mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* CUDA: refactor mmq, dmmv, mmvq * fix out-of-bounds write * struct for qk, qr, qi * fix cmake build * mmq_type_traits
		
			
				
	
	
		
			834 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			834 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
#pragma once
 | 
						|
 | 
						|
#include "ggml.h"
 | 
						|
#include "ggml-cuda.h"
 | 
						|
 | 
						|
#include <memory>
 | 
						|
 | 
						|
#if defined(GGML_USE_HIPBLAS)
 | 
						|
#define GGML_COMMON_DECL_HIP
 | 
						|
#define GGML_COMMON_IMPL_HIP
 | 
						|
#else
 | 
						|
#define GGML_COMMON_DECL_CUDA
 | 
						|
#define GGML_COMMON_IMPL_CUDA
 | 
						|
#endif
 | 
						|
#include "ggml-common.h"
 | 
						|
 | 
						|
#include <cstdio>
 | 
						|
#include <array>
 | 
						|
#include <cassert>
 | 
						|
#include <cfloat>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#if defined(GGML_USE_HIPBLAS)
 | 
						|
#include <hip/hip_runtime.h>
 | 
						|
#include <hipblas/hipblas.h>
 | 
						|
#include <hip/hip_fp16.h>
 | 
						|
#ifdef __HIP_PLATFORM_AMD__
 | 
						|
// for rocblas_initialize()
 | 
						|
#include "rocblas/rocblas.h"
 | 
						|
#endif // __HIP_PLATFORM_AMD__
 | 
						|
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
 | 
						|
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
 | 
						|
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
 | 
						|
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
 | 
						|
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
 | 
						|
#define CUBLAS_OP_N HIPBLAS_OP_N
 | 
						|
#define CUBLAS_OP_T HIPBLAS_OP_T
 | 
						|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
 | 
						|
#define CUBLAS_TF32_TENSOR_OP_MATH 0
 | 
						|
#define CUDA_R_16F  HIPBLAS_R_16F
 | 
						|
#define CUDA_R_32F  HIPBLAS_R_32F
 | 
						|
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
 | 
						|
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
 | 
						|
#define cublasCreate hipblasCreate
 | 
						|
#define cublasDestroy hipblasDestroy
 | 
						|
#define cublasGemmEx hipblasGemmEx
 | 
						|
#define cublasGemmBatchedEx hipblasGemmBatchedEx
 | 
						|
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
 | 
						|
#define cublasHandle_t hipblasHandle_t
 | 
						|
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
 | 
						|
#define cublasSetStream hipblasSetStream
 | 
						|
#define cublasSgemm hipblasSgemm
 | 
						|
#define cublasStatus_t hipblasStatus_t
 | 
						|
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
 | 
						|
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
 | 
						|
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
 | 
						|
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
 | 
						|
#define cudaDeviceProp hipDeviceProp_t
 | 
						|
#define cudaDeviceSynchronize hipDeviceSynchronize
 | 
						|
#define cudaError_t hipError_t
 | 
						|
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
 | 
						|
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
 | 
						|
#define cudaEventCreateWithFlags hipEventCreateWithFlags
 | 
						|
#define cudaEventDisableTiming hipEventDisableTiming
 | 
						|
#define cudaEventRecord hipEventRecord
 | 
						|
#define cudaEventSynchronize hipEventSynchronize
 | 
						|
#define cudaEvent_t hipEvent_t
 | 
						|
#define cudaEventDestroy hipEventDestroy
 | 
						|
#define cudaFree hipFree
 | 
						|
#define cudaFreeHost hipHostFree
 | 
						|
#define cudaGetDevice hipGetDevice
 | 
						|
#define cudaGetDeviceCount hipGetDeviceCount
 | 
						|
#define cudaGetDeviceProperties hipGetDeviceProperties
 | 
						|
#define cudaGetErrorString hipGetErrorString
 | 
						|
#define cudaGetLastError hipGetLastError
 | 
						|
#define cudaHostRegister hipHostRegister
 | 
						|
#define cudaHostRegisterPortable hipHostRegisterPortable
 | 
						|
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
 | 
						|
#define cudaHostUnregister hipHostUnregister
 | 
						|
#define cudaLaunchHostFunc hipLaunchHostFunc
 | 
						|
#define cudaMalloc hipMalloc
 | 
						|
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
 | 
						|
#define cudaMemcpy hipMemcpy
 | 
						|
#define cudaMemcpyAsync hipMemcpyAsync
 | 
						|
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
 | 
						|
#define cudaMemcpy2DAsync hipMemcpy2DAsync
 | 
						|
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
 | 
						|
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
 | 
						|
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
 | 
						|
#define cudaMemcpyKind hipMemcpyKind
 | 
						|
#define cudaMemset hipMemset
 | 
						|
#define cudaMemsetAsync hipMemsetAsync
 | 
						|
#define cudaMemGetInfo hipMemGetInfo
 | 
						|
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
 | 
						|
#define cudaSetDevice hipSetDevice
 | 
						|
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
 | 
						|
#define cudaStreamDestroy hipStreamDestroy
 | 
						|
#define cudaStreamFireAndForget hipStreamFireAndForget
 | 
						|
#define cudaStreamNonBlocking hipStreamNonBlocking
 | 
						|
#define cudaStreamPerThread hipStreamPerThread
 | 
						|
#define cudaStreamSynchronize hipStreamSynchronize
 | 
						|
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
 | 
						|
#define cudaStream_t hipStream_t
 | 
						|
#define cudaSuccess hipSuccess
 | 
						|
#define __trap abort
 | 
						|
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
 | 
						|
#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
 | 
						|
#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
 | 
						|
#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
 | 
						|
#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
 | 
						|
#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
 | 
						|
#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
 | 
						|
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
 | 
						|
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
 | 
						|
#else
 | 
						|
#include <cuda_runtime.h>
 | 
						|
#include <cuda.h>
 | 
						|
#include <cublas_v2.h>
 | 
						|
#include <cuda_fp16.h>
 | 
						|
 | 
						|
#if CUDART_VERSION < 11020
 | 
						|
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
 | 
						|
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
 | 
						|
#define CUBLAS_COMPUTE_16F CUDA_R_16F
 | 
						|
#define CUBLAS_COMPUTE_32F CUDA_R_32F
 | 
						|
#define cublasComputeType_t cudaDataType_t
 | 
						|
#endif // CUDART_VERSION < 11020
 | 
						|
 | 
						|
#endif // defined(GGML_USE_HIPBLAS)
 | 
						|
 | 
						|
#define STRINGIZE_IMPL(...) #__VA_ARGS__
 | 
						|
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
 | 
						|
 | 
						|
#define WARP_SIZE 32
 | 
						|
#define CUDART_HMAX   11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
 | 
						|
#define CUDART_HMASK  12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
 | 
						|
 | 
						|
#define CC_PASCAL     600
 | 
						|
#define MIN_CC_DP4A   610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
 | 
						|
#define CC_VOLTA      700
 | 
						|
#define CC_AMPERE     800
 | 
						|
#define CC_OFFSET_AMD 1000000
 | 
						|
#define CC_RDNA1      (CC_OFFSET_AMD + 1010)
 | 
						|
#define CC_RDNA2      (CC_OFFSET_AMD + 1030)
 | 
						|
#define CC_RDNA3      (CC_OFFSET_AMD + 1100)
 | 
						|
 | 
						|
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
 | 
						|
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
 | 
						|
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
 | 
						|
// -  7B quantum model: +100-200 MB
 | 
						|
// - 13B quantum model: +200-400 MB
 | 
						|
//
 | 
						|
//#define GGML_CUDA_FORCE_MMQ
 | 
						|
 | 
						|
// TODO: improve this to be correct for more hardware
 | 
						|
//       for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
 | 
						|
#if !defined(GGML_CUDA_FORCE_MMQ)
 | 
						|
#define CUDA_USE_TENSOR_CORES
 | 
						|
#endif
 | 
						|
 | 
						|
#define MMVQ_MAX_BATCH_SIZE  8 // max batch size to use MMVQ kernels
 | 
						|
#define  MMQ_MAX_BATCH_SIZE 64 // max batch size to use MMQ kernels when tensor cores are available
 | 
						|
 | 
						|
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4244 4267) // possible loss of data
 | 
						|
#endif
 | 
						|
 | 
						|
#define GGML_CUDA_MAX_STREAMS 8
 | 
						|
 | 
						|
[[noreturn]]
 | 
						|
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
 | 
						|
 | 
						|
#define CUDA_CHECK_GEN(err, success, error_fn)                                      \
 | 
						|
     do {                                                                           \
 | 
						|
        auto err_ = (err);                                                          \
 | 
						|
        if (err_ != (success)) {                                                    \
 | 
						|
            ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_));    \
 | 
						|
        }                                                                           \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
 | 
						|
 | 
						|
#if CUDART_VERSION >= 12000
 | 
						|
    static const char * cublas_get_error_str(const cublasStatus_t err) {
 | 
						|
        return cublasGetStatusString(err);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    static const char * cublas_get_error_str(const cublasStatus_t err) {
 | 
						|
        switch (err) {
 | 
						|
            case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
 | 
						|
            case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
 | 
						|
            case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
 | 
						|
            case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
 | 
						|
            case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
 | 
						|
            case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
 | 
						|
            case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
 | 
						|
            case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
 | 
						|
            case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
 | 
						|
            default: return "unknown error";
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif // CUDART_VERSION >= 12000
 | 
						|
 | 
						|
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
 | 
						|
 | 
						|
#if !defined(GGML_USE_HIPBLAS)
 | 
						|
static const char * cu_get_error_str(CUresult err) {
 | 
						|
    const char * err_str;
 | 
						|
    cuGetErrorString(err, &err_str);
 | 
						|
    return err_str;
 | 
						|
}
 | 
						|
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
 | 
						|
#endif
 | 
						|
 | 
						|
#if CUDART_VERSION >= 11100
 | 
						|
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
 | 
						|
#else
 | 
						|
#define GGML_CUDA_ASSUME(x)
 | 
						|
#endif // CUDART_VERSION >= 11100
 | 
						|
 | 
						|
#ifdef GGML_CUDA_F16
 | 
						|
typedef half dfloat; // dequantize float
 | 
						|
typedef half2 dfloat2;
 | 
						|
#else
 | 
						|
typedef float dfloat; // dequantize float
 | 
						|
typedef float2 dfloat2;
 | 
						|
#endif //GGML_CUDA_F16
 | 
						|
 | 
						|
#if defined(GGML_USE_HIPBLAS)
 | 
						|
#define __CUDA_ARCH__ 1300
 | 
						|
 | 
						|
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
 | 
						|
    defined(__gfx1150__) || defined(__gfx1151__)
 | 
						|
#define RDNA3
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
 | 
						|
    defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
 | 
						|
#define RDNA2
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __has_builtin
 | 
						|
    #define __has_builtin(x) 0
 | 
						|
#endif
 | 
						|
 | 
						|
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
 | 
						|
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
 | 
						|
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
 | 
						|
    const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
 | 
						|
    const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
 | 
						|
#if __has_builtin(__builtin_elementwise_sub_sat)
 | 
						|
    const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
 | 
						|
    return reinterpret_cast<const int &>(c);
 | 
						|
#else
 | 
						|
    int8x4_t c;
 | 
						|
    int16_t tmp;
 | 
						|
#pragma unroll
 | 
						|
    for (int i = 0; i < 4; i++) {
 | 
						|
        tmp = va[i] - vb[i];
 | 
						|
        if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
 | 
						|
        if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
 | 
						|
        c[i] = tmp;
 | 
						|
    }
 | 
						|
    return reinterpret_cast<int &>(c);
 | 
						|
#endif // __has_builtin(__builtin_elementwise_sub_sat)
 | 
						|
}
 | 
						|
 | 
						|
static __device__ __forceinline__ int __vsub4(const int a, const int b) {
 | 
						|
    return __vsubss4(a, b);
 | 
						|
}
 | 
						|
 | 
						|
static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
 | 
						|
    const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
 | 
						|
    const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
 | 
						|
    unsigned int c;
 | 
						|
    uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
 | 
						|
#pragma unroll
 | 
						|
    for (int i = 0; i < 4; ++i) {
 | 
						|
        vc[i] = va[i] == vb[i] ? 0xff : 0x00;
 | 
						|
    }
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
 | 
						|
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
 | 
						|
    c = __builtin_amdgcn_sdot4(a, b, c, false);
 | 
						|
#elif defined(RDNA3)
 | 
						|
    c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
 | 
						|
#elif defined(__gfx1010__) || defined(__gfx900__)
 | 
						|
    int tmp1;
 | 
						|
    int tmp2;
 | 
						|
    asm("\n \
 | 
						|
        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
 | 
						|
        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
 | 
						|
        v_add3_u32 %0, %1, %2, %0 \n \
 | 
						|
        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
 | 
						|
        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
 | 
						|
        v_add3_u32 %0, %1, %2, %0 \n \
 | 
						|
        "
 | 
						|
        : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
 | 
						|
        : "v"(a), "v"(b)
 | 
						|
    );
 | 
						|
#else
 | 
						|
    const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
 | 
						|
    const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
 | 
						|
    c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
 | 
						|
#endif
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
 | 
						|
// __shfl_xor() for half2 was added in ROCm 5.6
 | 
						|
static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
 | 
						|
    typedef union half2_b32 {
 | 
						|
        half2 val;
 | 
						|
        int   b32;
 | 
						|
    } half2_b32_t;
 | 
						|
    half2_b32_t tmp;
 | 
						|
    tmp.val = var;
 | 
						|
    tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
 | 
						|
    return tmp.val;
 | 
						|
}
 | 
						|
#endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
 | 
						|
#endif // defined(GGML_USE_HIPBLAS)
 | 
						|
 | 
						|
#define FP16_AVAILABLE (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
 | 
						|
 | 
						|
#define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
 | 
						|
 | 
						|
static bool fast_fp16_available(const int cc) {
 | 
						|
    return cc >= CC_PASCAL && cc != 610;
 | 
						|
}
 | 
						|
 | 
						|
static bool fp16_mma_available(const int cc) {
 | 
						|
    return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
 | 
						|
}
 | 
						|
 | 
						|
[[noreturn]]
 | 
						|
static __device__ void no_device_code(
 | 
						|
    const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
 | 
						|
 | 
						|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
    printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
 | 
						|
           file_name, line, function_name, arch);
 | 
						|
    GGML_UNUSED(arch_list);
 | 
						|
#else
 | 
						|
    printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
 | 
						|
           file_name, line, function_name, arch, arch_list);
 | 
						|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
    __trap();
 | 
						|
 | 
						|
    GGML_UNUSED(no_device_code); // suppress unused function warning
 | 
						|
}
 | 
						|
 | 
						|
#ifdef __CUDA_ARCH__
 | 
						|
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
 | 
						|
#else
 | 
						|
#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
 | 
						|
#endif // __CUDA_ARCH__
 | 
						|
 | 
						|
static __device__ __forceinline__ float warp_reduce_sum(float x) {
 | 
						|
#pragma unroll
 | 
						|
    for (int mask = 16; mask > 0; mask >>= 1) {
 | 
						|
        x += __shfl_xor_sync(0xffffffff, x, mask, 32);
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
 | 
						|
#pragma unroll
 | 
						|
    for (int mask = 16; mask > 0; mask >>= 1) {
 | 
						|
        a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
 | 
						|
        a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
 | 
						|
#if FP16_AVAILABLE
 | 
						|
 | 
						|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
#pragma unroll
 | 
						|
    for (int mask = 16; mask > 0; mask >>= 1) {
 | 
						|
        const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
 | 
						|
        reinterpret_cast<half&>(a.x) +=  __low2half(a_other);
 | 
						|
        reinterpret_cast<half&>(a.y) += __high2half(a_other);
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
#else
 | 
						|
#pragma unroll
 | 
						|
    for (int mask = 16; mask > 0; mask >>= 1) {
 | 
						|
        a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
 | 
						|
 | 
						|
#else
 | 
						|
    NO_DEVICE_CODE;
 | 
						|
    return a;
 | 
						|
#endif // FP16_AVAILABLE
 | 
						|
}
 | 
						|
 | 
						|
static __device__ __forceinline__ float warp_reduce_max(float x) {
 | 
						|
#pragma unroll
 | 
						|
    for (int mask = 16; mask > 0; mask >>= 1) {
 | 
						|
        x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
 | 
						|
#if FP16_AVAILABLE
 | 
						|
 | 
						|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
 | 
						|
    return __float2half(fmaxf(__half2float(a), __half2float(b)));
 | 
						|
#else
 | 
						|
    return __hmax(a, b);
 | 
						|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
 | 
						|
 | 
						|
#else
 | 
						|
   NO_DEVICE_CODE;
 | 
						|
   GGML_UNUSED(b);
 | 
						|
   return a;
 | 
						|
#endif // FP16_AVAILABLE
 | 
						|
}
 | 
						|
 | 
						|
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
 | 
						|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
 | 
						|
 | 
						|
#if CUDART_VERSION >= CUDART_HMAX
 | 
						|
    return __hmax2(a, b);
 | 
						|
#else
 | 
						|
    half2 ret;
 | 
						|
    reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a),  __low2float(b)));
 | 
						|
    reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
 | 
						|
    return ret;
 | 
						|
#endif // CUDART_VERSION >= CUDART_HMAX
 | 
						|
 | 
						|
#else
 | 
						|
    GGML_UNUSED(a);
 | 
						|
    GGML_UNUSED(b);
 | 
						|
    NO_DEVICE_CODE;
 | 
						|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
 | 
						|
}
 | 
						|
 | 
						|
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
 | 
						|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
 | 
						|
#pragma unroll
 | 
						|
   for (int mask = 16; mask > 0; mask >>= 1) {
 | 
						|
       x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
 | 
						|
   }
 | 
						|
   return x;
 | 
						|
#else
 | 
						|
   GGML_UNUSED(x);
 | 
						|
   NO_DEVICE_CODE;
 | 
						|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
 | 
						|
}
 | 
						|
 | 
						|
#if CUDART_VERSION < CUDART_HMASK
 | 
						|
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
 | 
						|
    const uint32_t mask_low  = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
 | 
						|
    const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
 | 
						|
    return mask_low | mask_high;
 | 
						|
}
 | 
						|
#endif // CUDART_VERSION < 12000
 | 
						|
 | 
						|
// TODO: move to ggml-common.h
 | 
						|
static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
 | 
						|
 | 
						|
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
 | 
						|
 | 
						|
static __device__ __forceinline__ float get_alibi_slope(
 | 
						|
    const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
 | 
						|
) {
 | 
						|
    if (max_bias <= 0.0f) {
 | 
						|
        return 1.0f;
 | 
						|
    }
 | 
						|
    const float base = h < n_head_log2 ? m0 : m1;
 | 
						|
    const int   exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
 | 
						|
 | 
						|
    return powf(base, exph);
 | 
						|
}
 | 
						|
 | 
						|
template <ggml_type type>
 | 
						|
struct ggml_cuda_type_traits;
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_F16> {
 | 
						|
    static constexpr int qk = 1;
 | 
						|
    static constexpr int qr = 1;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q4_0> {
 | 
						|
    static constexpr int qk = QK4_0;
 | 
						|
    static constexpr int qr = QR4_0;
 | 
						|
    static constexpr int qi = QI4_0;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q4_1> {
 | 
						|
    static constexpr int qk = QK4_1;
 | 
						|
    static constexpr int qr = QR4_1;
 | 
						|
    static constexpr int qi = QI4_1;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q5_0> {
 | 
						|
    static constexpr int qk = QK5_0;
 | 
						|
    static constexpr int qr = QR5_0;
 | 
						|
    static constexpr int qi = QI5_0;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q5_1> {
 | 
						|
    static constexpr int qk = QK5_1;
 | 
						|
    static constexpr int qr = QR5_1;
 | 
						|
    static constexpr int qi = QI5_1;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
 | 
						|
    static constexpr int qk = QK8_0;
 | 
						|
    static constexpr int qr = QR8_0;
 | 
						|
    static constexpr int qi = QI8_0;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR2_K;
 | 
						|
    static constexpr int qi = QI2_K;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q3_K> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR3_K;
 | 
						|
    static constexpr int qi = QI3_K;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q4_K> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR4_K;
 | 
						|
    static constexpr int qi = QI4_K;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q5_K> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR5_K;
 | 
						|
    static constexpr int qi = QI5_K;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_Q6_K> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR6_K;
 | 
						|
    static constexpr int qi = QI6_K;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XXS> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR2_XXS;
 | 
						|
    static constexpr int qi = QI2_XXS;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XS> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR2_XS;
 | 
						|
    static constexpr int qi = QI2_XS;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_S> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR2_S;
 | 
						|
    static constexpr int qi = QI2_S;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_XXS> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR3_XXS;
 | 
						|
    static constexpr int qi = QI3_XXS;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR1_S;
 | 
						|
    static constexpr int qi = QI1_S;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR1_M;
 | 
						|
    static constexpr int qi = QI1_M;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> {
 | 
						|
    static constexpr int qk = QK4_NL;
 | 
						|
    static constexpr int qr = QR4_NL;
 | 
						|
    static constexpr int qi = QI4_NL;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_XS> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR4_XS;
 | 
						|
    static constexpr int qi = QI4_XS;
 | 
						|
};
 | 
						|
 | 
						|
template<>
 | 
						|
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> {
 | 
						|
    static constexpr int qk = QK_K;
 | 
						|
    static constexpr int qr = QR3_S;
 | 
						|
    static constexpr int qi = QI3_S;
 | 
						|
};
 | 
						|
 | 
						|
static int get_mmq_x_max_host(const int cc) {
 | 
						|
#ifdef CUDA_USE_TENSOR_CORES
 | 
						|
    return cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_MAX_BATCH_SIZE : 64;
 | 
						|
#else
 | 
						|
    return cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64;
 | 
						|
#endif // CUDA_USE_TENSOR_CORES
 | 
						|
}
 | 
						|
 | 
						|
// Round rows to this value for --split-mode row:
 | 
						|
static int get_mmq_y_host(const int cc, const int mmq_x) {
 | 
						|
    return cc >= CC_VOLTA && mmq_x >= 32 ? 128 : 64;
 | 
						|
}
 | 
						|
 | 
						|
//////////////////////
 | 
						|
 | 
						|
struct ggml_cuda_device_info {
 | 
						|
    int device_count;
 | 
						|
 | 
						|
    struct cuda_device_info {
 | 
						|
        int     cc;                 // compute capability
 | 
						|
        int     nsm;                // number of streaming multiprocessors
 | 
						|
        size_t  smpb;               // max. shared memory per block
 | 
						|
        bool    vmm;                // virtual memory support
 | 
						|
        size_t  vmm_granularity;    // granularity of virtual memory
 | 
						|
        size_t  total_vram;
 | 
						|
    };
 | 
						|
 | 
						|
    cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
 | 
						|
 | 
						|
    std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
 | 
						|
};
 | 
						|
 | 
						|
const ggml_cuda_device_info & ggml_cuda_info();
 | 
						|
 | 
						|
void ggml_cuda_set_device(int device);
 | 
						|
int ggml_cuda_get_device();
 | 
						|
 | 
						|
struct ggml_cuda_pool {
 | 
						|
    virtual ~ggml_cuda_pool() = default;
 | 
						|
 | 
						|
    virtual void * alloc(size_t size, size_t * actual_size) = 0;
 | 
						|
    virtual void free(void * ptr, size_t size) = 0;
 | 
						|
};
 | 
						|
 | 
						|
template<typename T>
 | 
						|
struct ggml_cuda_pool_alloc {
 | 
						|
    ggml_cuda_pool * pool = nullptr;
 | 
						|
    T * ptr = nullptr;
 | 
						|
    size_t actual_size = 0;
 | 
						|
 | 
						|
    ggml_cuda_pool_alloc() = default;
 | 
						|
 | 
						|
    explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
 | 
						|
        alloc(size);
 | 
						|
    }
 | 
						|
 | 
						|
    ~ggml_cuda_pool_alloc() {
 | 
						|
        if (ptr != nullptr) {
 | 
						|
            pool->free(ptr, actual_size);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // size is in number of elements
 | 
						|
    T * alloc(size_t size) {
 | 
						|
        GGML_ASSERT(pool != nullptr);
 | 
						|
        GGML_ASSERT(ptr == nullptr);
 | 
						|
        ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
 | 
						|
        return ptr;
 | 
						|
    }
 | 
						|
 | 
						|
    T * alloc(ggml_cuda_pool & pool, size_t size) {
 | 
						|
        this->pool = &pool;
 | 
						|
        return alloc(size);
 | 
						|
    }
 | 
						|
 | 
						|
    T * get() {
 | 
						|
        return ptr;
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
 | 
						|
    ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
 | 
						|
    ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
 | 
						|
    ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// backend interface
 | 
						|
 | 
						|
struct ggml_tensor_extra_gpu {
 | 
						|
    void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
 | 
						|
    cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
 | 
						|
#define USE_CUDA_GRAPH
 | 
						|
#endif
 | 
						|
 | 
						|
struct ggml_graph_node_properties {
 | 
						|
    void * node_address;
 | 
						|
    ggml_op node_op;
 | 
						|
    int64_t ne[GGML_MAX_DIMS];
 | 
						|
    size_t nb[GGML_MAX_DIMS];
 | 
						|
    void * src_address[GGML_MAX_SRC];
 | 
						|
};
 | 
						|
 | 
						|
struct ggml_cuda_graph {
 | 
						|
#ifdef USE_CUDA_GRAPH
 | 
						|
    ~ggml_cuda_graph() {
 | 
						|
        if (instance != nullptr) {
 | 
						|
            CUDA_CHECK(cudaGraphExecDestroy(instance));
 | 
						|
        }
 | 
						|
        if (graph != nullptr) {
 | 
						|
            CUDA_CHECK(cudaGraphDestroy(graph));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    cudaGraph_t graph = nullptr;
 | 
						|
    cudaGraphExec_t instance = nullptr;
 | 
						|
    size_t num_nodes = 0;
 | 
						|
    std::vector<cudaGraphNode_t> nodes;
 | 
						|
    std::vector<cudaKernelNodeParams> params;
 | 
						|
    bool disable_due_to_gpu_arch = false;
 | 
						|
    bool disable_due_to_too_many_updates = false;
 | 
						|
    bool disable_due_to_failed_graph_capture = false;
 | 
						|
    int number_consecutive_updates = 0;
 | 
						|
    std::vector<ggml_graph_node_properties> ggml_graph_properties;
 | 
						|
    std::vector<char **> updated_kernel_arg;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
struct ggml_backend_cuda_context {
 | 
						|
    int device;
 | 
						|
    std::string name;
 | 
						|
    cudaEvent_t copy_event = nullptr;
 | 
						|
 | 
						|
    cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
 | 
						|
    cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
 | 
						|
 | 
						|
    std::unique_ptr<ggml_cuda_graph> cuda_graph;
 | 
						|
 | 
						|
    explicit ggml_backend_cuda_context(int device) :
 | 
						|
        device(device),
 | 
						|
        name(GGML_CUDA_NAME + std::to_string(device)) {
 | 
						|
    }
 | 
						|
 | 
						|
    ~ggml_backend_cuda_context() {
 | 
						|
        if (copy_event != nullptr) {
 | 
						|
            CUDA_CHECK(cudaEventDestroy(copy_event));
 | 
						|
        }
 | 
						|
        for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
 | 
						|
            for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
 | 
						|
                if (streams[i][j] != nullptr) {
 | 
						|
                    CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (cublas_handles[i] != nullptr) {
 | 
						|
                CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    cudaStream_t stream(int device, int stream) {
 | 
						|
        if (streams[device][stream] == nullptr) {
 | 
						|
            ggml_cuda_set_device(device);
 | 
						|
            CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
 | 
						|
        }
 | 
						|
        return streams[device][stream];
 | 
						|
    }
 | 
						|
 | 
						|
    cudaStream_t stream() {
 | 
						|
        return stream(device, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    cublasHandle_t cublas_handle(int device) {
 | 
						|
        if (cublas_handles[device] == nullptr) {
 | 
						|
            ggml_cuda_set_device(device);
 | 
						|
            CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
 | 
						|
            CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
 | 
						|
        }
 | 
						|
        return cublas_handles[device];
 | 
						|
    }
 | 
						|
 | 
						|
    cublasHandle_t cublas_handle() {
 | 
						|
        return cublas_handle(device);
 | 
						|
    }
 | 
						|
 | 
						|
    // pool
 | 
						|
    std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
 | 
						|
 | 
						|
    static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
 | 
						|
 | 
						|
    ggml_cuda_pool & pool(int device) {
 | 
						|
        if (pools[device] == nullptr) {
 | 
						|
            pools[device] = new_pool_for_device(device);
 | 
						|
        }
 | 
						|
        return *pools[device];
 | 
						|
    }
 | 
						|
 | 
						|
    ggml_cuda_pool & pool() {
 | 
						|
        return pool(device);
 | 
						|
    }
 | 
						|
};
 |