |
|             if (required) throw std::runtime_error("Key not found: " + key);
 | |
|             return;
 | |
|         }
 | |
|         int n = gguf_get_arr_n(ctx_gguf.get(), i);
 | |
|         output.resize(n);
 | |
|         const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
 | |
|         for (int i = 0; i < n; ++i) {
 | |
|             output[i] = values[i];
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| // read and create ggml_context containing the tensors and their data
 | |
| struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
 | |
|     return clip_init(fname, clip_context_params{
 | |
|         /* use_gpu */   true,
 | |
|         /* verbosity */ static_cast<ggml_log_level>(verbosity),
 | |
|     });
 | |
| }
 | |
| 
 | |
| struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
 | |
|     g_logger_state.verbosity_thold = ctx_params.verbosity;
 | |
|     clip_ctx * ctx_clip = new clip_ctx(ctx_params);
 | |
| 
 | |
|     try {
 | |
|         clip_model_loader loader(fname, *ctx_clip);
 | |
|         loader.load_hparams();
 | |
|         loader.load_tensors();
 | |
|         loader.alloc_compute_meta();
 | |
|     } catch (const std::exception & e) {
 | |
|         LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
 | |
|         delete ctx_clip;
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ctx_clip;
 | |
| }
 | |
| 
 | |
| void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
 | |
|     ctx_clip->load_image_size = *load_image_size; // copy
 | |
| }
 | |
| 
 | |
| struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
 | |
|     return &ctx_clip->load_image_size;
 | |
| }
 | |
| 
 | |
| struct clip_image_size * clip_image_size_init() {
 | |
|     struct clip_image_size * load_image_size = new struct clip_image_size();
 | |
|     load_image_size->width = 448;
 | |
|     load_image_size->height = 448;
 | |
|     return load_image_size;
 | |
| }
 | |
| 
 | |
| struct clip_image_u8 * clip_image_u8_init() {
 | |
|     return new clip_image_u8();
 | |
| }
 | |
| 
 | |
| struct clip_image_f32 * clip_image_f32_init() {
 | |
|     return new clip_image_f32();
 | |
| }
 | |
| 
 | |
| struct clip_image_f32_batch * clip_image_f32_batch_init() {
 | |
|     return new clip_image_f32_batch();
 | |
| }
 | |
| 
 | |
| unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
 | |
|     if (nx) *nx = img->nx;
 | |
|     if (ny) *ny = img->ny;
 | |
|     return img->buf.data();
 | |
| }
 | |
| 
 | |
| void clip_image_size_free(struct clip_image_size * load_image_size) {
 | |
|     if (load_image_size == nullptr) {
 | |
|         return;
 | |
|     }
 | |
|     delete load_image_size;
 | |
| }
 | |
| void clip_image_u8_free(struct clip_image_u8  * img) { if (img) delete img; }
 | |
| void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
 | |
| void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
 | |
| void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
 | |
| 
 | |
| size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
 | |
|     return batch->entries.size();
 | |
| }
 | |
| 
 | |
| size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
 | |
|     if (idx < 0 || idx >= (int)batch->entries.size()) {
 | |
|         LOG_ERR("%s: invalid index %d\n", __func__, idx);
 | |
|         return 0;
 | |
|     }
 | |
|     return batch->entries[idx]->nx;
 | |
| }
 | |
| 
 | |
| size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
 | |
|     if (idx < 0 || idx >= (int)batch->entries.size()) {
 | |
|         LOG_ERR("%s: invalid index %d\n", __func__, idx);
 | |
|         return 0;
 | |
|     }
 | |
|     return batch->entries[idx]->ny;
 | |
| }
 | |
| 
 | |
| clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
 | |
|     if (idx < 0 || idx >= (int)batch->entries.size()) {
 | |
|         LOG_ERR("%s: invalid index %d\n", __func__, idx);
 | |
|         return nullptr;
 | |
|     }
 | |
|     return batch->entries[idx].get();
 | |
| }
 | |
| 
 | |
| void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
 | |
|     img->nx = nx;
 | |
|     img->ny = ny;
 | |
|     img->buf.resize(3 * nx * ny);
 | |
|     memcpy(img->buf.data(), rgb_pixels, img->buf.size());
 | |
| }
 | |
| 
 | |
| bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
 | |
|     int nx, ny, nc;
 | |
|     auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
 | |
|     if (!data) {
 | |
|         LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
 | |
|         return false;
 | |
|     }
 | |
|     clip_build_img_from_pixels(data, nx, ny, img);
 | |
|     stbi_image_free(data);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
 | |
|     int nx, ny, nc;
 | |
|     auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
 | |
|     if (!data) {
 | |
|         LOG_ERR("%s: failed to decode image bytes\n", __func__);
 | |
|         return false;
 | |
|     }
 | |
|     clip_build_img_from_pixels(data, nx, ny, img);
 | |
|     stbi_image_free(data);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
 | |
| static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
 | |
|     dst.nx = src.nx;
 | |
|     dst.ny = src.ny;
 | |
|     dst.buf.resize(src.buf.size());
 | |
| 
 | |
|     // TODO @ngxson : seems like this could be done more efficiently on cgraph
 | |
|     for (size_t i = 0; i < src.buf.size(); ++i) {
 | |
|         int c = i % 3; // rgb
 | |
|         dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
 | |
|     }
 | |
| }
 | |
| 
 | |
| // set of tools to manupulate images
 | |
| // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
 | |
| struct image_manipulation {
 | |
|     // Bilinear resize function
 | |
|     static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
 | |
|         dst.nx = target_width;
 | |
|         dst.ny = target_height;
 | |
|         dst.buf.resize(3 * target_width * target_height);
 | |
| 
 | |
|         float x_ratio = static_cast<float>(src.nx - 1) / target_width;
 | |
|         float y_ratio = static_cast<float>(src.ny - 1) / target_height;
 | |
| 
 | |
|         for (int y = 0; y < target_height; y++) {
 | |
|             for (int x = 0; x < target_width; x++) {
 | |
|                 float px = x_ratio * x;
 | |
|                 float py = y_ratio * y;
 | |
|                 int x_floor = static_cast<int>(px);
 | |
|                 int y_floor = static_cast<int>(py);
 | |
|                 float x_lerp = px - x_floor;
 | |
|                 float y_lerp = py - y_floor;
 | |
| 
 | |
|                 for (int c = 0; c < 3; c++) {
 | |
|                     float top = lerp(
 | |
|                         static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
 | |
|                         static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
 | |
|                         x_lerp
 | |
|                     );
 | |
|                     float bottom = lerp(
 | |
|                         static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
 | |
|                         static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
 | |
|                         x_lerp
 | |
|                     );
 | |
|                     dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Bicubic resize function
 | |
|     // part of image will be cropped if the aspect ratio is different
 | |
|     static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
 | |
|         const int nx = img.nx;
 | |
|         const int ny = img.ny;
 | |
| 
 | |
|         dst.nx = target_width;
 | |
|         dst.ny = target_height;
 | |
|         dst.buf.resize(3 * target_width * target_height);
 | |
| 
 | |
|         float Cc;
 | |
|         float C[5];
 | |
|         float d0, d2, d3, a0, a1, a2, a3;
 | |
|         int i, j, k, jj;
 | |
|         int x, y;
 | |
|         float dx, dy;
 | |
|         float tx, ty;
 | |
| 
 | |
|         tx = (float)nx / (float)target_width;
 | |
|         ty = (float)ny / (float)target_height;
 | |
| 
 | |
|         // Bicubic interpolation; adapted from ViT.cpp, inspired from :
 | |
|         //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
 | |
|         //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation
 | |
| 
 | |
|         for (i = 0; i < target_height; i++) {
 | |
|             for (j = 0; j < target_width; j++) {
 | |
|                 x = (int)(tx * j);
 | |
|                 y = (int)(ty * i);
 | |
| 
 | |
|                 dx = tx * j - x;
 | |
|                 dy = ty * i - y;
 | |
| 
 | |
|                 for (k = 0; k < 3; k++) {
 | |
|                     for (jj = 0; jj <= 3; jj++) {
 | |
|                         d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
 | |
|                         d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
 | |
|                         d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
 | |
|                         a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
 | |
| 
 | |
|                         a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
 | |
|                         a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
 | |
|                         a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
 | |
| 
 | |
|                         C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
 | |
| 
 | |
|                         d0 = C[0] - C[1];
 | |
|                         d2 = C[2] - C[1];
 | |
|                         d3 = C[3] - C[1];
 | |
|                         a0 = C[1];
 | |
|                         a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
 | |
|                         a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
 | |
|                         a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
 | |
|                         Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
 | |
| 
 | |
|                         const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
 | |
|                         dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // llava-1.6 type of resize_and_pad
 | |
|     // if the ratio is not 1:1, padding with pad_color will be applied
 | |
|     // pad_color is single channel, default is 0 (black)
 | |
|     static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
 | |
|         int target_width  = target_resolution.width;
 | |
|         int target_height = target_resolution.height;
 | |
| 
 | |
|         float scale_w = static_cast<float>(target_width) / image.nx;
 | |
|         float scale_h = static_cast<float>(target_height) / image.ny;
 | |
| 
 | |
|         int new_width, new_height;
 | |
| 
 | |
|         if (scale_w < scale_h) {
 | |
|             new_width  = target_width;
 | |
|             new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
 | |
|         } else {
 | |
|             new_height = target_height;
 | |
|             new_width  = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
 | |
|         }
 | |
| 
 | |
|         clip_image_u8 resized_image;
 | |
|         bicubic_resize(image, resized_image, new_width, new_height);
 | |
| 
 | |
|         clip_image_u8 padded_image;
 | |
|         padded_image.nx = target_width;
 | |
|         padded_image.ny = target_height;
 | |
|         padded_image.buf.resize(3 * target_width * target_height);
 | |
| 
 | |
|         // Fill the padded image with the fill color
 | |
|         for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
 | |
|             padded_image.buf[i]     = pad_color[0];
 | |
|             padded_image.buf[i + 1] = pad_color[1];
 | |
|             padded_image.buf[i + 2] = pad_color[2];
 | |
|         }
 | |
| 
 | |
|         // Calculate padding offsets
 | |
|         int pad_x = (target_width  - new_width)  / 2;
 | |
|         int pad_y = (target_height - new_height) / 2;
 | |
| 
 | |
|         // Copy the resized image into the center of the padded buffer
 | |
|         for (int y = 0; y < new_height; ++y) {
 | |
|             for (int x = 0; x < new_width; ++x) {
 | |
|                 for (int c = 0; c < 3; ++c) {
 | |
|                     padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         dst = std::move(padded_image);
 | |
|     }
 | |
| 
 | |
|     static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
 | |
|         dst.nx = w;
 | |
|         dst.ny = h;
 | |
|         dst.buf.resize(3 * w * h);
 | |
| 
 | |
|         for (int i = 0; i < h; ++i) {
 | |
|             for (int j = 0; j < w; ++j) {
 | |
|                 int src_idx = 3 * ((y + i)*image.nx + (x + j));
 | |
|                 int dst_idx = 3 * (i*w + j);
 | |
|                 dst.buf[dst_idx]     = image.buf[src_idx];
 | |
|                 dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
 | |
|                 dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // calculate the size of the **resized** image, while preserving the aspect ratio
 | |
|     // the calculated size will be aligned to the nearest multiple of align_size
 | |
|     // if H or W size is larger than max_dimension, it will be resized to max_dimension
 | |
|     static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
 | |
|         if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
 | |
|             return {0, 0};
 | |
|         }
 | |
| 
 | |
|         float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
 | |
|                                               static_cast<float>(max_dimension) / inp_size.height));
 | |
| 
 | |
|         float target_width_f  = static_cast<float>(inp_size.width)  * scale;
 | |
|         float target_height_f = static_cast<float>(inp_size.height) * scale;
 | |
| 
 | |
|         int aligned_width  = GGML_PAD((int)target_width_f,  align_size);
 | |
|         int aligned_height = GGML_PAD((int)target_height_f, align_size);
 | |
| 
 | |
|         return {aligned_width, aligned_height};
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     static inline int clip(int x, int lower, int upper) {
 | |
|         return std::max(lower, std::min(x, upper));
 | |
|     }
 | |
| 
 | |
|     // Linear interpolation between two points
 | |
|     static inline float lerp(float s, float e, float t) {
 | |
|         return s + (e - s) * t;
 | |
|     }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * implementation of LLaVA-UHD:
 | |
|  *  - https://arxiv.org/pdf/2403.11703
 | |
|  *  - https://github.com/thunlp/LLaVA-UHD
 | |
|  *  - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
 | |
|  *
 | |
|  * overview:
 | |
|  *   - an image always have a single overview (downscaled image)
 | |
|  *   - an image can have 0 or multiple slices, depending on the image size
 | |
|  *   - each slice can then be considered as a separate image
 | |
|  *
 | |
|  * for example:
 | |
|  *
 | |
|  * [overview] --> [slice 1] --> [slice 2]
 | |
|  *           |                |
 | |
|  *           +--> [slice 3] --> [slice 4]
 | |
|  */
 | |
| struct llava_uhd {
 | |
|     struct slice_coordinates {
 | |
|         int x;
 | |
|         int y;
 | |
|         clip_image_size size;
 | |
|     };
 | |
| 
 | |
|     struct slice_instructions {
 | |
|         clip_image_size overview_size; // size of downscaled image
 | |
|         clip_image_size refined_size;  // size of image right before slicing (must be multiple of slice size)
 | |
|         clip_image_size grid_size;     // grid_size.width * grid_size.height = number of slices
 | |
|         std::vector<slice_coordinates> slices;
 | |
|         bool padding_refined = false;  // if true, refine image will be padded to the grid size (e.g. llava-1.6)
 | |
|     };
 | |
| 
 | |
|     static int get_max_slices(struct clip_ctx * ctx) {
 | |
|         if (clip_is_minicpmv(ctx)) {
 | |
|             return 9;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
 | |
|         slice_instructions res;
 | |
|         const int patch_size      = clip_get_patch_size(ctx);
 | |
|         const int slice_size      = clip_get_image_size(ctx);
 | |
|         const int max_slice_nums  = get_max_slices(ctx);
 | |
|         const int original_width  = original_size.width;
 | |
|         const int original_height = original_size.height;
 | |
|         const float log_ratio = log((float)original_width / original_height);
 | |
|         const float ratio = (float)original_width * original_height / (slice_size * slice_size);
 | |
|         const int multiple = fmin(ceil(ratio), max_slice_nums);
 | |
|         const bool has_slices = (multiple > 1);
 | |
|         const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();
 | |
| 
 | |
|         if (has_pinpoints) {
 | |
|             // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
 | |
|             auto refine_size = llava_uhd::select_best_resolution(
 | |
|                 ctx->vision_model.hparams.image_grid_pinpoints,
 | |
|                 original_size);
 | |
|             res.overview_size   = clip_image_size{slice_size, slice_size};
 | |
|             res.refined_size    = refine_size;
 | |
|             res.grid_size       = clip_image_size{0, 0};
 | |
|             res.padding_refined = true;
 | |
| 
 | |
|             for (int y = 0; y < refine_size.height; y += slice_size) {
 | |
|                 for (int x = 0; x < refine_size.width; x += slice_size) {
 | |
|                     slice_coordinates slice;
 | |
|                     slice.x = x;
 | |
|                     slice.y = y;
 | |
|                     slice.size.width  = std::min(slice_size, refine_size.width  - x);
 | |
|                     slice.size.height = std::min(slice_size, refine_size.height - y);
 | |
|                     res.slices.push_back(slice);
 | |
|                     if (x == 0) {
 | |
|                         res.grid_size.width++;
 | |
|                     }
 | |
|                 }
 | |
|                 res.grid_size.height++;
 | |
|             }
 | |
| 
 | |
|             return res;
 | |
|         }
 | |
| 
 | |
|         // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
 | |
| 
 | |
|         auto best_size    = get_best_resize(original_size, slice_size, patch_size, has_slices);
 | |
|         res.overview_size = best_size;
 | |
| 
 | |
|         if (!has_slices) {
 | |
|             // skip slicing logic
 | |
|             res.refined_size = clip_image_size{0, 0};
 | |
|             res.grid_size    = clip_image_size{0, 0};
 | |
| 
 | |
|         } else {
 | |
|             auto best_grid   = get_best_grid(max_slice_nums, multiple, log_ratio);
 | |
|             auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
 | |
|             res.grid_size    = best_grid;
 | |
|             res.refined_size = refine_size;
 | |
| 
 | |
|             int width  = refine_size.width;
 | |
|             int height = refine_size.height;
 | |
|             int grid_x = int(width  / best_grid.width);
 | |
|             int grid_y = int(height / best_grid.height);
 | |
|             for (int patches_y = 0,                    ic = 0;
 | |
|                     patches_y < refine_size.height && ic < best_grid.height;
 | |
|                     patches_y += grid_y,              ic += 1) {
 | |
|                 for (int patches_x = 0,                   jc = 0;
 | |
|                         patches_x < refine_size.width && jc < best_grid.width;
 | |
|                         patches_x += grid_x,             jc += 1) {
 | |
|                     slice_coordinates slice;
 | |
|                     slice.x = patches_x;
 | |
|                     slice.y = patches_y;
 | |
|                     slice.size.width  = grid_x;
 | |
|                     slice.size.height = grid_y;
 | |
|                     res.slices.push_back(slice);
 | |
|                     // LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
 | |
|         std::vector<clip_image_u8_ptr> output;
 | |
| 
 | |
|         // resize to overview size
 | |
|         clip_image_u8_ptr resized_img(clip_image_u8_init());
 | |
|         image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
 | |
|         output.push_back(std::move(resized_img));
 | |
|         if (inst.slices.empty()) {
 | |
|             // no slices, just return the resized image
 | |
|             return output;
 | |
|         }
 | |
| 
 | |
|         // resize to refined size
 | |
|         clip_image_u8_ptr refined_img(clip_image_u8_init());
 | |
|         if (inst.padding_refined) {
 | |
|             image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
 | |
|         } else {
 | |
|             image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
 | |
|         }
 | |
| 
 | |
|         // create slices
 | |
|         for (const auto & slice : inst.slices) {
 | |
|             int x = slice.x;
 | |
|             int y = slice.y;
 | |
|             int w = slice.size.width;
 | |
|             int h = slice.size.height;
 | |
| 
 | |
|             clip_image_u8_ptr img_slice(clip_image_u8_init());
 | |
|             image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
 | |
|             output.push_back(std::move(img_slice));
 | |
|         }
 | |
| 
 | |
|         return output;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
 | |
|         int width  = original_size.width;
 | |
|         int height = original_size.height;
 | |
|         if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
 | |
|             float r = static_cast<float>(width) / height;
 | |
|             height  = static_cast<int>(scale_resolution / std::sqrt(r));
 | |
|             width   = static_cast<int>(height * r);
 | |
|         }
 | |
|         clip_image_size res;
 | |
|         res.width  = ensure_divide(width,  patch_size);
 | |
|         res.height = ensure_divide(height, patch_size);
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Selects the best resolution from a list of possible resolutions based on the original size.
 | |
|      *
 | |
|      * @param original_size The original size of the image
 | |
|      * @param possible_resolutions A list of possible resolutions
 | |
|      * @return The best fit resolution
 | |
|      */
 | |
|     static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
 | |
|         int original_width = original_size.width;
 | |
|         int original_height = original_size.height;
 | |
|         clip_image_size best_fit;
 | |
|         int max_effective_resolution = 0;
 | |
|         int min_wasted_resolution = std::numeric_limits<int>::max();
 | |
| 
 | |
|         for (const auto & resolution : possible_resolutions) {
 | |
|             int width  = resolution.width;
 | |
|             int height = resolution.height;
 | |
|             float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
 | |
|             int downscaled_width  = static_cast<int>(original_width * scale);
 | |
|             int downscaled_height = static_cast<int>(original_height * scale);
 | |
|             int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
 | |
|             int wasted_resolution = (width * height) - effective_resolution;
 | |
|             // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
 | |
|             if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
 | |
|                 max_effective_resolution = effective_resolution;
 | |
|                 min_wasted_resolution = wasted_resolution;
 | |
|                 best_fit = resolution;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return best_fit;
 | |
|     }
 | |
| 
 | |
|     // used by llava 1.6 with custom list of pinpoints
 | |
|     static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
 | |
|         std::vector<clip_image_size> possible_resolutions;
 | |
|         for (size_t i = 0; i < pinpoints.size(); i += 2) {
 | |
|             possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
 | |
|         }
 | |
|         return select_best_resolution(original_size, possible_resolutions);
 | |
|     }
 | |
| 
 | |
|     static int ensure_divide(int length, int patch_size) {
 | |
|         return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
 | |
|     }
 | |
| 
 | |
|     static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
 | |
|         int width  = original_size.width;
 | |
|         int height = original_size.height;
 | |
|         int grid_x = grid.width;
 | |
|         int grid_y = grid.height;
 | |
| 
 | |
|         int refine_width  = ensure_divide(width, grid_x);
 | |
|         int refine_height = ensure_divide(height, grid_y);
 | |
| 
 | |
|         clip_image_size grid_size;
 | |
|         grid_size.width  = refine_width  / grid_x;
 | |
|         grid_size.height = refine_height / grid_y;
 | |
| 
 | |
|         auto best_grid_size  = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
 | |
|         int best_grid_width  = best_grid_size.width;
 | |
|         int best_grid_height = best_grid_size.height;
 | |
| 
 | |
|         clip_image_size refine_size;
 | |
|         refine_size.width  = best_grid_width  * grid_x;
 | |
|         refine_size.height = best_grid_height * grid_y;
 | |
|         return refine_size;
 | |
|     }
 | |
| 
 | |
|     static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
 | |
|         std::vector<int> candidate_split_grids_nums;
 | |
|         for (int i : {multiple - 1, multiple, multiple + 1}) {
 | |
|             if (i == 1 || i > max_slice_nums) {
 | |
|                 continue;
 | |
|             }
 | |
|             candidate_split_grids_nums.push_back(i);
 | |
|         }
 | |
| 
 | |
|         std::vector<clip_image_size> candidate_grids;
 | |
|         for (int split_grids_nums : candidate_split_grids_nums) {
 | |
|             int m = 1;
 | |
|             while (m <= split_grids_nums) {
 | |
|                 if (split_grids_nums % m == 0) {
 | |
|                     candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
 | |
|                 }
 | |
|                 ++m;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         clip_image_size best_grid{1, 1};
 | |
|         float min_error = std::numeric_limits<float>::infinity();
 | |
|         for (const auto& grid : candidate_grids) {
 | |
|             float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
 | |
|             if (error < min_error) {
 | |
|                 best_grid = grid;
 | |
|                 min_error = error;
 | |
|             }
 | |
|         }
 | |
|         return best_grid;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // TODO @ngxson : decprecate the load_image_size singleton pattern
 | |
| int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
 | |
|     const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
 | |
|     return inst.grid_size.width;
 | |
| }
 | |
| 
 | |
| // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
 | |
| // res_imgs memory is being allocated here, previous allocations will be freed if found
 | |
| bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
 | |
|     clip_image_size original_size{img->nx, img->ny};
 | |
|     bool pad_to_square = true;
 | |
|     auto & params = ctx->vision_model.hparams;
 | |
|     // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
 | |
|     if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
 | |
|         pad_to_square = false;
 | |
|     }
 | |
| 
 | |
|     if (clip_is_minicpmv(ctx)) {
 | |
|         auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
 | |
|         std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
 | |
| 
 | |
|         for (size_t i = 0; i < imgs.size(); ++i) {
 | |
|             // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
 | |
|             clip_image_f32_ptr res(clip_image_f32_init());
 | |
|             normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
 | |
|             res_imgs->entries.push_back(std::move(res));
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
 | |
|         clip_image_u8 resized;
 | |
|         auto patch_size = clip_get_patch_size(ctx) * 2;
 | |
|         int nx = ceil((float)img->nx / patch_size) * patch_size;
 | |
|         int ny = ceil((float)img->ny / patch_size) * patch_size;
 | |
|         image_manipulation::bicubic_resize(*img, resized, nx, ny);
 | |
| 
 | |
|         clip_image_f32_ptr img_f32(clip_image_f32_init());
 | |
|         // clip_image_f32_ptr res(clip_image_f32_init());
 | |
|         normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
 | |
|         // res_imgs->data[0] = *res;
 | |
|         res_imgs->entries.push_back(std::move(img_f32));
 | |
|         return true;
 | |
|     }
 | |
|     else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE
 | |
|             || ctx->proj_type == PROJECTOR_TYPE_GEMMA3
 | |
|             || ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
 | |
|         clip_image_u8 resized_image;
 | |
|         int sz = params.image_size;
 | |
|         image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
 | |
|         clip_image_f32_ptr img_f32(clip_image_f32_init());
 | |
|         //clip_image_save_to_bmp(resized_image, "resized.bmp");
 | |
|         normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
 | |
|         res_imgs->entries.push_back(std::move(img_f32));
 | |
|         return true;
 | |
|     }
 | |
|     else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
 | |
|         clip_image_u8 resized_image;
 | |
|         auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
 | |
|         image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
 | |
|         clip_image_f32_ptr img_f32(clip_image_f32_init());
 | |
|         normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
 | |
|         res_imgs->entries.push_back(std::move(img_f32));
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
 | |
|     // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
 | |
| 
 | |
|     clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
 | |
| 
 | |
|     if (pad_to_square) {
 | |
|         // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
 | |
|         // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
 | |
|         const int longer_side = std::max(img->nx, img->ny);
 | |
|         temp->nx = longer_side;
 | |
|         temp->ny = longer_side;
 | |
|         temp->buf.resize(3 * longer_side * longer_side);
 | |
| 
 | |
|         // background color in RGB from LLaVA (this is the mean rgb color * 255)
 | |
|         const std::array<uint8_t, 3> pad_color = {122, 116, 104};
 | |
| 
 | |
|         // resize the image to the target_size
 | |
|         image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
 | |
| 
 | |
|         clip_image_f32_ptr res(clip_image_f32_init());
 | |
|         normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
 | |
|         res_imgs->entries.push_back(std::move(res));
 | |
|         return true;
 | |
| 
 | |
|     } else if (!params.image_grid_pinpoints.empty()) {
 | |
|         // "spatial_unpad" with "anyres" processing for llava-1.6
 | |
|         auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
 | |
|         std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
 | |
| 
 | |
|         for (size_t i = 0; i < imgs.size(); ++i) {
 | |
|             // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
 | |
|             clip_image_f32_ptr res(clip_image_f32_init());
 | |
|             normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
 | |
|             res_imgs->entries.push_back(std::move(res));
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(false && "Unknown image preprocessing type");
 | |
| }
 | |
| 
 | |
| ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
 | |
|     return ctx->vision_model.image_newline;
 | |
| }
 | |
| 
 | |
| void clip_free(clip_ctx * ctx) {
 | |
|     if (ctx == nullptr) {
 | |
|         return;
 | |
|     }
 | |
|     delete ctx;
 | |
| }
 | |
| 
 | |
| size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
 | |
|     return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
 | |
| }
 | |
| 
 | |
| size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
 | |
|     clip_image_f32 img;
 | |
|     img.nx = img_w;
 | |
|     img.ny = img_h;
 | |
|     return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
 | |
| }
 | |
| 
 | |
| int32_t clip_get_image_size(const struct clip_ctx * ctx) {
 | |
|     return ctx->vision_model.hparams.image_size;
 | |
| }
 | |
| 
 | |
| int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
 | |
|     return ctx->vision_model.hparams.patch_size;
 | |
| }
 | |
| 
 | |
| int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
 | |
|     return ctx->vision_model.hparams.hidden_size;
 | |
| }
 | |
| 
 | |
| const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
 | |
|     return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
 | |
| }
 | |
| 
 | |
| const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
 | |
|     if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
 | |
|         return &ctx->vision_model.hparams.image_grid_pinpoints.front();
 | |
|     }
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
 | |
|     return ctx->vision_model.hparams.image_grid_pinpoints.size();
 | |
| }
 | |
| 
 | |
| int clip_n_patches(const struct clip_ctx * ctx) {
 | |
|     clip_image_f32 img;
 | |
|     img.nx = ctx->vision_model.hparams.image_size;
 | |
|     img.ny = ctx->vision_model.hparams.image_size;
 | |
|     return clip_n_patches_by_img(ctx, &img);
 | |
| }
 | |
| 
 | |
| int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
 | |
|     const auto & params = ctx->vision_model.hparams;
 | |
| 
 | |
|     int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
 | |
| 
 | |
|     if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
 | |
|         n_patches /= 4;
 | |
|     } else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
 | |
|         if (ctx->minicpmv_version == 2) {
 | |
|             n_patches = 96;
 | |
|         }
 | |
|         else if (ctx->minicpmv_version == 3) {
 | |
|             n_patches = 64;
 | |
|         }
 | |
|         else if (ctx->minicpmv_version == 4) {
 | |
|             n_patches = 64;
 | |
|         }
 | |
|         else {
 | |
|             GGML_ABORT("Unknown minicpmv version");
 | |
|         }
 | |
|     } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
 | |
|         int patch_size = params.patch_size * 2;
 | |
|         int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
 | |
|         int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
 | |
|         n_patches = x_patch * y_patch;
 | |
|     } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
 | |
|         n_patches = 256;
 | |
|     } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
 | |
|         n_patches /= ctx->vision_model.hparams.proj_scale_factor;
 | |
|     } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
 | |
|         int n_patches_x = img->nx / params.patch_size;
 | |
|         int n_patches_y = img->ny / params.patch_size;
 | |
|         n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
 | |
|     }
 | |
| 
 | |
|     return n_patches;
 | |
| }
 | |
| 
 | |
| static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
 | |
|     assert(embed_dim % 2 == 0);
 | |
|     int H = pos.size();
 | |
|     int W = pos[0].size();
 | |
| 
 | |
|     std::vector<float> omega(embed_dim / 2);
 | |
|     for (int i = 0; i < embed_dim / 2; ++i) {
 | |
|         omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
 | |
|     }
 | |
| 
 | |
|     std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
 | |
|     for (int h = 0; h < H; ++h) {
 | |
|         for (int w = 0; w < W; ++w) {
 | |
|             for (int d = 0; d < embed_dim / 2; ++d) {
 | |
|                 float out_value = pos[h][w] * omega[d];
 | |
|                 emb[h][w][d] = sin(out_value);
 | |
|                 emb[h][w][d + embed_dim / 2] = cos(out_value);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return emb;
 | |
| }
 | |
| 
 | |
| static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
 | |
|     assert(embed_dim % 2 == 0);
 | |
|     std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
 | |
|     std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
 | |
| 
 | |
|     int H = emb_h.size();
 | |
|     int W = emb_h[0].size();
 | |
|     std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
 | |
| 
 | |
|     for (int h = 0; h < H; ++h) {
 | |
|         for (int w = 0; w < W; ++w) {
 | |
|             for (int d = 0; d < embed_dim / 2; ++d) {
 | |
|                 emb[h][w][d] = emb_h[h][w][d];
 | |
|                 emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return emb;
 | |
| }
 | |
| 
 | |
| static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
 | |
|     int grid_h_size = image_size.first;
 | |
|     int grid_w_size = image_size.second;
 | |
| 
 | |
|     std::vector<float> grid_h(grid_h_size);
 | |
|     std::vector<float> grid_w(grid_w_size);
 | |
| 
 | |
|     for (int i = 0; i < grid_h_size; ++i) {
 | |
|         grid_h[i] = static_cast<float>(i);
 | |
|     }
 | |
|     for (int i = 0; i < grid_w_size; ++i) {
 | |
|         grid_w[i] = static_cast<float>(i);
 | |
|     }
 | |
| 
 | |
|     std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
 | |
|     for (int h = 0; h < grid_h_size; ++h) {
 | |
|         for (int w = 0; w < grid_w_size; ++w) {
 | |
|             grid[h][w] = grid_w[w];
 | |
|         }
 | |
|     }
 | |
|     std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
 | |
|     for (int h = 0; h < grid_h_size; ++h) {
 | |
|         for (int w = 0; w < grid_w_size; ++w) {
 | |
|             grid_2d[0][h][w] = grid_h[h];
 | |
|             grid_2d[1][h][w] = grid_w[w];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
 | |
| 
 | |
|     int H = image_size.first;
 | |
|     int W = image_size.second;
 | |
|     std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
 | |
|     for (int h = 0; h < H; ++h) {
 | |
|         for (int w = 0; w < W; ++w) {
 | |
|             pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return pos_embed_2d;
 | |
| }
 | |
| 
 | |
| bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
 | |
|     clip_image_f32_batch imgs;
 | |
|     clip_image_f32_ptr img_copy(clip_image_f32_init());
 | |
|     *img_copy = *img;
 | |
|     imgs.entries.push_back(std::move(img_copy));
 | |
| 
 | |
|     return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
 | |
| }
 | |
| 
 | |
| bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
 | |
|     const clip_image_f32_batch & imgs = *imgs_c_ptr;
 | |
|     int batch_size = imgs.entries.size();
 | |
| 
 | |
|     if (ctx->has_llava_projector
 | |
|             || ctx->proj_type == PROJECTOR_TYPE_MINICPMV
 | |
|             || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
 | |
|         GGML_ASSERT(batch_size == 1);
 | |
|     }
 | |
| 
 | |
|     // build the inference graph
 | |
|     ggml_backend_sched_reset(ctx->sched.get());
 | |
|     ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
 | |
|     ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
 | |
| 
 | |
|     // set inputs
 | |
|     const auto & model   = ctx->vision_model;
 | |
|     const auto & hparams = model.hparams;
 | |
| 
 | |
|     const int image_size_width  = imgs.entries[0]->nx;
 | |
|     const int image_size_height = imgs.entries[0]->ny;
 | |
| 
 | |
|     const int patch_size    = hparams.patch_size;
 | |
|     const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
 | |
|     const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
 | |
|     const int pos_w = ctx->load_image_size.width / patch_size;
 | |
|     const int pos_h = ctx->load_image_size.height / patch_size;
 | |
| 
 | |
|     {
 | |
|         struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
 | |
|         std::vector<float> inp_data(ggml_nelements(inp_raw));
 | |
|         float * data = inp_data.data();
 | |
| 
 | |
|         // layout of data (note: the channel dim is unrolled to better visualize the layout):
 | |
|         //
 | |
|         // ┌──W──┐
 | |
|         // │     H │  channel = R
 | |
|         // ├─────┤ │
 | |
|         // │     H │  channel = G
 | |
|         // ├─────┤ │
 | |
|         // │     H │  channel = B
 | |
|         // └─────┘ │
 | |
|         //   ──────┘ x B
 | |
| 
 | |
|         for (size_t i = 0; i < imgs.entries.size(); i++) {
 | |
|             const int nx = imgs.entries[i]->nx;
 | |
|             const int ny = imgs.entries[i]->ny;
 | |
|             const int n = nx * ny;
 | |
| 
 | |
|             for (int b = 0; b < batch_size; b++) {
 | |
|                 float * batch_entry = data + b * (3*n);
 | |
|                 for (int y = 0; y < ny; y++) {
 | |
|                     for (int x = 0; x < nx; x++) {
 | |
|                         size_t base_src = 3*(y * nx + x); // idx of the first channel
 | |
|                         size_t base_dst =    y * nx + x;  // idx of the first channel
 | |
|                         batch_entry[      base_dst] = imgs.entries[b]->buf[base_src    ];
 | |
|                         batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
 | |
|                         batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
 | |
|     }
 | |
| 
 | |
|     if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
 | |
|         {
 | |
|             // inspired from siglip:
 | |
|             //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
 | |
|             //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
 | |
|             struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
 | |
|             std::vector<int> pos_data(ggml_nelements(positions));
 | |
|             int * data = pos_data.data();
 | |
|             int bucket_coords_h[1024];
 | |
|             int bucket_coords_w[1024];
 | |
|             for (int i = 0; i < pos_h; i++){
 | |
|                 bucket_coords_h[i] = std::floor(70.0*i/pos_h);
 | |
|             }
 | |
|             for (int i = 0; i < pos_w; i++){
 | |
|                 bucket_coords_w[i] = std::floor(70.0*i/pos_w);
 | |
|             }
 | |
|             for (int i = 0, id = 0; i < pos_h; i++){
 | |
|                 for (int j = 0; j < pos_w; j++){
 | |
|                     data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
 | |
|                 }
 | |
|             }
 | |
|             ggml_backend_tensor_set(positions, data, 0, ggml_nbytes(positions));
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             // inspired from resampler of Qwen-VL:
 | |
|             //    -> https://huggingface.co/Qwen/Qwen-VL/tree/main
 | |
|             //    -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
 | |
|             struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
 | |
|             int embed_dim = 4096;
 | |
|             if (ctx->minicpmv_version == 2) {
 | |
|                 embed_dim = 4096;
 | |
|             }
 | |
|             else if (ctx->minicpmv_version == 3) {
 | |
|                 embed_dim = 3584;
 | |
|             }
 | |
|             else if (ctx->minicpmv_version == 4) {
 | |
|                 embed_dim = 3584;
 | |
|             }
 | |
|             else {
 | |
|                 GGML_ABORT("Unknown minicpmv version");
 | |
|             }
 | |
| 
 | |
|             // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
 | |
|             auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
 | |
| 
 | |
|             std::vector<float> pos_data(ggml_nelements(pos_embed));
 | |
|             float * data = pos_data.data();
 | |
|             for(int i = 0; i < pos_w * pos_h; ++i){
 | |
|                 for(int j = 0; j < embed_dim; ++j){
 | |
|                     data[i * embed_dim + j] = pos_embed_t[i][j];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             ggml_backend_tensor_set(pos_embed, data, 0, ggml_nbytes(pos_embed));
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         // non-minicpmv models
 | |
| 
 | |
|         if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL) {
 | |
|             struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
 | |
| 
 | |
|             const int pw = image_size_width / patch_size;
 | |
|             const int ph = image_size_height / patch_size;
 | |
|             int* positions_data = (int*)malloc(ggml_nbytes(positions));
 | |
| 
 | |
|             int ptr = 0;
 | |
|             for (int y = 0; y < ph; y+=2)
 | |
|             {
 | |
|                 for (int x = 0; x < pw; x+=2)
 | |
|                 {
 | |
|                     for (int dy = 0; dy < 2; dy++) {
 | |
|                         for (int dx = 0; dx < 2; dx++) {
 | |
|                             positions_data[ptr]                 = y + dy;
 | |
|                             positions_data[num_patches + ptr]     = x + dx;
 | |
|                             positions_data[num_patches * 2 + ptr] = y + dy;
 | |
|                             positions_data[num_patches * 3 + ptr] = x + dx;
 | |
|                             ptr++;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
 | |
|             free(positions_data);
 | |
|         }
 | |
|         else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
 | |
|             // do nothing
 | |
|         }
 | |
|         else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
 | |
|             // do nothing
 | |
|         }
 | |
|         else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
 | |
|             // set the 2D positions
 | |
|             int n_patches_per_col = image_size_width / patch_size;
 | |
|             std::vector<int> pos_data(num_positions);
 | |
|             struct ggml_tensor * pos;
 | |
|             // dimension H
 | |
|             pos = ggml_graph_get_tensor(gf, "pos_h");
 | |
|             for (int i = 0; i < num_positions; i++) {
 | |
|                 pos_data[i] = i / n_patches_per_col;
 | |
|             }
 | |
|             ggml_backend_tensor_set(pos, pos_data.data(), 0, ggml_nbytes(pos));
 | |
|             // dimension W
 | |
|             pos = ggml_graph_get_tensor(gf, "pos_w");
 | |
|             for (int i = 0; i < num_positions; i++) {
 | |
|                 pos_data[i] = i % n_patches_per_col;
 | |
|             }
 | |
|             ggml_backend_tensor_set(pos, pos_data.data(), 0, ggml_nbytes(pos));
 | |
|         }
 | |
|         else {
 | |
|             // llava and other models
 | |
|             struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
 | |
| 
 | |
|             int* positions_data = (int*)malloc(ggml_nbytes(positions));
 | |
|             for (int i = 0; i < num_positions; i++) {
 | |
|                 positions_data[i] = i;
 | |
|             }
 | |
|             ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
 | |
|             free(positions_data);
 | |
| 
 | |
|             if (ctx->proj_type != PROJECTOR_TYPE_GLM_EDGE) {
 | |
|                 struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
 | |
|                 // The patches vector is used to get rows to index into the embeds with;
 | |
|                 // we should skip dim 0 only if we have CLS to avoid going out of bounds
 | |
|                 // when retrieving the rows.
 | |
|                 int patch_offset = model.class_embedding ? 1 : 0;
 | |
|                 int* patches_data = (int*)malloc(ggml_nbytes(patches));
 | |
|                 for (int i = 0; i < num_patches; i++) {
 | |
|                     patches_data[i] = i + patch_offset;
 | |
|                 }
 | |
|                 ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
 | |
|                 free(patches_data);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
 | |
| 
 | |
|     auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
 | |
|     if (status != GGML_STATUS_SUCCESS) {
 | |
|         LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // the last node is the embedding tensor
 | |
|     struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
 | |
| 
 | |
|     // copy the embeddings to the location passed by the user
 | |
|     ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
 | |
|     assert(itype < GGML_TYPE_COUNT);
 | |
|     ggml_type type = static_cast<ggml_type>(itype);
 | |
| 
 | |
|     auto * ctx_clip = clip_init(fname_inp, clip_context_params{
 | |
|         /* use_gpu */   false,
 | |
|         /* verbosity */ GGML_LOG_LEVEL_ERROR,
 | |
|     });
 | |
| 
 | |
|     const auto & ctx_src = ctx_clip->ctx_gguf.get();
 | |
|     const auto & ctx_data = ctx_clip->ctx_data.get();
 | |
| 
 | |
|     auto * ctx_out = gguf_init_empty();
 | |
|     gguf_set_kv(ctx_out, ctx_src);
 | |
|     gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
 | |
|     gguf_set_val_u32(ctx_out, "general.file_type", itype);
 | |
| 
 | |
|     auto fout = std::ofstream(fname_out, std::ios::binary);
 | |
| 
 | |
|     const int n_tensors = gguf_get_n_tensors(ctx_src);
 | |
| 
 | |
|     for (int i = 0; i < n_tensors; ++i) {
 | |
|         const char * name = gguf_get_tensor_name(ctx_src, i);
 | |
|         struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
 | |
|         gguf_add_tensor(ctx_out, cur);
 | |
|     }
 | |
| 
 | |
|     const size_t meta_size = gguf_get_meta_size(ctx_out);
 | |
|     for (size_t i = 0; i < meta_size; ++i) {
 | |
|         fout.put(0);
 | |
|     }
 | |
| 
 | |
|     // regexes of tensor names to be quantized
 | |
|     const std::vector<std::string> k_names = {
 | |
|         ".*weight",
 | |
|     };
 | |
| 
 | |
|     std::vector<uint8_t> work(512);
 | |
|     std::vector<float> conv_buf(512);
 | |
|     size_t total_size_org = 0;
 | |
|     size_t total_size_new = 0;
 | |
| 
 | |
|     for (int i = 0; i < n_tensors; ++i) {
 | |
|         const std::string name = gguf_get_tensor_name(ctx_src, i);
 | |
|         struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
 | |
| 
 | |
|         enum ggml_type new_type;
 | |
|         void * new_data;
 | |
|         size_t new_size;
 | |
| 
 | |
|         bool quantize = false;
 | |
|         for (const auto & s : k_names) {
 | |
|             if (std::regex_match(name, std::regex(s))) {
 | |
|                 quantize = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // quantize only 2D tensors and bigger than block size
 | |
|         quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
 | |
| 
 | |
|         if (quantize) {
 | |
|             new_type = type;
 | |
|             if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
 | |
|                 new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
 | |
|                 // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
 | |
|             }
 | |
|             const size_t n_elms = ggml_nelements(cur);
 | |
|             float * f32_data;
 | |
| 
 | |
|             switch (cur->type) {
 | |
|             case GGML_TYPE_F32:
 | |
|                 f32_data = (float *)cur->data;
 | |
|                 break;
 | |
|             case GGML_TYPE_F16:
 | |
|                 if (conv_buf.size() < n_elms) {
 | |
|                     conv_buf.resize(n_elms);
 | |
|                 }
 | |
|                 for (size_t j = 0; j < n_elms; ++j) {
 | |
|                     conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
 | |
|                 }
 | |
|                 f32_data = (float *)conv_buf.data();
 | |
|                 break;
 | |
|             default:
 | |
|                 LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__);
 | |
|                 gguf_free(ctx_out);
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             if (work.size() < n_elms * 4) {
 | |
|                 work.resize(n_elms * 4);
 | |
|             }
 | |
|             new_data = work.data();
 | |
| 
 | |
|             new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
 | |
|         } else {
 | |
|             new_type = cur->type;
 | |
|             new_data = cur->data;
 | |
|             new_size = ggml_nbytes(cur);
 | |
|         }
 | |
|         const size_t orig_size = ggml_nbytes(cur);
 | |
|         total_size_org += orig_size;
 | |
|         total_size_new += new_size;
 | |
|         gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
 | |
|         GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
 | |
|         gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
 | |
|         fout.write((const char *)new_data, new_size);
 | |
|         size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
 | |
|         for (size_t j = 0; j < pad; ++j) {
 | |
|             fout.put(0);
 | |
|         }
 | |
| 
 | |
|         LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
 | |
|                orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
 | |
|     }
 | |
| 
 | |
|     // go back to beginning of file and write the updated metadata
 | |
|     fout.seekp(0, std::ios::beg);
 | |
|     std::vector<uint8_t> meta(meta_size);
 | |
|     gguf_get_meta_data(ctx_out, meta.data());
 | |
|     fout.write((const char *)meta.data(), meta_size);
 | |
| 
 | |
|     fout.close();
 | |
| 
 | |
|     clip_free(ctx_clip);
 | |
|     gguf_free(ctx_out);
 | |
| 
 | |
|     {
 | |
|         LOG_INF("%s: original  size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
 | |
|         LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
 | |
|     switch (ctx->proj_type) {
 | |
|         case PROJECTOR_TYPE_LDP:
 | |
|             return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
 | |
|         case PROJECTOR_TYPE_LDPV2:
 | |
|             return ctx->vision_model.mm_model_peg_0_b->ne[0];
 | |
|         case PROJECTOR_TYPE_MLP:
 | |
|         case PROJECTOR_TYPE_PIXTRAL:
 | |
|             return ctx->vision_model.mm_2_b->ne[0];
 | |
|         case PROJECTOR_TYPE_MLP_NORM:
 | |
|             return ctx->vision_model.mm_3_b->ne[0];
 | |
|         case PROJECTOR_TYPE_MINICPMV:
 | |
|             if (ctx->minicpmv_version == 2) {
 | |
|                 return 4096;
 | |
|             } else if (ctx->minicpmv_version == 3) {
 | |
|                 return 3584;
 | |
|             } else if (ctx->minicpmv_version == 4) {
 | |
|                 return 3584;
 | |
|             }
 | |
|             GGML_ABORT("Unknown minicpmv version");
 | |
|         case PROJECTOR_TYPE_GLM_EDGE:
 | |
|             return ctx->vision_model.mm_model_mlp_3_w->ne[1];
 | |
|         case PROJECTOR_TYPE_QWEN2VL:
 | |
|             return ctx->vision_model.mm_1_b->ne[0];
 | |
|         case PROJECTOR_TYPE_GEMMA3:
 | |
|             return ctx->vision_model.mm_input_proj_w->ne[0];
 | |
|         case PROJECTOR_TYPE_IDEFICS3:
 | |
|             return ctx->vision_model.projection->ne[1];
 | |
|         default:
 | |
|             GGML_ABORT("Unknown projector type");
 | |
|     }
 | |
| }
 | |
| 
 | |
| int clip_is_minicpmv(const struct clip_ctx * ctx) {
 | |
|     if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
 | |
|         return ctx->minicpmv_version;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool clip_is_glm(const struct clip_ctx * ctx) {
 | |
|     return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE;
 | |
| }
 | |
| 
 | |
| bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
 | |
|     return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL;
 | |
| }
 | |
| 
 | |
| bool clip_is_llava(const struct clip_ctx * ctx) {
 | |
|     return ctx->has_llava_projector;
 | |
| }
 | |
| 
 | |
| bool clip_is_gemma3(const struct clip_ctx * ctx) {
 | |
|     return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
 | |
| }
 | |
| 
 | |
| bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
 | |
|     clip_image_f32 clip_img;
 | |
|     clip_img.buf.resize(h * w * 3);
 | |
|     for (int i = 0; i < h*w*3; i++)
 | |
|     {
 | |
|         clip_img.buf[i] = img[i];
 | |
|     }
 | |
|     clip_img.nx = w;
 | |
|     clip_img.ny = h;
 | |
|     clip_image_encode(ctx, n_threads, &clip_img, vec);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // API used internally with mtmd
 | |
| //
 | |
| 
 | |
| projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
 | |
|     return ctx->proj_type;
 | |
| }
 |