mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			258 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "llama.h"
 | |
| #include "common.h"
 | |
| #include "ngram-cache.h"
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <cstdio>
 | |
| #include <fstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <unordered_map>
 | |
| 
 | |
| int main(int argc, char ** argv){
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (!gpt_params_parse(argc, argv, params)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // max. number of additional tokens to draft if match is found
 | |
|     const int n_draft = params.n_draft;
 | |
| 
 | |
|     const bool dump_kv_cache = params.dump_kv_cache;
 | |
| 
 | |
| #ifndef LOG_DISABLE_LOGS
 | |
|     log_set_target(log_filename_generator("lookup", "log"));
 | |
|     LOG_TEE("Log start\n");
 | |
|     log_dump_cmdline(argc, argv);
 | |
| #endif // LOG_DISABLE_LOGS
 | |
| 
 | |
|     // init llama.cpp
 | |
|     llama_backend_init();
 | |
|     llama_numa_init(params.numa);
 | |
| 
 | |
|     llama_model * model = NULL;
 | |
|     llama_context * ctx = NULL;
 | |
| 
 | |
|     // load the model
 | |
|     std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
|     GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
 | |
| 
 | |
|     // tokenize the prompt
 | |
|     std::vector<llama_token> inp;
 | |
|     inp = ::llama_tokenize(ctx, params.prompt, true, true);
 | |
| 
 | |
|     llama_ngram_cache ngram_cache_context;
 | |
|     llama_ngram_cache ngram_cache_dynamic;
 | |
|     llama_ngram_cache ngram_cache_static;
 | |
|     int64_t t_draft_flat_us = 0;
 | |
|     int64_t t_draft_us = 0;
 | |
| 
 | |
|     {
 | |
|         // Fill up context ngram cache with tokens from user input:
 | |
|         const int64_t t_start_draft_us = ggml_time_us();
 | |
|         llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
 | |
| 
 | |
|         if (!params.lookup_cache_static.empty()) {
 | |
|             try {
 | |
|                 ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
 | |
|             } catch (std::ifstream::failure const &) {
 | |
|                 fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!params.lookup_cache_dynamic.empty()) {
 | |
|             try {
 | |
|                 ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
 | |
|             } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
 | |
|         }
 | |
| 
 | |
|         t_draft_flat_us += ggml_time_us() - t_start_draft_us;
 | |
|     }
 | |
| 
 | |
|     const int max_context_size     = llama_n_ctx(ctx);
 | |
|     const int max_tokens_list_size = max_context_size - 4;
 | |
| 
 | |
|     if ((int) inp.size() > max_tokens_list_size) {
 | |
|         fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     for (auto id : inp) {
 | |
|         fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
 | |
|     }
 | |
| 
 | |
|     fflush(stderr);
 | |
| 
 | |
|     const int n_input = inp.size();
 | |
| 
 | |
|     const auto t_enc_start = ggml_time_us();
 | |
| 
 | |
|     llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0,           0));
 | |
|     llama_decode(ctx, llama_batch_get_one(&inp.back(),           1, n_input - 1, 0));
 | |
| 
 | |
|     const auto t_enc_end = ggml_time_us();
 | |
| 
 | |
|     int n_predict = 0;
 | |
|     int n_drafted = 0;
 | |
|     int n_accept  = 0;
 | |
| 
 | |
|     int n_past = inp.size();
 | |
| 
 | |
|     bool has_eos = false;
 | |
| 
 | |
|     struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
 | |
| 
 | |
|     std::vector<llama_token> draft;
 | |
| 
 | |
|     llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
 | |
| 
 | |
|     // debug
 | |
|     struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
 | |
| 
 | |
|     const auto t_dec_start = ggml_time_us();
 | |
| 
 | |
|     while (true) {
 | |
|         // debug
 | |
|         if (dump_kv_cache) {
 | |
|             llama_kv_cache_view_update(ctx, &kvc_view);
 | |
|             dump_kv_cache_view_seqs(kvc_view, 40);
 | |
|         }
 | |
| 
 | |
|         // print current draft sequence
 | |
|         LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
 | |
| 
 | |
|         int i_dft = 0;
 | |
|         while (true) {
 | |
|             // sample from the target model
 | |
|             llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
 | |
| 
 | |
|             llama_sampling_accept(ctx_sampling, ctx, id, true);
 | |
| 
 | |
|             const std::string token_str = llama_token_to_piece(ctx, id);
 | |
| 
 | |
|             if (!params.use_color) {
 | |
|                 printf("%s", token_str.c_str());
 | |
|             }
 | |
| 
 | |
|             if (llama_token_is_eog(model, id)) {
 | |
|                 has_eos = true;
 | |
|             }
 | |
| 
 | |
|             ++n_predict;
 | |
| 
 | |
|             // check if the target token matches the draft
 | |
|             if (i_dft < (int) draft.size() && id == draft[i_dft]) {
 | |
|                 LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
 | |
|                 ++n_accept;
 | |
|                 ++n_past;
 | |
|                 ++i_dft;
 | |
|                 inp.push_back(id);
 | |
|                 {
 | |
|                     // Update context ngram cache with the newly accepted token:
 | |
|                     const int64_t t_start_draft_us = ggml_time_us();
 | |
|                     llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
 | |
|                     t_draft_us += ggml_time_us() - t_start_draft_us;
 | |
|                 }
 | |
| 
 | |
|                 if (params.use_color) {
 | |
|                     // color accepted draft token
 | |
|                     printf("\033[34m%s\033[0m", token_str.c_str());
 | |
|                     fflush(stdout);
 | |
|                 }
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (params.use_color) {
 | |
|                 printf("%s", token_str.c_str());
 | |
|             }
 | |
|             fflush(stdout);
 | |
| 
 | |
| 
 | |
|             LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
 | |
| 
 | |
|             draft.clear();
 | |
|             draft.push_back(id);
 | |
|             inp.push_back(id);
 | |
|             {
 | |
|                 // Update context ngram cache with the newly accepted token:
 | |
|                 const int64_t t_start_draft_us = ggml_time_us();
 | |
|                 llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
 | |
|                 t_draft_us += ggml_time_us() - t_start_draft_us;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // KV cache management
 | |
|         // clean the cache of draft tokens that weren't accepted
 | |
|         llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
 | |
| 
 | |
|         llama_batch_clear(batch_tgt);
 | |
|         llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
 | |
| 
 | |
|         // Draft already contains a single token sampled from the model:
 | |
|         GGML_ASSERT(draft.size() == 1);
 | |
|         GGML_ASSERT(draft[0] == inp.back());
 | |
|         const int64_t t_start_draft_us = ggml_time_us();
 | |
| 
 | |
|         llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
 | |
| 
 | |
|         for (size_t i = 1; i < draft.size(); ++i) {
 | |
|             llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
 | |
|         }
 | |
| 
 | |
|         t_draft_us += ggml_time_us() - t_start_draft_us;
 | |
|         n_drafted += draft.size() - 1;
 | |
| 
 | |
|         llama_decode(ctx, batch_tgt);
 | |
|         ++n_past;
 | |
| 
 | |
|         draft.erase(draft.begin());
 | |
|     }
 | |
| 
 | |
|     auto t_dec_end = ggml_time_us();
 | |
| 
 | |
|     // Update dynamic ngram cache with context ngram cache and save it to disk:
 | |
|     llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
 | |
|     llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
 | |
| 
 | |
|     LOG_TEE("\n\n");
 | |
| 
 | |
|     LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input,   (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
 | |
|     LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict  / ((t_dec_end - t_dec_start) / 1e6f));
 | |
| 
 | |
|     LOG_TEE("\n");
 | |
|     LOG_TEE("n_draft      = %d\n", n_draft);
 | |
|     LOG_TEE("n_predict    = %d\n", n_predict);
 | |
|     LOG_TEE("n_drafted    = %d\n", n_drafted);
 | |
|     LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
 | |
|     LOG_TEE("t_draft      = %.2f ms, %.2f us per token, %.2f tokens per second\n",
 | |
|             t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
 | |
|     LOG_TEE("n_accept     = %d\n", n_accept);
 | |
|     LOG_TEE("accept       = %.3f%%\n", 100.0f * n_accept / n_drafted);
 | |
| 
 | |
|     LOG_TEE("\ntarget:\n");
 | |
|     llama_print_timings(ctx);
 | |
| 
 | |
|     llama_sampling_free(ctx_sampling);
 | |
|     llama_batch_free(batch_tgt);
 | |
| 
 | |
|     llama_free(ctx);
 | |
|     llama_free_model(model);
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     fprintf(stderr, "\n\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
