mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	Set one as executable and add basicConfig() to another. Also added noqa tag to test scripts.
		
			
				
	
	
		
			151 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
import logging
 | 
						|
import json
 | 
						|
import os
 | 
						|
import struct
 | 
						|
import sys
 | 
						|
from pathlib import Path
 | 
						|
from typing import Any, BinaryIO, Sequence
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
 | 
						|
if 'NO_LOCAL_GGUF' not in os.environ:
 | 
						|
    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
 | 
						|
import gguf
 | 
						|
 | 
						|
logging.basicConfig(level=logging.DEBUG)
 | 
						|
logger = logging.getLogger("lora-to-gguf")
 | 
						|
 | 
						|
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
 | 
						|
 | 
						|
 | 
						|
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
 | 
						|
    fout.write(b"ggla"[::-1])  # magic (ggml lora)
 | 
						|
    fout.write(struct.pack("i", 1))  # file version
 | 
						|
    fout.write(struct.pack("i", params["r"]))
 | 
						|
    # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
 | 
						|
    # but some models ship a float value instead
 | 
						|
    # let's convert to int, but fail if lossless conversion is not possible
 | 
						|
    assert (
 | 
						|
        int(params["lora_alpha"]) == params["lora_alpha"]
 | 
						|
    ), "cannot convert float to int losslessly"
 | 
						|
    fout.write(struct.pack("i", int(params["lora_alpha"])))
 | 
						|
 | 
						|
 | 
						|
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
 | 
						|
    sname = name.encode("utf-8")
 | 
						|
    fout.write(
 | 
						|
        struct.pack(
 | 
						|
            "iii",
 | 
						|
            len(shape),
 | 
						|
            len(sname),
 | 
						|
            NUMPY_TYPE_TO_FTYPE[data_type.name],
 | 
						|
        )
 | 
						|
    )
 | 
						|
    fout.write(struct.pack("i" * len(shape), *shape[::-1]))
 | 
						|
    fout.write(sname)
 | 
						|
    fout.seek((fout.tell() + 31) & -32)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    if len(sys.argv) < 2:
 | 
						|
        logger.info(f"Usage: python {sys.argv[0]} <path> [arch]")
 | 
						|
        logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'")
 | 
						|
        logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    input_json = os.path.join(sys.argv[1], "adapter_config.json")
 | 
						|
    input_model = os.path.join(sys.argv[1], "adapter_model.bin")
 | 
						|
    output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
 | 
						|
 | 
						|
    if os.path.exists(input_model):
 | 
						|
        model = torch.load(input_model, map_location="cpu")
 | 
						|
    else:
 | 
						|
        input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
 | 
						|
        # lazy import load_file only if lora is in safetensors format.
 | 
						|
        from safetensors.torch import load_file
 | 
						|
        model = load_file(input_model, device="cpu")
 | 
						|
 | 
						|
    arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
 | 
						|
 | 
						|
    if arch_name not in gguf.MODEL_ARCH_NAMES.values():
 | 
						|
        logger.error(f"Error: unsupported architecture {arch_name}")
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
 | 
						|
    name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
 | 
						|
 | 
						|
    with open(input_json, "r") as f:
 | 
						|
        params = json.load(f)
 | 
						|
 | 
						|
    if params["peft_type"] != "LORA":
 | 
						|
        logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    if params["fan_in_fan_out"] is True:
 | 
						|
        logger.error("Error: param fan_in_fan_out is not supported")
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    if params["bias"] is not None and params["bias"] != "none":
 | 
						|
        logger.error("Error: param bias is not supported")
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    # TODO: these seem to be layers that have been trained but without lora.
 | 
						|
    # doesn't seem widely used but eventually should be supported
 | 
						|
    if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
 | 
						|
        logger.error("Error: param modules_to_save is not supported")
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    with open(output_path, "wb") as fout:
 | 
						|
        fout.truncate()
 | 
						|
 | 
						|
        write_file_header(fout, params)
 | 
						|
        for k, v in model.items():
 | 
						|
            orig_k = k
 | 
						|
            if k.endswith(".default.weight"):
 | 
						|
                k = k.replace(".default.weight", ".weight")
 | 
						|
            if k in ["llama_proj.weight", "llama_proj.bias"]:
 | 
						|
                continue
 | 
						|
            if k.endswith("lora_A.weight"):
 | 
						|
                if v.dtype != torch.float16 and v.dtype != torch.float32:
 | 
						|
                    v = v.float()
 | 
						|
                v = v.T
 | 
						|
            else:
 | 
						|
                v = v.float()
 | 
						|
 | 
						|
            t = v.detach().numpy()
 | 
						|
 | 
						|
            prefix = "base_model.model."
 | 
						|
            if k.startswith(prefix):
 | 
						|
                k = k[len(prefix) :]
 | 
						|
 | 
						|
            lora_suffixes = (".lora_A.weight", ".lora_B.weight")
 | 
						|
            if k.endswith(lora_suffixes):
 | 
						|
                suffix = k[-len(lora_suffixes[0]):]
 | 
						|
                k = k[: -len(lora_suffixes[0])]
 | 
						|
            else:
 | 
						|
                logger.error(f"Error: unrecognized tensor name {orig_k}")
 | 
						|
                sys.exit(1)
 | 
						|
 | 
						|
            tname = name_map.get_name(k)
 | 
						|
            if tname is None:
 | 
						|
                logger.error(f"Error: could not map tensor name {orig_k}")
 | 
						|
                logger.error(" Note: the arch parameter must be specified if the model is not llama")
 | 
						|
                sys.exit(1)
 | 
						|
 | 
						|
            if suffix == ".lora_A.weight":
 | 
						|
                tname += ".weight.loraA"
 | 
						|
            elif suffix == ".lora_B.weight":
 | 
						|
                tname += ".weight.loraB"
 | 
						|
            else:
 | 
						|
                assert False
 | 
						|
 | 
						|
            logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
 | 
						|
            write_tensor_header(fout, tname, t.shape, t.dtype)
 | 
						|
            t.tofile(fout)
 | 
						|
 | 
						|
    logger.info(f"Converted {input_json} and {input_model} to {output_path}")
 |