mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 deb7dfca4b
			
		
	
	deb7dfca4b
	
	
	
		
			
			* llama : add ftype meta info to the model ggml-ci * convert.py : add ftype when converting (does not work) * convert.py : fix Enum to IntEnum ggml-ci
		
			
				
	
	
		
			723 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			723 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import shutil
 | |
| import sys
 | |
| import struct
 | |
| import tempfile
 | |
| import numpy as np
 | |
| 
 | |
| from enum import IntEnum, auto
 | |
| from typing import Any, IO, List, Optional
 | |
| 
 | |
| #
 | |
| # constants
 | |
| #
 | |
| 
 | |
| GGUF_MAGIC             = 0x46554747
 | |
| GGUF_VERSION           = 1
 | |
| GGUF_DEFAULT_ALIGNMENT = 32
 | |
| 
 | |
| # general
 | |
| KEY_GENERAL_ARCHITECTURE         = "general.architecture"
 | |
| KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
 | |
| KEY_GENERAL_ALIGNMENT            = "general.alignment"
 | |
| KEY_GENERAL_NAME                 = "general.name"
 | |
| KEY_GENERAL_AUTHOR               = "general.author"
 | |
| KEY_GENERAL_URL                  = "general.url"
 | |
| KEY_GENERAL_DESCRIPTION          = "general.description"
 | |
| KEY_GENERAL_LICENSE              = "general.license"
 | |
| KEY_GENERAL_SOURCE_URL           = "general.source.url"
 | |
| KEY_GENERAL_SOURCE_HF_REPO       = "general.source.hugginface.repository"
 | |
| KEY_GENERAL_FILE_TYPE            = "general.file_type"
 | |
| 
 | |
| # LLM
 | |
| KEY_LLM_CONTEXT_LENGTH        = "{arch}.context_length"
 | |
| KEY_LLM_EMBEDDING_LENGTH      = "{arch}.embedding_length"
 | |
| KEY_LLM_BLOCK_COUNT           = "{arch}.block_count"
 | |
| KEY_LLM_FEED_FORWARD_LENGTH   = "{arch}.feed_forward_length"
 | |
| KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
 | |
| KEY_LLM_TENSOR_DATA_LAYOUT    = "{arch}.tensor_data_layout"
 | |
| 
 | |
| # attention
 | |
| KEY_ATTENTION_HEAD_COUNT        = "{arch}.attention.head_count"
 | |
| KEY_ATTENTION_HEAD_COUNT_KV     = "{arch}.attention.head_count_kv"
 | |
| KEY_ATTENTION_MAX_ALIBI_BIAS    = "{arch}.attention.max_alibi_bias"
 | |
| KEY_ATTENTION_CLAMP_KQV         = "{arch}.attention.clamp_kqv"
 | |
| KEY_ATTENTION_LAYERNORM_EPS     = "{arch}.attention.layer_norm_epsilon"
 | |
| KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
 | |
| 
 | |
| # RoPE
 | |
| KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
 | |
| KEY_ROPE_SCALE_LINEAR    = "{arch}.rope.scale_linear"
 | |
| 
 | |
| # tokenization
 | |
| KEY_TOKENIZER_MODEL      = "tokenizer.ggml.model"
 | |
| KEY_TOKENIZER_LIST       = "tokenizer.ggml.tokens"
 | |
| KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
 | |
| KEY_TOKENIZER_SCORES     = "tokenizer.ggml.scores"
 | |
| KEY_TOKENIZER_MERGES     = "tokenizer.ggml.merges"
 | |
| KEY_TOKENIZER_BOS_ID     = "tokenizer.ggml.bos_token_id"
 | |
| KEY_TOKENIZER_EOS_ID     = "tokenizer.ggml.eos_token_id"
 | |
| KEY_TOKENIZER_UNK_ID     = "tokenizer.ggml.unknown_token_id"
 | |
| KEY_TOKENIZER_SEP_ID     = "tokenizer.ggml.seperator_token_id"
 | |
| KEY_TOKENIZER_PAD_ID     = "tokenizer.ggml.padding_token_id"
 | |
| KEY_TOKENIZER_HF_JSON    = "tokenizer.huggingface.json"
 | |
| KEY_TOKENIZER_RWKV       = "tokenizer.rwkv.world"
 | |
| 
 | |
| 
 | |
| #
 | |
| # recommended mapping of model tensor names for storage in gguf
 | |
| #
 | |
| 
 | |
| 
 | |
| class MODEL_ARCH(IntEnum):
 | |
|     LLAMA   = auto()
 | |
|     FALCON  = auto()
 | |
|     GPT2    = auto()
 | |
|     GPTJ    = auto()
 | |
|     GPTNEOX = auto()
 | |
|     MPT     = auto()
 | |
| 
 | |
| 
 | |
| class MODEL_TENSOR(IntEnum):
 | |
|     TOKEN_EMBD    = auto()
 | |
|     POS_EMBD      = auto()
 | |
|     OUTPUT        = auto()
 | |
|     OUTPUT_NORM   = auto()
 | |
|     ROPE_FREQS    = auto()
 | |
|     ATTN_Q        = auto()
 | |
|     ATTN_K        = auto()
 | |
|     ATTN_V        = auto()
 | |
|     ATTN_QKV      = auto()
 | |
|     ATTN_OUT      = auto()
 | |
|     ATTN_NORM     = auto()
 | |
|     ATTN_NORM_2   = auto()
 | |
|     ATTN_ROT_EMBD = auto()
 | |
|     FFN_GATE      = auto()
 | |
|     FFN_DOWN      = auto()
 | |
|     FFN_UP        = auto()
 | |
|     FFN_NORM      = auto()
 | |
| 
 | |
| 
 | |
| MODEL_ARCH_NAMES = {
 | |
|     MODEL_ARCH.LLAMA:   "llama",
 | |
|     MODEL_ARCH.FALCON:  "falcon",
 | |
|     MODEL_ARCH.GPT2:    "gpt2",
 | |
|     MODEL_ARCH.GPTJ:    "gptj",
 | |
|     MODEL_ARCH.GPTNEOX: "gptneox",
 | |
|     MODEL_ARCH.MPT:     "mpt",
 | |
| }
 | |
| 
 | |
| MODEL_TENSOR_NAMES = {
 | |
|     MODEL_ARCH.LLAMA: {
 | |
|         MODEL_TENSOR.TOKEN_EMBD:    "token_embd",
 | |
|         MODEL_TENSOR.OUTPUT_NORM:   "output_norm",
 | |
|         MODEL_TENSOR.OUTPUT:        "output",
 | |
|         MODEL_TENSOR.ROPE_FREQS:    "rope_freqs",
 | |
|         MODEL_TENSOR.ATTN_NORM:     "blk.{bid}.attn_norm",
 | |
|         MODEL_TENSOR.ATTN_Q:        "blk.{bid}.attn_q",
 | |
|         MODEL_TENSOR.ATTN_K:        "blk.{bid}.attn_k",
 | |
|         MODEL_TENSOR.ATTN_V:        "blk.{bid}.attn_v",
 | |
|         MODEL_TENSOR.ATTN_OUT:      "blk.{bid}.attn_output",
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
 | |
|         MODEL_TENSOR.FFN_NORM:      "blk.{bid}.ffn_norm",
 | |
|         MODEL_TENSOR.FFN_GATE:      "blk.{bid}.ffn_gate",
 | |
|         MODEL_TENSOR.FFN_DOWN:      "blk.{bid}.ffn_down",
 | |
|         MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
 | |
|     },
 | |
|     MODEL_ARCH.GPTNEOX: {
 | |
|         MODEL_TENSOR.TOKEN_EMBD:    "token_embd",
 | |
|         MODEL_TENSOR.OUTPUT_NORM:   "output_norm",
 | |
|         MODEL_TENSOR.OUTPUT:        "output",
 | |
|         MODEL_TENSOR.ATTN_NORM:     "blk.{bid}.attn_norm",
 | |
|         MODEL_TENSOR.ATTN_QKV:      "blk.{bid}.attn_qkv",
 | |
|         MODEL_TENSOR.ATTN_OUT:      "blk.{bid}.attn_output",
 | |
|         MODEL_TENSOR.FFN_NORM:      "blk.{bid}.ffn_norm",
 | |
|         MODEL_TENSOR.FFN_DOWN:      "blk.{bid}.ffn_down",
 | |
|         MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
 | |
|     },
 | |
|     MODEL_ARCH.FALCON: {
 | |
|         MODEL_TENSOR.TOKEN_EMBD:  "token_embd",
 | |
|         MODEL_TENSOR.OUTPUT_NORM: "output_norm",
 | |
|         MODEL_TENSOR.OUTPUT:      "output",
 | |
|         MODEL_TENSOR.ATTN_NORM:   "blk.{bid}.attn_norm",
 | |
|         MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
 | |
|         MODEL_TENSOR.ATTN_QKV:    "blk.{bid}.attn_qkv",
 | |
|         MODEL_TENSOR.ATTN_OUT:    "blk.{bid}.attn_output",
 | |
|         MODEL_TENSOR.FFN_DOWN:    "blk.{bid}.ffn_down",
 | |
|         MODEL_TENSOR.FFN_UP:      "blk.{bid}.ffn_up",
 | |
|     },
 | |
|     MODEL_ARCH.GPT2: {
 | |
|         # TODO
 | |
|     },
 | |
|     # TODO
 | |
| }
 | |
| 
 | |
| # tensors that will not be serialized
 | |
| MODEL_TENSOR_SKIP = {
 | |
|     MODEL_ARCH.LLAMA: [
 | |
|         MODEL_TENSOR.ROPE_FREQS,
 | |
|         MODEL_TENSOR.ATTN_ROT_EMBD,
 | |
|     ],
 | |
| }
 | |
| 
 | |
| 
 | |
| # TODO: the following helper functions should be removed
 | |
| #       instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
 | |
| #       however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
 | |
| # REMOVE
 | |
| def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
 | |
|     for skip in MODEL_TENSOR_SKIP.get(arch, []):
 | |
|         for i in range(n_blocks):
 | |
|             if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
 | |
|                 return True
 | |
| 
 | |
|     return False
 | |
| 
 | |
| 
 | |
| def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
 | |
|     tensor_map = {}
 | |
| 
 | |
|     # Token embeddings
 | |
|     mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
 | |
| 
 | |
|     tensor_map["gpt_neox.embed_in"]           = mapped_to  # gptneox
 | |
|     tensor_map["transformer.wte"]             = mapped_to  # gpt2 mpt
 | |
|     tensor_map["transformer.word_embeddings"] = mapped_to  # falcon
 | |
|     tensor_map["model.embed_tokens"]          = mapped_to  # llama-hf
 | |
|     tensor_map["tok_embeddings"]              = mapped_to  # llama-pth
 | |
| 
 | |
|     # Position embeddings
 | |
|     mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
 | |
| 
 | |
|     tensor_map["transformer.wpe"] = mapped_to  # gpt2
 | |
| 
 | |
|     # Output
 | |
|     mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
 | |
| 
 | |
|     tensor_map["embed_out"] = mapped_to  # gptneox
 | |
|     tensor_map["lm_head"]   = mapped_to  # gpt2 mpt falcon llama-hf
 | |
|     tensor_map["output"]    = mapped_to  # llama-pth
 | |
| 
 | |
|     # Output norm
 | |
|     mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
 | |
| 
 | |
|     tensor_map["gpt_neox.final_layer_norm"] = mapped_to  # gptneox
 | |
|     tensor_map["transformer.ln_f"]          = mapped_to  # gpt2 falcon
 | |
|     tensor_map["transformer.norm_f"]        = mapped_to  # mpt
 | |
|     tensor_map["model.norm"]                = mapped_to  # llama-hf
 | |
|     tensor_map["norm"]                      = mapped_to  # llama-pth
 | |
| 
 | |
|     # Rope frequencies
 | |
|     mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
 | |
| 
 | |
|     tensor_map["rope.freqs"] = mapped_to  # llama-pth
 | |
| 
 | |
|     # Attention and feed-forward blocks
 | |
|     for i in range(0, n_blocks):
 | |
|         # Attention norm
 | |
|         # TODO: is there are simpler way to write these 2 lines in Python?
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to else None
 | |
| 
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to  # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".ln_1"]              = mapped_to  # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".norm_1"]       = mapped_to  # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".input_layernorm"]   = mapped_to  # falcon7b
 | |
|         tensor_map["transformer.h."+str(i)+".ln_mlp"]            = mapped_to  # falcon40b
 | |
|         tensor_map["model.layers."+str(i)+".input_layernorm"]    = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention_norm"]           = mapped_to  # llama-pth
 | |
| 
 | |
|         # Attention norm 2
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to  # falcon40b
 | |
| 
 | |
|         # Attention query-key-value
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"]    = mapped_to  # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".attn.c_attn"]                    = mapped_to  # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"]                 = mapped_to  # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to  # falcon
 | |
| 
 | |
|         # Attention query
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention.wq"]           = mapped_to  # llama-pth
 | |
| 
 | |
|         # Attention key
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention.wk"]           = mapped_to  # llama-pth
 | |
| 
 | |
|         # Attention value
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention.wv"]           = mapped_to  # llama-pth
 | |
| 
 | |
|         # Attention output
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".attention.dense"]    = mapped_to  # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".attn.c_proj"]          = mapped_to  # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".attn.out_proj"]   = mapped_to  # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to  # falcon
 | |
|         tensor_map["model.layers."+str(i)+".self_attn.o_proj"]      = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention.wo"]                = mapped_to  # llama-pth
 | |
| 
 | |
|         # Rotary embeddings
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"]  = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to  # llama-pth
 | |
| 
 | |
|         # Feed-forward norm
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to  # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".ln_2"]                       = mapped_to  # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".norm_2"]                = mapped_to  # mpt
 | |
|         tensor_map["model.layers."+str(i)+".post_attention_layernorm"]    = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".ffn_norm"]                          = mapped_to  # llama-pth
 | |
| 
 | |
|         # Feed-forward up
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to  # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".mlp.c_fc"]            = mapped_to  # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"]    = mapped_to  # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"]   = mapped_to  # falcon
 | |
|         tensor_map["model.layers."+str(i)+".mlp.up_proj"]          = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".feed_forward.w3"]            = mapped_to  # llama-pth
 | |
| 
 | |
|         # Feed-forward gate
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".feed_forward.w1"]     = mapped_to  # llama-pth
 | |
| 
 | |
|         # Feed-forward down
 | |
|         mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
 | |
|         mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
 | |
| 
 | |
|         tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to  # gptneox
 | |
|         tensor_map["transformer.h."+str(i)+".mlp.c_proj"]          = mapped_to  # gpt2
 | |
|         tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"]  = mapped_to  # mpt
 | |
|         tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"]   = mapped_to  # falcon
 | |
|         tensor_map["model.layers."+str(i)+".mlp.down_proj"]        = mapped_to  # llama-hf
 | |
|         tensor_map["layers."+str(i)+".feed_forward.w2"]            = mapped_to  # llama-pth
 | |
| 
 | |
|     return tensor_map
 | |
| 
 | |
| 
 | |
| class TokenType(IntEnum):
 | |
|     NORMAL       = 1
 | |
|     UNKNOWN      = 2
 | |
|     CONTROL      = 3
 | |
|     USER_DEFINED = 4
 | |
|     UNUSED       = 5
 | |
|     BYTE         = 6
 | |
| 
 | |
| #
 | |
| # implementation
 | |
| #
 | |
| 
 | |
| 
 | |
| class GGMLQuantizationType(IntEnum):
 | |
|     F32  = 0
 | |
|     F16  = 1
 | |
|     Q4_0 = 2
 | |
|     Q4_1 = 3
 | |
|     Q5_0 = 6
 | |
|     Q5_1 = 7
 | |
|     Q8_0 = 8
 | |
|     Q8_1 = 9
 | |
|     Q2_K = 10
 | |
|     Q3_K = 11
 | |
|     Q4_K = 12
 | |
|     Q5_K = 13
 | |
|     Q6_K = 14
 | |
|     Q8_K = 15
 | |
| 
 | |
| 
 | |
| class GGUFValueType(IntEnum):
 | |
|     UINT8   = 0
 | |
|     INT8    = 1
 | |
|     UINT16  = 2
 | |
|     INT16   = 3
 | |
|     UINT32  = 4
 | |
|     INT32   = 5
 | |
|     FLOAT32 = 6
 | |
|     BOOL    = 7
 | |
|     STRING  = 8
 | |
|     ARRAY   = 9
 | |
| 
 | |
|     @staticmethod
 | |
|     def get_type(val):
 | |
|         if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
 | |
|             return GGUFValueType.STRING
 | |
|         elif isinstance(val, list):
 | |
|             return GGUFValueType.ARRAY
 | |
|         elif isinstance(val, float):
 | |
|             return GGUFValueType.FLOAT32
 | |
|         elif isinstance(val, bool):
 | |
|             return GGUFValueType.BOOL
 | |
|         elif isinstance(val, int):
 | |
|             return GGUFValueType.INT32
 | |
|         else:
 | |
|             print("Unknown type: "+str(type(val)))
 | |
|             sys.exit()
 | |
| 
 | |
| 
 | |
| class GGUFWriter:
 | |
|     def __init__(self, path: str, arch: str, use_temp_file = True):
 | |
|         self.fout = open(path, "wb")
 | |
|         self.arch = arch
 | |
|         self.offset_tensor = 0
 | |
|         self.data_alignment = GGUF_DEFAULT_ALIGNMENT
 | |
|         self.kv_data = b""
 | |
|         self.kv_data_count = 0
 | |
|         self.ti_data = b""
 | |
|         self.ti_data_count = 0
 | |
|         self.add_architecture()
 | |
|         self.use_temp_file = use_temp_file
 | |
|         self.tensors = []
 | |
| 
 | |
|     def write_header_to_file(self):
 | |
|         self.fout.write(struct.pack("<I", GGUF_MAGIC))
 | |
|         self.fout.write(struct.pack("<I", GGUF_VERSION))
 | |
|         self.fout.write(struct.pack("<I", self.ti_data_count))
 | |
|         self.fout.write(struct.pack("<I", self.kv_data_count))
 | |
|         self.flush()
 | |
| #        print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
 | |
| 
 | |
|     def write_kv_data_to_file(self):
 | |
|         self.fout.write(self.kv_data)
 | |
|         self.flush()
 | |
| 
 | |
|     def write_ti_data_to_file(self):
 | |
|         self.fout.write(self.ti_data)
 | |
|         self.flush()
 | |
| 
 | |
|     def add_key(self, key: str):
 | |
|         self.add_val(key, GGUFValueType.STRING, add_vtype=False)
 | |
| 
 | |
|     def add_uint8(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT8)
 | |
| 
 | |
|     def add_int8(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT8)
 | |
| 
 | |
|     def add_uint16(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT16)
 | |
| 
 | |
|     def add_int16(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT16)
 | |
| 
 | |
|     def add_uint32(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.UINT32)
 | |
| 
 | |
|     def add_int32(self, key: str, val: int):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.INT32)
 | |
| 
 | |
|     def add_float32(self, key: str, val: float):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.FLOAT32)
 | |
| 
 | |
|     def add_bool(self, key: str, val: bool):
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.BOOL)
 | |
| 
 | |
|     def add_string(self, key: str, val: str):
 | |
|         if len(val) == 0:
 | |
|             return
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.STRING)
 | |
| 
 | |
|     def add_array(self, key: str, val: list):
 | |
|         if not isinstance(val, list):
 | |
|             raise ValueError("Value must be a list for array type")
 | |
| 
 | |
|         self.add_key(key)
 | |
|         self.add_val(val, GGUFValueType.ARRAY)
 | |
| 
 | |
|     def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True):
 | |
|         if vtype is None:
 | |
|             vtype = GGUFValueType.get_type(val)
 | |
| 
 | |
|         if add_vtype:
 | |
|             self.kv_data += struct.pack("<I", vtype)
 | |
|             self.kv_data_count += 1
 | |
| 
 | |
|         if vtype == GGUFValueType.UINT8:
 | |
|             self.kv_data += struct.pack("<B", val)
 | |
|         elif vtype == GGUFValueType.INT8:
 | |
|             self.kv_data += struct.pack("<b", val)
 | |
|         elif vtype == GGUFValueType.UINT16:
 | |
|             self.kv_data += struct.pack("<H", val)
 | |
|         elif vtype == GGUFValueType.INT16:
 | |
|             self.kv_data += struct.pack("<h", val)
 | |
|         elif vtype == GGUFValueType.UINT32:
 | |
|             self.kv_data += struct.pack("<I", val)
 | |
|         elif vtype == GGUFValueType.INT32:
 | |
|             self.kv_data += struct.pack("<i", val)
 | |
|         elif vtype == GGUFValueType.FLOAT32:
 | |
|             self.kv_data += struct.pack("<f", val)
 | |
|         elif vtype == GGUFValueType.BOOL:
 | |
|             self.kv_data += struct.pack("?", val)
 | |
|         elif vtype == GGUFValueType.STRING:
 | |
|             encoded_val = val.encode("utf8") if isinstance(val, str) else val
 | |
|             self.kv_data += struct.pack("<I", len(encoded_val))
 | |
|             self.kv_data += encoded_val
 | |
|         elif vtype == GGUFValueType.ARRAY:
 | |
|             ltype = set([GGUFValueType.get_type(item) for item in val])
 | |
|             assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
 | |
|             self.kv_data += struct.pack("<I", list(ltype)[0])
 | |
|             self.kv_data += struct.pack("<I", len(val))
 | |
|             for item in val:
 | |
|                 self.add_val(item, add_vtype=False)
 | |
|         else:
 | |
|             raise ValueError("Invalid GGUF metadata value type")
 | |
| 
 | |
|     @staticmethod
 | |
|     def ggml_pad(x: int, n: int) -> int:
 | |
|         return ((x + n - 1) // n) * n
 | |
| 
 | |
|     def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
 | |
|         assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
 | |
| 
 | |
|         encoded_name = name.encode("utf8")
 | |
|         self.ti_data += struct.pack("<I", len(encoded_name))
 | |
|         self.ti_data += encoded_name
 | |
|         n_dims = len(tensor_shape)
 | |
|         self.ti_data += struct.pack("<I", n_dims)
 | |
|         for i in range(n_dims):
 | |
|             self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i])
 | |
|         if raw_dtype is None:
 | |
|             dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
 | |
|         else:
 | |
|             dtype = raw_dtype
 | |
|         self.ti_data += struct.pack("<I", dtype)
 | |
|         self.ti_data += struct.pack("<Q", self.offset_tensor)
 | |
|         self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
 | |
|         self.ti_data_count += 1
 | |
| 
 | |
|     def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
 | |
|         if self.use_temp_file and not hasattr(self, "temp_file"):
 | |
|             self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
 | |
|             self.temp_file.seek(0)
 | |
| 
 | |
|         self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
 | |
| 
 | |
|         pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
 | |
| 
 | |
|         if not self.use_temp_file:
 | |
|             self.tensors.append((tensor, pad))
 | |
|             return
 | |
| 
 | |
|         tensor.tofile(self.temp_file)
 | |
| 
 | |
|         if pad != 0:
 | |
|             self.temp_file.write(bytes([0] * pad))
 | |
| 
 | |
|     def write_tensor_data(self, tensor: np.ndarray):
 | |
|         pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
 | |
|         if pad != 0:
 | |
|             self.fout.write(bytes([0] * pad))
 | |
| 
 | |
|         tensor.tofile(self.fout)
 | |
| 
 | |
|         pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
 | |
|         if pad != 0:
 | |
|             self.fout.write(bytes([0] * pad))
 | |
| 
 | |
|     def write_tensors_to_file(self):
 | |
|         self.write_ti_data_to_file()
 | |
| 
 | |
|         pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
 | |
|         if pad != 0:
 | |
|             self.fout.write(bytes([0] * pad))
 | |
| 
 | |
|         if not self.use_temp_file:
 | |
|             for (currtensor, currpad) in self.tensors:
 | |
|                 currtensor.tofile(self.fout)
 | |
|                 if currpad != 0:
 | |
|                     self.fout.write(bytes([0] * currpad))
 | |
|             return
 | |
| 
 | |
|         self.temp_file.seek(0)
 | |
| 
 | |
|         shutil.copyfileobj(self.temp_file, self.fout)
 | |
|         self.flush()
 | |
|         self.temp_file.close()
 | |
| 
 | |
|     def flush(self):
 | |
|         self.fout.flush()
 | |
| 
 | |
|     def close(self):
 | |
|         self.fout.close()
 | |
| 
 | |
|     def add_architecture(self):
 | |
|         self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
 | |
| 
 | |
|     def add_author(self, author: str):
 | |
|         self.add_string(KEY_GENERAL_AUTHOR, author)
 | |
| 
 | |
|     def add_tensor_data_layout(self, layout: str):
 | |
|         self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
 | |
| 
 | |
|     def add_url(self, url: str):
 | |
|         self.add_string(KEY_GENERAL_URL, url)
 | |
| 
 | |
|     def add_description(self, description: str):
 | |
|         self.add_string(KEY_GENERAL_DESCRIPTION, description)
 | |
| 
 | |
|     def add_source_url(self, url: str):
 | |
|         self.add_string(KEY_GENERAL_SOURCE_URL, url)
 | |
| 
 | |
|     def add_source_hf_repo(self, repo: str):
 | |
|         self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
 | |
| 
 | |
|     def add_file_type(self, ftype: int):
 | |
|         self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype)
 | |
| 
 | |
|     def add_name(self, name: str):
 | |
|         self.add_string(KEY_GENERAL_NAME, name)
 | |
| 
 | |
|     def add_quantization_version(self, quantization_version: GGMLQuantizationType):
 | |
|         self.add_uint32(
 | |
|             KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
 | |
| 
 | |
|     def add_custom_alignment(self, alignment: int):
 | |
|         self.data_alignment = alignment
 | |
|         self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
 | |
| 
 | |
|     def add_context_length(self, length: int):
 | |
|         self.add_uint32(
 | |
|             KEY_LLM_CONTEXT_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_embedding_length(self, length: int):
 | |
|         self.add_uint32(
 | |
|             KEY_LLM_EMBEDDING_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_block_count(self, length: int):
 | |
|         self.add_uint32(
 | |
|             KEY_LLM_BLOCK_COUNT.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_feed_forward_length(self, length: int):
 | |
|         self.add_uint32(
 | |
|             KEY_LLM_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
 | |
| 
 | |
|     def add_parallel_residual(self, use: bool):
 | |
|         self.add_bool(
 | |
|             KEY_LLM_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
 | |
| 
 | |
|     def add_tensor_data_layout(self, layout: str):
 | |
|         self.add_string(
 | |
|             KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
 | |
| 
 | |
|     def add_head_count(self, count: int):
 | |
|         self.add_uint32(
 | |
|             KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_head_count_kv(self, count: int):
 | |
|         self.add_uint32(
 | |
|             KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_max_alibi_bias(self, bias: float):
 | |
|         self.add_float32(
 | |
|             KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
 | |
| 
 | |
|     def add_clamp_kqv(self, value: float):
 | |
|         self.add_float32(
 | |
|             KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_layer_norm_eps(self, value: float):
 | |
|         self.add_float32(
 | |
|             KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_layer_norm_rms_eps(self, value: float):
 | |
|         self.add_float32(
 | |
|             KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_rope_dimension_count(self, count: int):
 | |
|         self.add_uint32(
 | |
|             KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
 | |
| 
 | |
|     def add_rope_scale_linear(self, value:  float):
 | |
|         self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
 | |
| 
 | |
|     def add_tokenizer_model(self, model: str):
 | |
|         self.add_string(KEY_TOKENIZER_MODEL, model)
 | |
| 
 | |
|     def add_token_list(self, tokens: List):
 | |
|         self.add_array(KEY_TOKENIZER_LIST, tokens)
 | |
| 
 | |
|     def add_token_merges(self, merges: List):
 | |
|         self.add_array(KEY_TOKENIZER_MERGES, merges)
 | |
| 
 | |
|     def add_token_types(self, types: List[int]):
 | |
|         self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
 | |
| 
 | |
|     def add_token_scores(self, scores: List[float]):
 | |
|         self.add_array(KEY_TOKENIZER_SCORES, scores)
 | |
| 
 | |
|     def add_bos_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
 | |
| 
 | |
|     def add_eos_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
 | |
| 
 | |
|     def add_unk_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
 | |
| 
 | |
|     def add_sep_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
 | |
| 
 | |
|     def add_pad_token_id(self, id: int):
 | |
|         self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
 | |
| 
 | |
| 
 | |
| # Example usage:
 | |
| if __name__ == "__main__":
 | |
|     # Example usage with a file
 | |
|     gguf_writer = GGUFWriter("example.gguf", "llama")
 | |
| 
 | |
|     gguf_writer.add_architecture()
 | |
|     gguf_writer.add_block_count(12)
 | |
|     gguf_writer.add_uint32("answer", 42)  # Write a 32-bit integer
 | |
|     gguf_writer.add_float32("answer_in_float", 42.0)  # Write a 32-bit float
 | |
|     gguf_writer.add_custom_alignment(64)
 | |
| 
 | |
|     tensor1 = np.ones((32,), dtype=np.float32) * 100.0
 | |
|     tensor2 = np.ones((64,), dtype=np.float32) * 101.0
 | |
|     tensor3 = np.ones((96,), dtype=np.float32) * 102.0
 | |
| 
 | |
|     gguf_writer.add_tensor("tensor1", tensor1)
 | |
|     gguf_writer.add_tensor("tensor2", tensor2)
 | |
|     gguf_writer.add_tensor("tensor3", tensor3)
 | |
| 
 | |
|     gguf_writer.write_header_to_file()
 | |
|     gguf_writer.write_kv_data_to_file()
 | |
|     gguf_writer.write_tensors_to_file()
 | |
| 
 | |
|     gguf_writer.close()
 |