Files
llama.cpp/examples/model-conversion/Makefile
Daniel Bevenius 46d9caa27a model-conversion : add mmproj conversion target (#15628)
This commit adds a new target to the Makefile for converting models that
are multimodal. This target will convert the original model and in
addition also create the mmproj GGUF model.

The motivation for this change is that for models that are multimodal,
for example those that contain a vision encoders, we will often want to
upload both the quantized model and the vision encoder model to
HuggingFace.

Example usage:
```console
$ make causal-convert-mm-model MODEL_PATH=~/work/ai/models/gemma-3-4b-it-qat-q4_0-unquantized/
...
The environment variable CONVERTED_MODEL can be set to this path using:
export CONVERTED_MODEL=/home/danbev/work/ai/llama.cpp/models/gemma-3-4b-it-qat-q4_0-unquantized.gguf
The mmproj model was created in /home/danbev/work/ai/llama.cpp/models/mmproj-gemma-3-4b-it-qat-q4_0-unquantized.gguf
```
The converted original model can then be quantized, and after that both
the quantized model and the mmproj file can then be uploaded to
HuggingFace.

Refs: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF/tree/main
2025-08-28 09:26:48 +02:00

207 lines
7.4 KiB
Makefile

MAKEFLAGS += --no-print-directory
define validate_model_path
@if [ -z "$(MODEL_PATH)" ]; then \
echo "Error: MODEL_PATH must be provided either as:"; \
echo " 1. Environment variable: export MODEL_PATH=/path/to/model"; \
echo " 2. Command line argument: make $(1) MODEL_PATH=/path/to/model"; \
exit 1; \
fi
endef
define validate_embedding_model_path
@if [ -z "$(EMBEDDING_MODEL_PATH)" ]; then \
echo "Error: EMBEDDING_MODEL_PATH must be provided either as:"; \
echo " 1. Environment variable: export EMBEDDING_MODEL_PATH=/path/to/model"; \
echo " 2. Command line argument: make $(1) EMBEDDING_MODEL_PATH=/path/to/model"; \
exit 1; \
fi
endef
define quantize_model
@CONVERTED_MODEL="$(1)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" \
TOKEN_EMBD_TYPE="$(TOKEN_EMBD_TYPE)" OUTPUT_TYPE="$(OUTPUT_TYPE)" \
./scripts/utils/quantize.sh "$(1)" "$(QUANTIZED_TYPE)" "$(TOKEN_EMBD_TYPE)" "$(OUTPUT_TYPE)"
@echo "Export the quantized model path to $(2) variable in your environment"
endef
###
### Casual Model targets/recipes
###
causal-convert-model-bf16: OUTTYPE=bf16
causal-convert-model-bf16: causal-convert-model
causal-convert-model:
$(call validate_model_path,causal-convert-model)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh
causal-convert-mm-model-bf16: OUTTYPE=bf16
causal-convert-mm-model-bf16: MM_OUTTYPE=f16
causal-convert-mm-model-bf16: causal-convert-mm-model
causal-convert-mm-model:
$(call validate_model_path,causal-convert-mm-model)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(MM_OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh --mmproj
causal-run-original-model:
$(call validate_model_path,causal-run-original-model)
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py
causal-run-converted-model:
@CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh
causal-verify-logits: causal-run-original-model causal-run-converted-model
@./scripts/causal/compare-logits.py
@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}
causal-run-original-embeddings:
@./scripts/causal/run-casual-gen-embeddings-org.sh
causal-run-converted-embeddings:
@./scripts/causal/run-converted-model-embeddings-logits.sh
causal-verify-embeddings: causal-run-original-embeddings causal-run-converted-embeddings
@./scripts/causal/compare-embeddings-logits.sh
causal-inspect-original-model:
@./scripts/utils/inspect-org-model.py
causal-inspect-converted-model:
@./scripts/utils/inspect-converted-model.sh
causal-start-embedding-server:
@./scripts/utils/run-embedding-server.sh ${CONVERTED_MODEL}
causal-curl-embedding-endpoint: causal-run-original-embeddings
@./scripts/utils/curl-embedding-server.sh | ./scripts/causal/compare-embeddings-logits.sh
causal-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
causal-quantize-Q8_0: causal-quantize-model
causal-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
causal-quantize-Q4_0: causal-quantize-model
# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
# token embedding and output types to Q8_0 instead of the default Q6_K.
causal-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
causal-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
causal-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
causal-quantize-qat-Q4_0: causal-quantize-model
causal-quantize-model:
$(call quantize_model,$(CONVERTED_MODEL),QUANTIZED_MODEL)
causal-run-quantized-model:
@QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/causal/run-converted-model.sh ${QUANTIZED_MODEL}
###
### Embedding Model targets/recipes
###
embedding-convert-model-bf16: OUTTYPE=bf16
embedding-convert-model-bf16: embedding-convert-model
embedding-convert-model:
$(call validate_embedding_model_path,embedding-convert-model)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/embedding/convert-model.sh
embedding-run-original-model:
$(call validate_embedding_model_path,embedding-run-original-model)
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/embedding/run-original-model.py
embedding-run-converted-model:
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/embedding/run-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
@./scripts/embedding/compare-embeddings-logits.sh
embedding-inspect-original-model:
$(call validate_embedding_model_path,embedding-inspect-original-model)
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/utils/inspect-org-model.py -m ${EMBEDDING_MODEL_PATH}
embedding-inspect-converted-model:
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/utils/inspect-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
embedding-start-embedding-server:
@./scripts/utils/run-embedding-server.sh ${CONVERTED_EMBEDDING_MODEL}
embedding-curl-embedding-endpoint:
@./scripts/utils/curl-embedding-server.sh | ./scripts/embedding/compare-embeddings-logits.sh
embedding-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
embedding-quantize-Q8_0: embedding-quantize-model
embedding-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
embedding-quantize-Q4_0: embedding-quantize-model
# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
# token embedding and output types to Q8_0 instead of the default Q6_K.
embedding-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
embedding-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
embedding-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
embedding-quantize-qat-Q4_0: embedding-quantize-model
embedding-quantize-model:
$(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL)
embedding-run-quantized-model:
@./scripts/embedding/run-converted-model.sh ${QUANTIZED_EMBEDDING_MODEL}
###
### Perplexity targets/recipes
###
perplexity-data-gen:
CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/utils/perplexity-gen.sh
perplexity-run-full:
QUANTIZED_MODEL="$(QUANTIZED_MODEL)" LOOGITS_FILE="$(LOGITS_FILE)" \
./scripts/utils/perplexity-run.sh
perplexity-run:
QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/utils/perplexity-run-simple.sh
###
### HuggingFace targets/recipes
###
hf-create-model:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}"
hf-create-model-dry-run:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -d
hf-create-model-embedding:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e
hf-create-model-embedding-dry-run:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e -d
hf-create-model-private:
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -p
hf-upload-gguf-to-model:
@./scripts/utils/hf-upload-gguf-model.py -m "${MODEL_PATH}" -r "${REPO_ID}" -o "${NAME_IN_REPO}"
hf-create-collection:
@./scripts/utils/hf-create-collection.py -n "${NAME}" -d "${DESCRIPTION}" -ns "${NAMESPACE}"
hf-add-model-to-collection:
@./scripts/utils/hf-add-model-to-collection.py -c "${COLLECTION}" -m "${MODEL}"
.PHONY: clean
clean:
@${RM} -rf data .converted_embedding_model.txt .converted_model.txt .embedding_model_name.txt .model_name.txt