mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-27 08:21:30 +00:00
This commit adds a new target to the Makefile for converting models that are multimodal. This target will convert the original model and in addition also create the mmproj GGUF model. The motivation for this change is that for models that are multimodal, for example those that contain a vision encoders, we will often want to upload both the quantized model and the vision encoder model to HuggingFace. Example usage: ```console $ make causal-convert-mm-model MODEL_PATH=~/work/ai/models/gemma-3-4b-it-qat-q4_0-unquantized/ ... The environment variable CONVERTED_MODEL can be set to this path using: export CONVERTED_MODEL=/home/danbev/work/ai/llama.cpp/models/gemma-3-4b-it-qat-q4_0-unquantized.gguf The mmproj model was created in /home/danbev/work/ai/llama.cpp/models/mmproj-gemma-3-4b-it-qat-q4_0-unquantized.gguf ``` The converted original model can then be quantized, and after that both the quantized model and the mmproj file can then be uploaded to HuggingFace. Refs: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF/tree/main
207 lines
7.4 KiB
Makefile
207 lines
7.4 KiB
Makefile
MAKEFLAGS += --no-print-directory
|
|
|
|
define validate_model_path
|
|
@if [ -z "$(MODEL_PATH)" ]; then \
|
|
echo "Error: MODEL_PATH must be provided either as:"; \
|
|
echo " 1. Environment variable: export MODEL_PATH=/path/to/model"; \
|
|
echo " 2. Command line argument: make $(1) MODEL_PATH=/path/to/model"; \
|
|
exit 1; \
|
|
fi
|
|
endef
|
|
|
|
define validate_embedding_model_path
|
|
@if [ -z "$(EMBEDDING_MODEL_PATH)" ]; then \
|
|
echo "Error: EMBEDDING_MODEL_PATH must be provided either as:"; \
|
|
echo " 1. Environment variable: export EMBEDDING_MODEL_PATH=/path/to/model"; \
|
|
echo " 2. Command line argument: make $(1) EMBEDDING_MODEL_PATH=/path/to/model"; \
|
|
exit 1; \
|
|
fi
|
|
endef
|
|
|
|
define quantize_model
|
|
@CONVERTED_MODEL="$(1)" QUANTIZED_TYPE="$(QUANTIZED_TYPE)" \
|
|
TOKEN_EMBD_TYPE="$(TOKEN_EMBD_TYPE)" OUTPUT_TYPE="$(OUTPUT_TYPE)" \
|
|
./scripts/utils/quantize.sh "$(1)" "$(QUANTIZED_TYPE)" "$(TOKEN_EMBD_TYPE)" "$(OUTPUT_TYPE)"
|
|
@echo "Export the quantized model path to $(2) variable in your environment"
|
|
endef
|
|
|
|
###
|
|
### Casual Model targets/recipes
|
|
###
|
|
causal-convert-model-bf16: OUTTYPE=bf16
|
|
causal-convert-model-bf16: causal-convert-model
|
|
|
|
causal-convert-model:
|
|
$(call validate_model_path,causal-convert-model)
|
|
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
|
|
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
|
|
./scripts/causal/convert-model.sh
|
|
|
|
causal-convert-mm-model-bf16: OUTTYPE=bf16
|
|
causal-convert-mm-model-bf16: MM_OUTTYPE=f16
|
|
causal-convert-mm-model-bf16: causal-convert-mm-model
|
|
|
|
causal-convert-mm-model:
|
|
$(call validate_model_path,causal-convert-mm-model)
|
|
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
|
|
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
|
|
./scripts/causal/convert-model.sh
|
|
|
|
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(MM_OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
|
|
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
|
|
./scripts/causal/convert-model.sh --mmproj
|
|
|
|
causal-run-original-model:
|
|
$(call validate_model_path,causal-run-original-model)
|
|
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/run-org-model.py
|
|
|
|
causal-run-converted-model:
|
|
@CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh
|
|
|
|
causal-verify-logits: causal-run-original-model causal-run-converted-model
|
|
@./scripts/causal/compare-logits.py
|
|
@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}
|
|
|
|
causal-run-original-embeddings:
|
|
@./scripts/causal/run-casual-gen-embeddings-org.sh
|
|
|
|
causal-run-converted-embeddings:
|
|
@./scripts/causal/run-converted-model-embeddings-logits.sh
|
|
|
|
causal-verify-embeddings: causal-run-original-embeddings causal-run-converted-embeddings
|
|
@./scripts/causal/compare-embeddings-logits.sh
|
|
|
|
causal-inspect-original-model:
|
|
@./scripts/utils/inspect-org-model.py
|
|
|
|
causal-inspect-converted-model:
|
|
@./scripts/utils/inspect-converted-model.sh
|
|
|
|
causal-start-embedding-server:
|
|
@./scripts/utils/run-embedding-server.sh ${CONVERTED_MODEL}
|
|
|
|
causal-curl-embedding-endpoint: causal-run-original-embeddings
|
|
@./scripts/utils/curl-embedding-server.sh | ./scripts/causal/compare-embeddings-logits.sh
|
|
|
|
causal-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
|
|
causal-quantize-Q8_0: causal-quantize-model
|
|
|
|
causal-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
|
|
causal-quantize-Q4_0: causal-quantize-model
|
|
|
|
# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
|
|
# token embedding and output types to Q8_0 instead of the default Q6_K.
|
|
causal-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
|
|
causal-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
|
|
causal-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
|
|
causal-quantize-qat-Q4_0: causal-quantize-model
|
|
|
|
causal-quantize-model:
|
|
$(call quantize_model,$(CONVERTED_MODEL),QUANTIZED_MODEL)
|
|
|
|
causal-run-quantized-model:
|
|
@QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/causal/run-converted-model.sh ${QUANTIZED_MODEL}
|
|
|
|
|
|
###
|
|
### Embedding Model targets/recipes
|
|
###
|
|
|
|
embedding-convert-model-bf16: OUTTYPE=bf16
|
|
embedding-convert-model-bf16: embedding-convert-model
|
|
|
|
embedding-convert-model:
|
|
$(call validate_embedding_model_path,embedding-convert-model)
|
|
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
|
|
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
|
|
./scripts/embedding/convert-model.sh
|
|
|
|
embedding-run-original-model:
|
|
$(call validate_embedding_model_path,embedding-run-original-model)
|
|
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/embedding/run-original-model.py
|
|
|
|
embedding-run-converted-model:
|
|
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/embedding/run-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
|
|
|
|
embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
|
|
@./scripts/embedding/compare-embeddings-logits.sh
|
|
|
|
embedding-inspect-original-model:
|
|
$(call validate_embedding_model_path,embedding-inspect-original-model)
|
|
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/utils/inspect-org-model.py -m ${EMBEDDING_MODEL_PATH}
|
|
|
|
embedding-inspect-converted-model:
|
|
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/utils/inspect-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
|
|
|
|
embedding-start-embedding-server:
|
|
@./scripts/utils/run-embedding-server.sh ${CONVERTED_EMBEDDING_MODEL}
|
|
|
|
embedding-curl-embedding-endpoint:
|
|
@./scripts/utils/curl-embedding-server.sh | ./scripts/embedding/compare-embeddings-logits.sh
|
|
|
|
embedding-quantize-Q8_0: QUANTIZED_TYPE = Q8_0
|
|
embedding-quantize-Q8_0: embedding-quantize-model
|
|
|
|
embedding-quantize-Q4_0: QUANTIZED_TYPE = Q4_0
|
|
embedding-quantize-Q4_0: embedding-quantize-model
|
|
|
|
# For Quantization Aware Trained (QAT) models in Q4_0 we explicitly set the
|
|
# token embedding and output types to Q8_0 instead of the default Q6_K.
|
|
embedding-quantize-qat-Q4_0: QUANTIZED_TYPE = Q4_0
|
|
embedding-quantize-qat-Q4_0: TOKEN_EMBD_TYPE = Q8_0
|
|
embedding-quantize-qat-Q4_0: OUTPUT_TYPE = Q8_0
|
|
embedding-quantize-qat-Q4_0: embedding-quantize-model
|
|
|
|
embedding-quantize-model:
|
|
$(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL)
|
|
|
|
embedding-run-quantized-model:
|
|
@./scripts/embedding/run-converted-model.sh ${QUANTIZED_EMBEDDING_MODEL}
|
|
|
|
###
|
|
### Perplexity targets/recipes
|
|
###
|
|
perplexity-data-gen:
|
|
CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/utils/perplexity-gen.sh
|
|
|
|
perplexity-run-full:
|
|
QUANTIZED_MODEL="$(QUANTIZED_MODEL)" LOOGITS_FILE="$(LOGITS_FILE)" \
|
|
./scripts/utils/perplexity-run.sh
|
|
|
|
perplexity-run:
|
|
QUANTIZED_MODEL="$(QUANTIZED_MODEL)" ./scripts/utils/perplexity-run-simple.sh
|
|
|
|
###
|
|
### HuggingFace targets/recipes
|
|
###
|
|
|
|
hf-create-model:
|
|
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}"
|
|
|
|
hf-create-model-dry-run:
|
|
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -d
|
|
|
|
hf-create-model-embedding:
|
|
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e
|
|
|
|
hf-create-model-embedding-dry-run:
|
|
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -e -d
|
|
|
|
hf-create-model-private:
|
|
@./scripts/utils/hf-create-model.py -m "${MODEL_NAME}" -ns "${NAMESPACE}" -b "${ORIGINAL_BASE_MODEL}" -p
|
|
|
|
hf-upload-gguf-to-model:
|
|
@./scripts/utils/hf-upload-gguf-model.py -m "${MODEL_PATH}" -r "${REPO_ID}" -o "${NAME_IN_REPO}"
|
|
|
|
hf-create-collection:
|
|
@./scripts/utils/hf-create-collection.py -n "${NAME}" -d "${DESCRIPTION}" -ns "${NAMESPACE}"
|
|
|
|
hf-add-model-to-collection:
|
|
@./scripts/utils/hf-add-model-to-collection.py -c "${COLLECTION}" -m "${MODEL}"
|
|
|
|
|
|
.PHONY: clean
|
|
clean:
|
|
@${RM} -rf data .converted_embedding_model.txt .converted_model.txt .embedding_model_name.txt .model_name.txt
|
|
|