mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 eb34620aec
			
		
	
	eb34620aec
	
	
	
		
			
			* Add test-tokenizer-0 to do a few tokenizations - feel free to expand * Added option to convert-pth-to-ggml.py script to dump just the vocabulary * Added ./models/ggml-vocab.bin containing just LLaMA vocab data (used for tests) * Added utility to load vocabulary file from previous point (temporary implementation) * Avoid using std::string_view and drop back to C++11 (hope I didn't break something) * Rename gpt_vocab -> llama_vocab * All CMake binaries go into ./bin/ now
		
			
				
	
	
		
			70 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "utils.h"
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <map>
 | |
| 
 | |
| static const std::map<std::string, std::vector<llama_vocab::id>> k_tests = {
 | |
|     { "Hello World",        { 1,  10994,   2787, }, },
 | |
|     { " Hello World",       { 1,  15043,   2787, }, },
 | |
|     { " Hello World!",      { 1,  15043,   2787,  29991, }, },
 | |
|     { " this is 🦙.cpp",    { 1,    445,    338,  29871,    243,    162,    169,    156,  29889,   8223, }, },
 | |
|     { "w048 7tuijk dsdfhu", { 1,  29893,  29900,  29946,  29947,  29871,  29955,   9161,  13535,  18031,   2176,   6905, }, },
 | |
|     { "нещо на Български",  { 1,    821,   4851,    665,   1386,  29713,   1305, }, },
 | |
| };
 | |
| 
 | |
| int main(int argc, char **argv) {
 | |
|     if (argc < 2) {
 | |
|         fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const std::string fname = argv[1];
 | |
| 
 | |
|     fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
 | |
| 
 | |
|     llama_vocab vocab;
 | |
| 
 | |
|     if (!llama_vocab_load(fname, vocab)) {
 | |
|         fprintf(stderr, "%s : failed to load vocab from: '%s'\n", __func__, fname.c_str());
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     const int n_vocab = vocab.id_to_token.size();
 | |
| 
 | |
|     if (n_vocab != 32000) {
 | |
|         fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab);
 | |
|         return 2;
 | |
|     }
 | |
| 
 | |
|     for (const auto & test_kv : k_tests) {
 | |
|         const auto res = llama_tokenize(vocab, test_kv.first, true);
 | |
| 
 | |
|         bool correct = res.size() == test_kv.second.size();
 | |
| 
 | |
|         for (int i = 0; i < (int) res.size() && correct; ++i) {
 | |
|             if (res[i] != test_kv.second[i]) {
 | |
|                 correct = false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!correct) {
 | |
|             fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
 | |
|             fprintf(stderr, "%s : expected tokens: ", __func__);
 | |
|             for (const auto & t : test_kv.second) {
 | |
|                 fprintf(stderr, "%6d, ", t);
 | |
|             }
 | |
|             fprintf(stderr, "\n");
 | |
|             fprintf(stderr, "%s : got tokens:      ", __func__);
 | |
|             for (const auto & t : res) {
 | |
|                 fprintf(stderr, "%6d, ", t);
 | |
|             }
 | |
|             fprintf(stderr, "\n");
 | |
| 
 | |
|             return 3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 |