mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 1d0331c12a
			
		
	
	1d0331c12a
	
	
	
		
			
			* quantize: be able to specify the output tensor type * quantize: be able to specify the token embedding tensor type --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
		
			
				
	
	
		
			1009 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1009 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef LLAMA_H
 | ||
| #define LLAMA_H
 | ||
| 
 | ||
| #include "ggml.h"
 | ||
| #include "ggml-backend.h"
 | ||
| 
 | ||
| #include <stddef.h>
 | ||
| #include <stdint.h>
 | ||
| #include <stdio.h>
 | ||
| #include <stdbool.h>
 | ||
| 
 | ||
| #ifdef LLAMA_SHARED
 | ||
| #    if defined(_WIN32) && !defined(__MINGW32__)
 | ||
| #        ifdef LLAMA_BUILD
 | ||
| #            define LLAMA_API __declspec(dllexport)
 | ||
| #        else
 | ||
| #            define LLAMA_API __declspec(dllimport)
 | ||
| #        endif
 | ||
| #    else
 | ||
| #        define LLAMA_API __attribute__ ((visibility ("default")))
 | ||
| #    endif
 | ||
| #else
 | ||
| #    define LLAMA_API
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef __GNUC__
 | ||
| #    define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
 | ||
| #elif defined(_MSC_VER)
 | ||
| #    define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
 | ||
| #else
 | ||
| #    define DEPRECATED(func, hint) func
 | ||
| #endif
 | ||
| 
 | ||
| #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
 | ||
| 
 | ||
| #define LLAMA_MAX_RNG_STATE (64*1024)
 | ||
| 
 | ||
| #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
 | ||
| #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
 | ||
| 
 | ||
| #define LLAMA_SESSION_MAGIC   LLAMA_FILE_MAGIC_GGSN
 | ||
| #define LLAMA_SESSION_VERSION 4
 | ||
| 
 | ||
| #ifdef __cplusplus
 | ||
| extern "C" {
 | ||
| #endif
 | ||
| 
 | ||
|     //
 | ||
|     // C interface
 | ||
|     //
 | ||
|     // TODO: show sample usage
 | ||
|     //
 | ||
| 
 | ||
|     struct llama_model;
 | ||
|     struct llama_context;
 | ||
| 
 | ||
|     typedef int32_t llama_pos;
 | ||
|     typedef int32_t llama_token;
 | ||
|     typedef int32_t llama_seq_id;
 | ||
| 
 | ||
|     enum llama_vocab_type {
 | ||
|         LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
 | ||
|         LLAMA_VOCAB_TYPE_SPM  = 1, // SentencePiece
 | ||
|         LLAMA_VOCAB_TYPE_BPE  = 2, // Byte Pair Encoding
 | ||
|         LLAMA_VOCAB_TYPE_WPM  = 3, // WordPiece
 | ||
|     };
 | ||
| 
 | ||
|     // note: these values should be synchronized with ggml_rope
 | ||
|     // TODO: maybe move this enum to ggml.h (ggml_rope_type)
 | ||
|     enum llama_rope_type {
 | ||
|         LLAMA_ROPE_TYPE_NONE = -1,
 | ||
|         LLAMA_ROPE_TYPE_NORM =  0,
 | ||
|         LLAMA_ROPE_TYPE_NEOX =  2,
 | ||
|         LLAMA_ROPE_TYPE_GLM  =  4,
 | ||
|     };
 | ||
| 
 | ||
|     enum llama_token_type {
 | ||
|         LLAMA_TOKEN_TYPE_UNDEFINED    = 0,
 | ||
|         LLAMA_TOKEN_TYPE_NORMAL       = 1,
 | ||
|         LLAMA_TOKEN_TYPE_UNKNOWN      = 2,
 | ||
|         LLAMA_TOKEN_TYPE_CONTROL      = 3,
 | ||
|         LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
 | ||
|         LLAMA_TOKEN_TYPE_UNUSED       = 5,
 | ||
|         LLAMA_TOKEN_TYPE_BYTE         = 6,
 | ||
|     };
 | ||
| 
 | ||
|     // model file types
 | ||
|     enum llama_ftype {
 | ||
|         LLAMA_FTYPE_ALL_F32              = 0,
 | ||
|         LLAMA_FTYPE_MOSTLY_F16           = 1,  // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q4_0          = 2,  // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q4_1          = 3,  // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4,  // tok_embeddings.weight and output.weight are F16
 | ||
|         // LLAMA_FTYPE_MOSTLY_Q4_2       = 5,  // support has been removed
 | ||
|         // LLAMA_FTYPE_MOSTLY_Q4_3       = 6,  // support has been removed
 | ||
|         LLAMA_FTYPE_MOSTLY_Q8_0          = 7,  // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q5_0          = 8,  // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q5_1          = 9,  // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q2_K          = 10, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q3_K_S        = 11, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q3_K_M        = 12, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q3_K_L        = 13, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q4_K_S        = 14, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q4_K_M        = 15, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q5_K_S        = 16, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q5_K_M        = 17, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q6_K          = 18, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ2_XXS       = 19, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ2_XS        = 20, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_Q2_K_S        = 21, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ3_XS        = 22, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ3_XXS       = 23, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ1_S         = 24, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ4_NL        = 25, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ3_S         = 26, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ3_M         = 27, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ2_S         = 28, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ2_M         = 29, // except 1d tensors
 | ||
|         LLAMA_FTYPE_MOSTLY_IQ4_XS        = 30, // except 1d tensors
 | ||
| 
 | ||
|         LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
 | ||
|     };
 | ||
| 
 | ||
|     enum llama_rope_scaling_type {
 | ||
|         LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
 | ||
|         LLAMA_ROPE_SCALING_TYPE_NONE        = 0,
 | ||
|         LLAMA_ROPE_SCALING_TYPE_LINEAR      = 1,
 | ||
|         LLAMA_ROPE_SCALING_TYPE_YARN        = 2,
 | ||
|         LLAMA_ROPE_SCALING_TYPE_MAX_VALUE   = LLAMA_ROPE_SCALING_TYPE_YARN,
 | ||
|     };
 | ||
| 
 | ||
|     enum llama_pooling_type {
 | ||
|         LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
 | ||
|         LLAMA_POOLING_TYPE_NONE = 0,
 | ||
|         LLAMA_POOLING_TYPE_MEAN = 1,
 | ||
|         LLAMA_POOLING_TYPE_CLS  = 2,
 | ||
|     };
 | ||
| 
 | ||
|     enum llama_split_mode {
 | ||
|         LLAMA_SPLIT_MODE_NONE    = 0, // single GPU
 | ||
|         LLAMA_SPLIT_MODE_LAYER   = 1, // split layers and KV across GPUs
 | ||
|         LLAMA_SPLIT_MODE_ROW     = 2, // split rows across GPUs
 | ||
|     };
 | ||
| 
 | ||
|     typedef struct llama_token_data {
 | ||
|         llama_token id; // token id
 | ||
|         float logit;    // log-odds of the token
 | ||
|         float p;        // probability of the token
 | ||
|     } llama_token_data;
 | ||
| 
 | ||
|     typedef struct llama_token_data_array {
 | ||
|         llama_token_data * data;
 | ||
|         size_t size;
 | ||
|         bool sorted;
 | ||
|     } llama_token_data_array;
 | ||
| 
 | ||
|     typedef bool (*llama_progress_callback)(float progress, void *ctx);
 | ||
| 
 | ||
|     // Input data for llama_decode
 | ||
|     // A llama_batch object can contain input about one or many sequences
 | ||
|     // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
 | ||
|     //
 | ||
|     // - token  : the token ids of the input (used when embd is NULL)
 | ||
|     // - embd   : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
 | ||
|     // - pos    : the positions of the respective token in the sequence
 | ||
|     // - seq_id : the sequence to which the respective token belongs
 | ||
|     // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
 | ||
|     //
 | ||
|     typedef struct llama_batch {
 | ||
|         int32_t n_tokens;
 | ||
| 
 | ||
|         llama_token  *  token;
 | ||
|         float        *  embd;
 | ||
|         llama_pos    *  pos;
 | ||
|         int32_t      *  n_seq_id;
 | ||
|         llama_seq_id ** seq_id;
 | ||
|         int8_t       *  logits; // TODO: rename this to "output"
 | ||
| 
 | ||
|         // NOTE: helpers for smooth API transition - can be deprecated in the future
 | ||
|         //       for future-proof code, use the above fields instead and ignore everything below
 | ||
|         //
 | ||
|         // pos[i] = all_pos_0 + i*all_pos_1
 | ||
|         //
 | ||
|         llama_pos    all_pos_0;  // used if pos == NULL
 | ||
|         llama_pos    all_pos_1;  // used if pos == NULL
 | ||
|         llama_seq_id all_seq_id; // used if seq_id == NULL
 | ||
|     } llama_batch;
 | ||
| 
 | ||
|     enum llama_model_kv_override_type {
 | ||
|         LLAMA_KV_OVERRIDE_TYPE_INT,
 | ||
|         LLAMA_KV_OVERRIDE_TYPE_FLOAT,
 | ||
|         LLAMA_KV_OVERRIDE_TYPE_BOOL,
 | ||
|     };
 | ||
| 
 | ||
|     struct llama_model_kv_override {
 | ||
|         char key[128];
 | ||
|         enum llama_model_kv_override_type tag;
 | ||
|         union {
 | ||
|             int64_t int_value;
 | ||
|             double float_value;
 | ||
|             bool bool_value;
 | ||
|         };
 | ||
|     };
 | ||
| 
 | ||
|     struct llama_model_params {
 | ||
|         int32_t n_gpu_layers; // number of layers to store in VRAM
 | ||
|         enum llama_split_mode split_mode; // how to split the model across multiple GPUs
 | ||
| 
 | ||
|         // main_gpu interpretation depends on split_mode:
 | ||
|         // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
 | ||
|         // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
 | ||
|         // LLAMA_SPLIT_LAYER: ignored
 | ||
|         int32_t main_gpu;
 | ||
| 
 | ||
|         // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
 | ||
|         const float * tensor_split;
 | ||
| 
 | ||
|         // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
 | ||
|         // If the provided progress_callback returns true, model loading continues.
 | ||
|         // If it returns false, model loading is immediately aborted.
 | ||
|         llama_progress_callback progress_callback;
 | ||
| 
 | ||
|         // context pointer passed to the progress callback
 | ||
|         void * progress_callback_user_data;
 | ||
| 
 | ||
|         // override key-value pairs of the model meta data
 | ||
|         const struct llama_model_kv_override * kv_overrides;
 | ||
| 
 | ||
|         // Keep the booleans together to avoid misalignment during copy-by-value.
 | ||
|         bool vocab_only; // only load the vocabulary, no weights
 | ||
|         bool use_mmap;   // use mmap if possible
 | ||
|         bool use_mlock;  // force system to keep model in RAM
 | ||
|     };
 | ||
| 
 | ||
|     struct llama_context_params {
 | ||
|         uint32_t seed;              // RNG seed, -1 for random
 | ||
|         uint32_t n_ctx;             // text context, 0 = from model
 | ||
|         uint32_t n_batch;           // logical maximum batch size that can be submitted to llama_decode
 | ||
|         uint32_t n_ubatch;          // physical maximum batch size
 | ||
|         uint32_t n_seq_max;         // max number of sequences (i.e. distinct states for recurrent models)
 | ||
|         uint32_t n_threads;         // number of threads to use for generation
 | ||
|         uint32_t n_threads_batch;   // number of threads to use for batch processing
 | ||
| 
 | ||
|         enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
 | ||
|         enum llama_pooling_type      pooling_type;      // whether to pool (sum) embedding results by sequence id
 | ||
|                                                         // (ignored if no pooling layer)
 | ||
| 
 | ||
|         // ref: https://github.com/ggerganov/llama.cpp/pull/2054
 | ||
|         float    rope_freq_base;   // RoPE base frequency, 0 = from model
 | ||
|         float    rope_freq_scale;  // RoPE frequency scaling factor, 0 = from model
 | ||
|         float    yarn_ext_factor;  // YaRN extrapolation mix factor, negative = from model
 | ||
|         float    yarn_attn_factor; // YaRN magnitude scaling factor
 | ||
|         float    yarn_beta_fast;   // YaRN low correction dim
 | ||
|         float    yarn_beta_slow;   // YaRN high correction dim
 | ||
|         uint32_t yarn_orig_ctx;    // YaRN original context size
 | ||
|         float    defrag_thold;     // defragment the KV cache if holes/size > thold, < 0 disabled (default)
 | ||
| 
 | ||
|         ggml_backend_sched_eval_callback cb_eval;
 | ||
|         void * cb_eval_user_data;
 | ||
| 
 | ||
|         enum ggml_type type_k; // data type for K cache
 | ||
|         enum ggml_type type_v; // data type for V cache
 | ||
| 
 | ||
|         // Keep the booleans together to avoid misalignment during copy-by-value.
 | ||
|         bool logits_all;  // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
 | ||
|         bool embeddings;  // if true, extract embeddings (together with logits)
 | ||
|         bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
 | ||
| 
 | ||
|         // Abort callback
 | ||
|         // if it returns true, execution of llama_decode() will be aborted
 | ||
|         // currently works only with CPU execution
 | ||
|         ggml_abort_callback abort_callback;
 | ||
|         void *              abort_callback_data;
 | ||
|     };
 | ||
| 
 | ||
|     // model quantization parameters
 | ||
|     typedef struct llama_model_quantize_params {
 | ||
|         int32_t nthread;                     // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
 | ||
|         enum llama_ftype ftype;              // quantize to this llama_ftype
 | ||
|         enum ggml_type output_tensor_type;   // output tensor type
 | ||
|         enum ggml_type token_embedding_type; // itoken embeddings tensor type
 | ||
|         bool allow_requantize;               // allow quantizing non-f32/f16 tensors
 | ||
|         bool quantize_output_tensor;         // quantize output.weight
 | ||
|         bool only_copy;                      // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
 | ||
|         bool pure;                           // quantize all tensors to the default type
 | ||
|         void * imatrix;                      // pointer to importance matrix data
 | ||
|     } llama_model_quantize_params;
 | ||
| 
 | ||
|     // grammar types
 | ||
|     struct llama_grammar;
 | ||
| 
 | ||
|     // grammar element type
 | ||
|     enum llama_gretype {
 | ||
|         // end of rule definition
 | ||
|         LLAMA_GRETYPE_END            = 0,
 | ||
| 
 | ||
|         // start of alternate definition for rule
 | ||
|         LLAMA_GRETYPE_ALT            = 1,
 | ||
| 
 | ||
|         // non-terminal element: reference to rule
 | ||
|         LLAMA_GRETYPE_RULE_REF       = 2,
 | ||
| 
 | ||
|         // terminal element: character (code point)
 | ||
|         LLAMA_GRETYPE_CHAR           = 3,
 | ||
| 
 | ||
|         // inverse char(s) ([^a], [^a-b] [^abc])
 | ||
|         LLAMA_GRETYPE_CHAR_NOT       = 4,
 | ||
| 
 | ||
|         // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
 | ||
|         // be an inclusive range ([a-z])
 | ||
|         LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
 | ||
| 
 | ||
|         // modifies a preceding LLAMA_GRETYPE_CHAR or
 | ||
|         // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
 | ||
|         LLAMA_GRETYPE_CHAR_ALT       = 6,
 | ||
|     };
 | ||
| 
 | ||
|     typedef struct llama_grammar_element {
 | ||
|         enum llama_gretype type;
 | ||
|         uint32_t           value; // Unicode code point or rule ID
 | ||
|     } llama_grammar_element;
 | ||
| 
 | ||
|     // performance timing information
 | ||
|     struct llama_timings {
 | ||
|         double t_start_ms;
 | ||
|         double t_end_ms;
 | ||
|         double t_load_ms;
 | ||
|         double t_sample_ms;
 | ||
|         double t_p_eval_ms;
 | ||
|         double t_eval_ms;
 | ||
| 
 | ||
|         int32_t n_sample;
 | ||
|         int32_t n_p_eval;
 | ||
|         int32_t n_eval;
 | ||
|     };
 | ||
| 
 | ||
|     // used in chat template
 | ||
|     typedef struct llama_chat_message {
 | ||
|         const char * role;
 | ||
|         const char * content;
 | ||
|     } llama_chat_message;
 | ||
| 
 | ||
|     // Helpers for getting default parameters
 | ||
|     LLAMA_API struct llama_model_params llama_model_default_params(void);
 | ||
|     LLAMA_API struct llama_context_params llama_context_default_params(void);
 | ||
|     LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
 | ||
| 
 | ||
|     // Initialize the llama + ggml backend
 | ||
|     // If numa is true, use NUMA optimizations
 | ||
|     // Call once at the start of the program
 | ||
|     LLAMA_API void llama_backend_init(void);
 | ||
| 
 | ||
|     //optional:
 | ||
|     LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
 | ||
| 
 | ||
|     // Call once at the end of the program - currently only used for MPI
 | ||
|     LLAMA_API void llama_backend_free(void);
 | ||
| 
 | ||
|     LLAMA_API struct llama_model * llama_load_model_from_file(
 | ||
|                              const char * path_model,
 | ||
|             struct llama_model_params     params);
 | ||
| 
 | ||
|     LLAMA_API void llama_free_model(struct llama_model * model);
 | ||
| 
 | ||
|     LLAMA_API struct llama_context * llama_new_context_with_model(
 | ||
|                      struct llama_model * model,
 | ||
|             struct llama_context_params   params);
 | ||
| 
 | ||
|     // Frees all allocated memory
 | ||
|     LLAMA_API void llama_free(struct llama_context * ctx);
 | ||
| 
 | ||
|     LLAMA_API int64_t llama_time_us(void);
 | ||
| 
 | ||
|     LLAMA_API size_t llama_max_devices(void);
 | ||
| 
 | ||
|     LLAMA_API bool llama_supports_mmap       (void);
 | ||
|     LLAMA_API bool llama_supports_mlock      (void);
 | ||
|     LLAMA_API bool llama_supports_gpu_offload(void);
 | ||
| 
 | ||
|     LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
 | ||
| 
 | ||
|     LLAMA_API uint32_t llama_n_ctx      (const struct llama_context * ctx);
 | ||
|     LLAMA_API uint32_t llama_n_batch    (const struct llama_context * ctx);
 | ||
|     LLAMA_API uint32_t llama_n_ubatch   (const struct llama_context * ctx);
 | ||
|     LLAMA_API uint32_t llama_n_seq_max  (const struct llama_context * ctx);
 | ||
| 
 | ||
|     LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
 | ||
|     LLAMA_API enum llama_rope_type  llama_rope_type (const struct llama_model * model);
 | ||
| 
 | ||
|     LLAMA_API int32_t llama_n_vocab    (const struct llama_model * model);
 | ||
|     LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
 | ||
|     LLAMA_API int32_t llama_n_embd     (const struct llama_model * model);
 | ||
|     LLAMA_API int32_t llama_n_layer    (const struct llama_model * model);
 | ||
| 
 | ||
|     // Get the model's RoPE frequency scaling factor
 | ||
|     LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
 | ||
| 
 | ||
|     // Functions to access the model's GGUF metadata scalar values
 | ||
|     // - The functions return the length of the string on success, or -1 on failure
 | ||
|     // - The output string is always null-terminated and cleared on failure
 | ||
|     // - GGUF array values are not supported by these functions
 | ||
| 
 | ||
|     // Get metadata value as a string by key name
 | ||
|     LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
 | ||
| 
 | ||
|     // Get the number of metadata key/value pairs
 | ||
|     LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
 | ||
| 
 | ||
|     // Get metadata key name by index
 | ||
|     LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
 | ||
| 
 | ||
|     // Get metadata value as a string by index
 | ||
|     LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
 | ||
| 
 | ||
|     // Get a string describing the model type
 | ||
|     LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
 | ||
| 
 | ||
|     // Returns the total size of all the tensors in the model in bytes
 | ||
|     LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
 | ||
| 
 | ||
|     // Returns the total number of parameters in the model
 | ||
|     LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
 | ||
| 
 | ||
|     // Get a llama model tensor
 | ||
|     LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
 | ||
| 
 | ||
|     // Returns 0 on success
 | ||
|     LLAMA_API uint32_t llama_model_quantize(
 | ||
|             const char * fname_inp,
 | ||
|             const char * fname_out,
 | ||
|             const llama_model_quantize_params * params);
 | ||
| 
 | ||
|     // Apply a LoRA adapter to a loaded model
 | ||
|     // path_base_model is the path to a higher quality model to use as a base for
 | ||
|     // the layers modified by the adapter. Can be NULL to use the current loaded model.
 | ||
|     // The model needs to be reloaded before applying a new adapter, otherwise the adapter
 | ||
|     // will be applied on top of the previous one
 | ||
|     // Returns 0 on success
 | ||
|     LLAMA_API int32_t llama_model_apply_lora_from_file(
 | ||
|             const struct llama_model * model,
 | ||
|                           const char * path_lora,
 | ||
|                                float   scale,
 | ||
|                           const char * path_base_model,
 | ||
|                              int32_t   n_threads);
 | ||
| 
 | ||
|     // Apply a loaded control vector to a llama_context, or if data is NULL, clear
 | ||
|     // the currently loaded vector.
 | ||
|     // n_embd should be the size of a single layer's control, and data should point
 | ||
|     // to an n_embd x n_layers buffer starting from layer 1.
 | ||
|     // il_start and il_end are the layer range the vector should apply to (both inclusive)
 | ||
|     // See llama_control_vector_load in common to load a control vector.
 | ||
|     LLAMA_API int32_t llama_control_vector_apply(
 | ||
|             struct llama_context * lctx,
 | ||
|                      const float * data,
 | ||
|                           size_t   len,
 | ||
|                          int32_t   n_embd,
 | ||
|                          int32_t   il_start,
 | ||
|                          int32_t   il_end);
 | ||
| 
 | ||
|     //
 | ||
|     // KV cache
 | ||
|     //
 | ||
| 
 | ||
|     // Information associated with an individual cell in the KV cache view.
 | ||
|     struct llama_kv_cache_view_cell {
 | ||
|         // The position for this cell. Takes KV cache shifts into account.
 | ||
|         // May be negative if the cell is not populated.
 | ||
|         llama_pos pos;
 | ||
|     };
 | ||
| 
 | ||
|     // An updateable view of the KV cache.
 | ||
|     struct llama_kv_cache_view {
 | ||
|         // Number of KV cache cells. This will be the same as the context size.
 | ||
|         int32_t n_cells;
 | ||
| 
 | ||
|         // Maximum number of sequences that can exist in a cell. It's not an error
 | ||
|         // if there are more sequences in a cell than this value, however they will
 | ||
|         // not be visible in the view cells_sequences.
 | ||
|         int32_t n_seq_max;
 | ||
| 
 | ||
|         // Number of tokens in the cache. For example, if there are two populated
 | ||
|         // cells, the first with 1 sequence id in it and the second with 2 sequence
 | ||
|         // ids then you'll have 3 tokens.
 | ||
|         int32_t token_count;
 | ||
| 
 | ||
|         // Number of populated cache cells.
 | ||
|         int32_t used_cells;
 | ||
| 
 | ||
|         // Maximum contiguous empty slots in the cache.
 | ||
|         int32_t max_contiguous;
 | ||
| 
 | ||
|         // Index to the start of the max_contiguous slot range. Can be negative
 | ||
|         // when cache is full.
 | ||
|         int32_t max_contiguous_idx;
 | ||
| 
 | ||
|         // Information for an individual cell.
 | ||
|         struct llama_kv_cache_view_cell * cells;
 | ||
| 
 | ||
|         // The sequences for each cell. There will be n_seq_max items per cell.
 | ||
|         llama_seq_id * cells_sequences;
 | ||
|     };
 | ||
| 
 | ||
|     // Create an empty KV cache view. (use only for debugging purposes)
 | ||
|     LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
 | ||
| 
 | ||
|     // Free a KV cache view. (use only for debugging purposes)
 | ||
|     LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
 | ||
| 
 | ||
|     // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
 | ||
|     LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
 | ||
| 
 | ||
|     // Returns the number of tokens in the KV cache (slow, use only for debug)
 | ||
|     // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
 | ||
|     LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
 | ||
| 
 | ||
|     // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
 | ||
|     LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
 | ||
| 
 | ||
|     // Clear the KV cache
 | ||
|     LLAMA_API void llama_kv_cache_clear(
 | ||
|             struct llama_context * ctx);
 | ||
| 
 | ||
|     // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
 | ||
|     // seq_id < 0 : match any sequence
 | ||
|     // p0 < 0     : [0,  p1]
 | ||
|     // p1 < 0     : [p0, inf)
 | ||
|     LLAMA_API bool llama_kv_cache_seq_rm(
 | ||
|             struct llama_context * ctx,
 | ||
|                     llama_seq_id   seq_id,
 | ||
|                        llama_pos   p0,
 | ||
|                        llama_pos   p1);
 | ||
| 
 | ||
|     // Copy all tokens that belong to the specified sequence to another sequence
 | ||
|     // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
 | ||
|     // p0 < 0 : [0,  p1]
 | ||
|     // p1 < 0 : [p0, inf)
 | ||
|     LLAMA_API void llama_kv_cache_seq_cp(
 | ||
|             struct llama_context * ctx,
 | ||
|                     llama_seq_id   seq_id_src,
 | ||
|                     llama_seq_id   seq_id_dst,
 | ||
|                        llama_pos   p0,
 | ||
|                        llama_pos   p1);
 | ||
| 
 | ||
|     // Removes all tokens that do not belong to the specified sequence
 | ||
|     LLAMA_API void llama_kv_cache_seq_keep(
 | ||
|             struct llama_context * ctx,
 | ||
|                     llama_seq_id   seq_id);
 | ||
| 
 | ||
|     // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
 | ||
|     // If the KV cache is RoPEd, the KV data is updated accordingly:
 | ||
|     //   - lazily on next llama_decode()
 | ||
|     //   - explicitly with llama_kv_cache_update()
 | ||
|     // p0 < 0 : [0,  p1]
 | ||
|     // p1 < 0 : [p0, inf)
 | ||
|     LLAMA_API void llama_kv_cache_seq_add(
 | ||
|             struct llama_context * ctx,
 | ||
|                     llama_seq_id   seq_id,
 | ||
|                        llama_pos   p0,
 | ||
|                        llama_pos   p1,
 | ||
|                        llama_pos   delta);
 | ||
| 
 | ||
|     // Integer division of the positions by factor of `d > 1`
 | ||
|     // If the KV cache is RoPEd, the KV data is updated accordingly:
 | ||
|     //   - lazily on next llama_decode()
 | ||
|     //   - explicitly with llama_kv_cache_update()
 | ||
|     // p0 < 0 : [0,  p1]
 | ||
|     // p1 < 0 : [p0, inf)
 | ||
|     LLAMA_API void llama_kv_cache_seq_div(
 | ||
|             struct llama_context * ctx,
 | ||
|                     llama_seq_id   seq_id,
 | ||
|                        llama_pos   p0,
 | ||
|                        llama_pos   p1,
 | ||
|                              int   d);
 | ||
| 
 | ||
|     // Returns the largest position present in the KV cache for the specified sequence
 | ||
|     LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
 | ||
|             struct llama_context * ctx,
 | ||
|                     llama_seq_id   seq_id);
 | ||
| 
 | ||
|     // Defragment the KV cache
 | ||
|     // This will be applied:
 | ||
|     //   - lazily on next llama_decode()
 | ||
|     //   - explicitly with llama_kv_cache_update()
 | ||
|     LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
 | ||
| 
 | ||
|     // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
 | ||
|     LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
 | ||
| 
 | ||
|     //
 | ||
|     // State / sessions
 | ||
|     //
 | ||
| 
 | ||
|     // Returns the maximum size in bytes of the state (rng, logits, embedding
 | ||
|     // and kv_cache) - will often be smaller after compacting tokens
 | ||
|     LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
 | ||
| 
 | ||
|     // Copies the state to the specified destination address.
 | ||
|     // Destination needs to have allocated enough memory.
 | ||
|     // Returns the number of bytes copied
 | ||
|     LLAMA_API size_t llama_copy_state_data(
 | ||
|             struct llama_context * ctx,
 | ||
|                          uint8_t * dst);
 | ||
| 
 | ||
|     // Set the state reading from the specified address
 | ||
|     // Returns the number of bytes read
 | ||
|     LLAMA_API size_t llama_set_state_data(
 | ||
|             struct llama_context * ctx,
 | ||
|                    const uint8_t * src);
 | ||
| 
 | ||
|     // Save/load session file
 | ||
|     LLAMA_API bool llama_load_session_file(
 | ||
|             struct llama_context * ctx,
 | ||
|                       const char * path_session,
 | ||
|                      llama_token * tokens_out,
 | ||
|                           size_t   n_token_capacity,
 | ||
|                           size_t * n_token_count_out);
 | ||
| 
 | ||
|     LLAMA_API bool llama_save_session_file(
 | ||
|             struct llama_context * ctx,
 | ||
|                       const char * path_session,
 | ||
|                const llama_token * tokens,
 | ||
|                           size_t   n_token_count);
 | ||
| 
 | ||
|     //
 | ||
|     // Decoding
 | ||
|     //
 | ||
| 
 | ||
|     // Return batch for single sequence of tokens starting at pos_0
 | ||
|     //
 | ||
|     // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
 | ||
|     //
 | ||
|     LLAMA_API struct llama_batch llama_batch_get_one(
 | ||
|                   llama_token * tokens,
 | ||
|                       int32_t   n_tokens,
 | ||
|                     llama_pos   pos_0,
 | ||
|                  llama_seq_id   seq_id);
 | ||
| 
 | ||
|     // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
 | ||
|     // Each token can be assigned up to n_seq_max sequence ids
 | ||
|     // The batch has to be freed with llama_batch_free()
 | ||
|     // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
 | ||
|     // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
 | ||
|     // The rest of the llama_batch members are allocated with size n_tokens
 | ||
|     // All members are left uninitialized
 | ||
|     LLAMA_API struct llama_batch llama_batch_init(
 | ||
|             int32_t n_tokens,
 | ||
|             int32_t embd,
 | ||
|             int32_t n_seq_max);
 | ||
| 
 | ||
|     // Frees a batch of tokens allocated with llama_batch_init()
 | ||
|     LLAMA_API void llama_batch_free(struct llama_batch batch);
 | ||
| 
 | ||
|     // Positive return values does not mean a fatal error, but rather a warning.
 | ||
|     //   0 - success
 | ||
|     //   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
 | ||
|     // < 0 - error
 | ||
|     LLAMA_API int32_t llama_decode(
 | ||
|             struct llama_context * ctx,
 | ||
|               struct llama_batch   batch);
 | ||
| 
 | ||
|     // Set the number of threads used for decoding
 | ||
|     // n_threads is the number of threads used for generation (single token)
 | ||
|     // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
 | ||
|     LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
 | ||
| 
 | ||
|     // Set whether to use causal attention or not
 | ||
|     // If set to true, the model will only attend to the past tokens
 | ||
|     LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
 | ||
| 
 | ||
|     // Set abort callback
 | ||
|     LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
 | ||
| 
 | ||
|     // Wait until all computations are finished
 | ||
|     // This is automatically done when using one of the functions below to obtain the computation results
 | ||
|     // and is not necessary to call it explicitly in most cases
 | ||
|     LLAMA_API void llama_synchronize(struct llama_context * ctx);
 | ||
| 
 | ||
|     // Token logits obtained from the last call to llama_decode()
 | ||
|     // The logits for the last token are stored in the last row
 | ||
|     // Logits for which llama_batch.logits[i] == 0 are undefined
 | ||
|     // Rows: n_tokens provided with llama_batch
 | ||
|     // Cols: n_vocab
 | ||
|     LLAMA_API float * llama_get_logits(struct llama_context * ctx);
 | ||
| 
 | ||
|     // Logits for the ith token. Equivalent to:
 | ||
|     // llama_get_logits(ctx) + i*n_vocab
 | ||
|     LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
 | ||
| 
 | ||
|     // Get all output token embeddings
 | ||
|     // shape: [n_tokens*n_embd] (1-dimensional)
 | ||
|     LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
 | ||
| 
 | ||
|     // Get the embeddings for the ith token
 | ||
|     // llama_get_embeddings(ctx) + i*n_embd
 | ||
|     // shape: [n_embd] (1-dimensional)
 | ||
|     LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
 | ||
| 
 | ||
|     // Get the embeddings for a sequence id
 | ||
|     // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
 | ||
|     // shape: [n_embd] (1-dimensional)
 | ||
|     LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
 | ||
| 
 | ||
|     //
 | ||
|     // Vocab
 | ||
|     //
 | ||
| 
 | ||
|     LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
 | ||
| 
 | ||
|     LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
 | ||
| 
 | ||
|     LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
 | ||
| 
 | ||
|     // Special tokens
 | ||
|     LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
 | ||
|     LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
 | ||
|     LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
 | ||
| 
 | ||
|     // Returns -1 if unknown, 1 for true or 0 for false.
 | ||
|     LLAMA_API int32_t         llama_add_bos_token(const struct llama_model * model);
 | ||
| 
 | ||
|     // Returns -1 if unknown, 1 for true or 0 for false.
 | ||
|     LLAMA_API int32_t         llama_add_eos_token(const struct llama_model * model);
 | ||
| 
 | ||
|     // codellama infill tokens
 | ||
|     LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
 | ||
|     LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
 | ||
|     LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
 | ||
|     LLAMA_API llama_token llama_token_eot   (const struct llama_model * model); // End of infill middle
 | ||
| 
 | ||
|     //
 | ||
|     // Tokenization
 | ||
|     //
 | ||
| 
 | ||
|     /// @details Convert the provided text into tokens.
 | ||
|     /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
 | ||
|     /// @return Returns the number of tokens on success, no more than n_tokens_max
 | ||
|     /// @return Returns a negative number on failure - the number of tokens that would have been returned
 | ||
|     /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
 | ||
|     ///                Does not insert a leading space.
 | ||
|     LLAMA_API int32_t llama_tokenize(
 | ||
|         const struct llama_model * model,
 | ||
|                       const char * text,
 | ||
|                          int32_t   text_len,
 | ||
|                      llama_token * tokens,
 | ||
|                          int32_t   n_tokens_max,
 | ||
|                             bool   add_bos,
 | ||
|                             bool   special);
 | ||
| 
 | ||
|     // Token Id -> Piece.
 | ||
|     // Uses the vocabulary in the provided context.
 | ||
|     // Does not write null terminator to the buffer.
 | ||
|     // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
 | ||
|     LLAMA_API int32_t llama_token_to_piece(
 | ||
|               const struct llama_model * model,
 | ||
|                            llama_token   token,
 | ||
|                                   char * buf,
 | ||
|                                int32_t   length);
 | ||
| 
 | ||
|     /// Apply chat template. Inspired by hf apply_chat_template() on python.
 | ||
|     /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
 | ||
|     /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
 | ||
|     /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
 | ||
|     /// @param chat Pointer to a list of multiple llama_chat_message
 | ||
|     /// @param n_msg Number of llama_chat_message in this chat
 | ||
|     /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
 | ||
|     /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
 | ||
|     /// @param length The size of the allocated buffer
 | ||
|     /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
 | ||
|     LLAMA_API int32_t llama_chat_apply_template(
 | ||
|               const struct llama_model * model,
 | ||
|                             const char * tmpl,
 | ||
|        const struct llama_chat_message * chat,
 | ||
|                                 size_t   n_msg,
 | ||
|                                   bool   add_ass,
 | ||
|                                   char * buf,
 | ||
|                                int32_t   length);
 | ||
| 
 | ||
|     //
 | ||
|     // Grammar
 | ||
|     //
 | ||
| 
 | ||
|     LLAMA_API struct llama_grammar * llama_grammar_init(
 | ||
|             const llama_grammar_element ** rules,
 | ||
|                                  size_t    n_rules,
 | ||
|                                  size_t    start_rule_index);
 | ||
| 
 | ||
|     LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
 | ||
| 
 | ||
|     LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
 | ||
| 
 | ||
|     //
 | ||
|     // Sampling functions
 | ||
|     //
 | ||
| 
 | ||
|     // Sets the current rng seed.
 | ||
|     LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
 | ||
| 
 | ||
|     /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
 | ||
|     /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
 | ||
|     LLAMA_API void llama_sample_repetition_penalties(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|                const llama_token * last_tokens,
 | ||
|                           size_t   penalty_last_n,
 | ||
|                            float   penalty_repeat,
 | ||
|                            float   penalty_freq,
 | ||
|                            float   penalty_present);
 | ||
| 
 | ||
|     /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
 | ||
|     /// @param logits Logits extracted from the original generation context.
 | ||
|     /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
 | ||
|     /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
 | ||
|     LLAMA_API void llama_sample_apply_guidance(
 | ||
|               struct llama_context * ctx,
 | ||
|                              float * logits,
 | ||
|                              float * logits_guidance,
 | ||
|                              float   scale);
 | ||
| 
 | ||
|     /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
 | ||
|     LLAMA_API void llama_sample_softmax(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates);
 | ||
| 
 | ||
|     /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
 | ||
|     LLAMA_API void llama_sample_top_k(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|                          int32_t   k,
 | ||
|                           size_t   min_keep);
 | ||
| 
 | ||
|     /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
 | ||
|     LLAMA_API void llama_sample_top_p(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|                            float   p,
 | ||
|                           size_t   min_keep);
 | ||
| 
 | ||
|     /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
 | ||
|     LLAMA_API void llama_sample_min_p(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|                            float   p,
 | ||
|                           size_t   min_keep);
 | ||
| 
 | ||
|     /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
 | ||
|     LLAMA_API void llama_sample_tail_free(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|                            float   z,
 | ||
|                           size_t   min_keep);
 | ||
| 
 | ||
|     /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
 | ||
|     LLAMA_API void llama_sample_typical(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|                            float   p,
 | ||
|                           size_t   min_keep);
 | ||
| 
 | ||
|     /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
 | ||
|     LLAMA_API void llama_sample_entropy(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates_p,
 | ||
|                            float   min_temp,
 | ||
|                            float   max_temp,
 | ||
|                            float   exponent_val);
 | ||
| 
 | ||
|     LLAMA_API void llama_sample_temp(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|                            float   temp);
 | ||
| 
 | ||
|     /// @details Apply constraints from grammar
 | ||
|     LLAMA_API void llama_sample_grammar(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|       const struct llama_grammar * grammar);
 | ||
| 
 | ||
|     /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
 | ||
|     /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
 | ||
|     /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
 | ||
|     /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
 | ||
|     /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
 | ||
|     /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
 | ||
|     LLAMA_API llama_token llama_sample_token_mirostat(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|                            float   tau,
 | ||
|                            float   eta,
 | ||
|                          int32_t   m,
 | ||
|                            float * mu);
 | ||
| 
 | ||
|     /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
 | ||
|     /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
 | ||
|     /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
 | ||
|     /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
 | ||
|     /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
 | ||
|     LLAMA_API llama_token llama_sample_token_mirostat_v2(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates,
 | ||
|                            float   tau,
 | ||
|                            float   eta,
 | ||
|                            float * mu);
 | ||
| 
 | ||
|     /// @details Selects the token with the highest probability.
 | ||
|     ///          Does not compute the token probabilities. Use llama_sample_softmax() instead.
 | ||
|     LLAMA_API llama_token llama_sample_token_greedy(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates);
 | ||
| 
 | ||
|     /// @details Randomly selects a token from the candidates based on their probabilities.
 | ||
|     LLAMA_API llama_token llama_sample_token(
 | ||
|             struct llama_context * ctx,
 | ||
|           llama_token_data_array * candidates);
 | ||
| 
 | ||
|     /// @details Accepts the sampled token into the grammar
 | ||
|     LLAMA_API void llama_grammar_accept_token(
 | ||
|             struct llama_context * ctx,
 | ||
|             struct llama_grammar * grammar,
 | ||
|                      llama_token   token);
 | ||
| 
 | ||
|     //
 | ||
|     // Beam search
 | ||
|     //
 | ||
| 
 | ||
|     struct llama_beam_view {
 | ||
|         const llama_token * tokens;
 | ||
| 
 | ||
|         size_t n_tokens;
 | ||
|         float  p;        // Cumulative beam probability (renormalized relative to all beams)
 | ||
|         bool   eob;      // Callback should set this to true when a beam is at end-of-beam.
 | ||
|     };
 | ||
| 
 | ||
|     // Passed to beam_search_callback function.
 | ||
|     // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
 | ||
|     // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
 | ||
|     // These pointers are valid only during the synchronous callback, so should not be saved.
 | ||
|     struct llama_beams_state {
 | ||
|         struct llama_beam_view * beam_views;
 | ||
| 
 | ||
|         size_t n_beams;               // Number of elements in beam_views[].
 | ||
|         size_t common_prefix_length;  // Current max length of prefix tokens shared by all beams.
 | ||
|         bool   last_call;             // True iff this is the last callback invocation.
 | ||
|     };
 | ||
| 
 | ||
|     // Type of pointer to the beam_search_callback function.
 | ||
|     // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
 | ||
|     // passed back to beam_search_callback. This avoids having to use global variables in the callback.
 | ||
|     typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
 | ||
| 
 | ||
|     /// @details Deterministically returns entire sentence constructed by a beam search.
 | ||
|     /// @param ctx Pointer to the llama_context.
 | ||
|     /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
 | ||
|     /// @param callback_data A pointer that is simply passed back to callback.
 | ||
|     /// @param n_beams Number of beams to use.
 | ||
|     /// @param n_past Number of tokens already evaluated.
 | ||
|     /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
 | ||
|     LLAMA_API void llama_beam_search(
 | ||
|                    struct llama_context * ctx,
 | ||
|         llama_beam_search_callback_fn_t   callback,
 | ||
|                                    void * callback_data,
 | ||
|                                  size_t   n_beams,
 | ||
|                                 int32_t   n_past,
 | ||
|                                 int32_t   n_predict);
 | ||
| 
 | ||
|     /// @details Build a split GGUF final path for this chunk.
 | ||
|     ///          llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
 | ||
|     //  Returns the split_path length.
 | ||
|     LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
 | ||
| 
 | ||
|     /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
 | ||
|     ///          llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
 | ||
|     //  Returns the split_prefix length.
 | ||
|     LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
 | ||
| 
 | ||
|     // Performance information
 | ||
|     LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
 | ||
| 
 | ||
|     LLAMA_API void llama_print_timings(struct llama_context * ctx);
 | ||
|     LLAMA_API void llama_reset_timings(struct llama_context * ctx);
 | ||
| 
 | ||
|     // Print system information
 | ||
|     LLAMA_API const char * llama_print_system_info(void);
 | ||
| 
 | ||
|     // Set callback for all future logging events.
 | ||
|     // If this is not called, or NULL is supplied, everything is output on stderr.
 | ||
|     LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
 | ||
| 
 | ||
|     LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
 | ||
| 
 | ||
| #ifdef __cplusplus
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
 | ||
| #ifdef LLAMA_API_INTERNAL
 | ||
| 
 | ||
| #include <vector>
 | ||
| #include <string>
 | ||
| 
 | ||
| struct ggml_tensor;
 | ||
| 
 | ||
| const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
 | ||
|     struct llama_context * ctx
 | ||
| );
 | ||
| 
 | ||
| #endif // LLAMA_API_INTERNAL
 | ||
| 
 | ||
| #endif // LLAMA_H
 |