mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 d01bccde9f
			
		
	
	d01bccde9f
	
	
	
		
			
			* ci : run ctest ggml-ci * ci : add open llama 3B-v2 tests ggml-ci * ci : disable wget progress output ggml-ci * ci : add open llama 3B-v2 tg tests for q4 and q5 quantizations ggml-ci * tests : try to fix tail free sampling test ggml-ci * ci : add K-quants ggml-ci * ci : add short perplexity tests ggml-ci * ci : add README.md * ppl : add --chunks argument to limit max number of chunks ggml-ci * ci : update README
		
			
				
	
	
		
			151 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Various helper functions and utilities
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <random>
 | |
| #include <thread>
 | |
| #include <unordered_map>
 | |
| #include <tuple>
 | |
| 
 | |
| #if !defined (_WIN32)
 | |
| #include <stdio.h>
 | |
| #include <termios.h>
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // CLI argument parsing
 | |
| //
 | |
| int32_t get_num_physical_cores();
 | |
| 
 | |
| struct gpt_params {
 | |
|     uint32_t seed                           = -1;  // RNG seed
 | |
|     int32_t n_threads                       = get_num_physical_cores();
 | |
|     int32_t n_predict                       = -1;  // new tokens to predict
 | |
|     int32_t n_ctx                           = 512; // context size
 | |
|     int32_t n_batch                         = 512; // batch size for prompt processing (must be >=32 to use BLAS)
 | |
|     int32_t n_keep                          = 0;   // number of tokens to keep from initial prompt
 | |
|     int32_t n_chunks                        = -1;  // max number of chunks to process (-1 = unlimited)
 | |
|     int32_t n_gpu_layers                    = 0;   // number of layers to store in VRAM
 | |
|     int32_t main_gpu                        = 0;   // the GPU that is used for scratch and small tensors
 | |
|     float   tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
 | |
|     int32_t n_probs                         = 0;   // if greater than 0, output the probabilities of top n_probs tokens.
 | |
|     float   rope_freq_base                  = 10000.0f; // RoPE base frequency
 | |
|     float   rope_freq_scale                 = 1.0f;     // RoPE frequency scaling factor
 | |
| 
 | |
|     // sampling parameters
 | |
|     std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
 | |
|     int32_t top_k             = 40;    // <= 0 to use vocab size
 | |
|     float   top_p             = 0.95f; // 1.0 = disabled
 | |
|     float   tfs_z             = 1.00f; // 1.0 = disabled
 | |
|     float   typical_p         = 1.00f; // 1.0 = disabled
 | |
|     float   temp              = 0.80f; // 1.0 = disabled
 | |
|     float   repeat_penalty    = 1.10f; // 1.0 = disabled
 | |
|     int32_t repeat_last_n     = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
 | |
|     float   frequency_penalty = 0.00f; // 0.0 = disabled
 | |
|     float   presence_penalty  = 0.00f; // 0.0 = disabled
 | |
|     int     mirostat          = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
 | |
|     float   mirostat_tau      = 5.00f; // target entropy
 | |
|     float   mirostat_eta      = 0.10f; // learning rate
 | |
| 
 | |
|     // Classifier-Free Guidance
 | |
|     // https://arxiv.org/abs/2306.17806
 | |
|     std::string cfg_negative_prompt;       // string to help guidance
 | |
|     float       cfg_scale         = 1.f;   // How strong is guidance
 | |
|     float       cfg_smooth_factor = 1.f;   // Smooth factor between old and new logits
 | |
| 
 | |
|     std::string model             = "models/7B/ggml-model.bin"; // model path
 | |
|     std::string model_alias       = "unknown"; // model alias
 | |
|     std::string prompt            = "";
 | |
|     std::string path_prompt_cache = "";  // path to file for saving/loading prompt eval state
 | |
|     std::string input_prefix      = "";  // string to prefix user inputs with
 | |
|     std::string input_suffix      = "";  // string to suffix user inputs with
 | |
|     std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
 | |
| 
 | |
|     std::string lora_adapter = "";  // lora adapter path
 | |
|     std::string lora_base    = "";  // base model path for the lora adapter
 | |
| 
 | |
|     bool low_vram          = false;   // if true, reduce VRAM usage at the cost of performance
 | |
|     bool memory_f16        = true;  // use f16 instead of f32 for memory kv
 | |
|     bool random_prompt     = false; // do not randomize prompt if none provided
 | |
|     bool use_color         = false; // use color to distinguish generations and inputs
 | |
|     bool interactive       = false; // interactive mode
 | |
|     bool prompt_cache_all  = false; // save user input and generations to prompt cache
 | |
|     bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it
 | |
| 
 | |
|     bool embedding         = false; // get only sentence embedding
 | |
|     bool interactive_first = false; // wait for user input immediately
 | |
|     bool multiline_input   = false; // reverse the usage of `\`
 | |
| 
 | |
|     bool instruct          = false; // instruction mode (used for Alpaca models)
 | |
|     bool penalize_nl       = true;  // consider newlines as a repeatable token
 | |
|     bool perplexity        = false; // compute perplexity over the prompt
 | |
|     bool use_mmap          = true;  // use mmap for faster loads
 | |
|     bool use_mlock         = false; // use mlock to keep model in memory
 | |
|     bool mem_test          = false; // compute maximum memory usage
 | |
|     bool numa              = false; // attempt optimizations that help on some NUMA systems
 | |
|     bool export_cgraph     = false; // export the computation graph
 | |
|     bool verbose_prompt    = false; // print prompt tokens before generation
 | |
| };
 | |
| 
 | |
| bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 | |
| 
 | |
| void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 | |
| 
 | |
| std::string gpt_random_prompt(std::mt19937 & rng);
 | |
| 
 | |
| //
 | |
| // Vocab utils
 | |
| //
 | |
| 
 | |
| std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
 | |
| 
 | |
| //
 | |
| // Model utils
 | |
| //
 | |
| 
 | |
| std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
 | |
| struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
 | |
| 
 | |
| //
 | |
| // Console utils
 | |
| //
 | |
| 
 | |
| #define ANSI_COLOR_RED     "\x1b[31m"
 | |
| #define ANSI_COLOR_GREEN   "\x1b[32m"
 | |
| #define ANSI_COLOR_YELLOW  "\x1b[33m"
 | |
| #define ANSI_COLOR_BLUE    "\x1b[34m"
 | |
| #define ANSI_COLOR_MAGENTA "\x1b[35m"
 | |
| #define ANSI_COLOR_CYAN    "\x1b[36m"
 | |
| #define ANSI_COLOR_RESET   "\x1b[0m"
 | |
| #define ANSI_BOLD          "\x1b[1m"
 | |
| 
 | |
| enum console_color_t {
 | |
|     CONSOLE_COLOR_DEFAULT=0,
 | |
|     CONSOLE_COLOR_PROMPT,
 | |
|     CONSOLE_COLOR_USER_INPUT,
 | |
|     CONSOLE_COLOR_ERROR
 | |
| };
 | |
| 
 | |
| struct console_state {
 | |
|     bool multiline_input = false;
 | |
|     bool use_color = false;
 | |
|     console_color_t color = CONSOLE_COLOR_DEFAULT;
 | |
| 
 | |
|     FILE* out = stdout;
 | |
| #if defined (_WIN32)
 | |
|     void* hConsole;
 | |
| #else
 | |
|     FILE* tty = nullptr;
 | |
|     termios prev_state;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| void console_init(console_state & con_st);
 | |
| void console_cleanup(console_state & con_st);
 | |
| void console_set_color(console_state & con_st, console_color_t color);
 | |
| bool console_readline(console_state & con_st, std::string & line);
 |