mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			267 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "llama-memory-hybrid.h"
 | 
						|
 | 
						|
#include "llama-impl.h"
 | 
						|
#include "llama-model.h"
 | 
						|
#include "llama-context.h"
 | 
						|
 | 
						|
//
 | 
						|
// llama_memory_hybrid
 | 
						|
//
 | 
						|
 | 
						|
llama_memory_hybrid::llama_memory_hybrid(
 | 
						|
        const llama_model & model,
 | 
						|
                            /* attn */
 | 
						|
                ggml_type   type_k,
 | 
						|
                ggml_type   type_v,
 | 
						|
                     bool   v_trans,
 | 
						|
                 uint32_t   kv_size,
 | 
						|
                 uint32_t   n_pad,
 | 
						|
                 uint32_t   n_swa,
 | 
						|
           llama_swa_type   swa_type,
 | 
						|
                            /* recurrent */
 | 
						|
                ggml_type   type_r,
 | 
						|
                ggml_type   type_s,
 | 
						|
                 uint32_t   rs_size,
 | 
						|
                            /* common */
 | 
						|
                 uint32_t   n_seq_max,
 | 
						|
                     bool   offload,
 | 
						|
                     bool   unified,
 | 
						|
                            /* layer filters */
 | 
						|
    const layer_filter_cb & filter_attn,
 | 
						|
    const layer_filter_cb & filter_recr) :
 | 
						|
    hparams(model.hparams),
 | 
						|
    mem_attn(new llama_kv_cache(
 | 
						|
        model,
 | 
						|
        type_k,
 | 
						|
        type_v,
 | 
						|
        v_trans,
 | 
						|
        offload,
 | 
						|
        unified,
 | 
						|
        kv_size,
 | 
						|
        n_seq_max,
 | 
						|
        n_pad,
 | 
						|
        n_swa,
 | 
						|
        swa_type,
 | 
						|
        filter_attn == nullptr ?
 | 
						|
            [&](int32_t il) { return !hparams.is_recurrent(il); }
 | 
						|
            : filter_attn,
 | 
						|
        nullptr
 | 
						|
    )),
 | 
						|
    mem_recr(new llama_memory_recurrent(
 | 
						|
        model,
 | 
						|
        type_r,
 | 
						|
        type_s,
 | 
						|
        offload,
 | 
						|
        rs_size,
 | 
						|
        n_seq_max,
 | 
						|
        filter_recr == nullptr ?
 | 
						|
            [&](int32_t il) { return hparams.is_recurrent(il); }
 | 
						|
            : filter_recr
 | 
						|
    )) {}
 | 
						|
 | 
						|
llama_memory_context_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
 | 
						|
    do {
 | 
						|
        balloc.split_reset();
 | 
						|
 | 
						|
        // follow the recurrent pattern for creating the ubatch splits
 | 
						|
        std::vector<llama_ubatch> ubatches;
 | 
						|
 | 
						|
        while (true) {
 | 
						|
            llama_ubatch ubatch;
 | 
						|
 | 
						|
            if (embd_all) {
 | 
						|
                // if all tokens are output, split by sequence
 | 
						|
                ubatch = balloc.split_seq(n_ubatch);
 | 
						|
            } else {
 | 
						|
                ubatch = balloc.split_equal(n_ubatch, false);
 | 
						|
            }
 | 
						|
 | 
						|
            if (ubatch.n_tokens == 0) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            ubatches.push_back(std::move(ubatch)); // NOLINT
 | 
						|
        }
 | 
						|
 | 
						|
        if (balloc.get_n_used() < balloc.get_n_tokens()) {
 | 
						|
            // failed to find a suitable split
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        // prepare the recurrent batches first
 | 
						|
        if (!mem_recr->prepare(ubatches)) {
 | 
						|
            // TODO: will the recurrent cache be in an undefined context at this point?
 | 
						|
            LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
 | 
						|
            return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
 | 
						|
        }
 | 
						|
 | 
						|
        // prepare the attention cache
 | 
						|
        auto heads_attn = mem_attn->prepare(ubatches);
 | 
						|
        if (heads_attn.empty()) {
 | 
						|
            LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
 | 
						|
            return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
 | 
						|
        }
 | 
						|
 | 
						|
        return std::make_unique<llama_memory_hybrid_context>(
 | 
						|
                this, std::move(heads_attn), std::move(ubatches));
 | 
						|
    } while(false);
 | 
						|
 | 
						|
    return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
 | 
						|
}
 | 
						|
 | 
						|
llama_memory_context_ptr llama_memory_hybrid::init_full() {
 | 
						|
    return std::make_unique<llama_memory_hybrid_context>(this);
 | 
						|
}
 | 
						|
 | 
						|
llama_memory_context_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) {
 | 
						|
    return std::make_unique<llama_memory_hybrid_context>(this, lctx, optimize);
 | 
						|
}
 | 
						|
 | 
						|
bool llama_memory_hybrid::get_can_shift() const {
 | 
						|
    // Shifting is trivially supported for recurrent
 | 
						|
    return mem_attn->get_can_shift();
 | 
						|
}
 | 
						|
 | 
						|
void llama_memory_hybrid::clear(bool data) {
 | 
						|
    mem_attn->clear(data);
 | 
						|
    mem_recr->clear(data);
 | 
						|
}
 | 
						|
 | 
						|
bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
 | 
						|
    // Try removing from the recurrent cache first since it may fail. If it does
 | 
						|
    // fail, the cache will not have been mutated.
 | 
						|
    if (!mem_recr->seq_rm(seq_id, p0, p1)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return mem_attn->seq_rm(seq_id, p0, p1);
 | 
						|
}
 | 
						|
 | 
						|
void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
 | 
						|
    mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
 | 
						|
    mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
 | 
						|
}
 | 
						|
 | 
						|
void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) {
 | 
						|
    mem_attn->seq_keep(seq_id);
 | 
						|
    mem_recr->seq_keep(seq_id);
 | 
						|
}
 | 
						|
 | 
						|
void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
 | 
						|
    mem_attn->seq_add(seq_id, p0, p1, shift);
 | 
						|
    mem_recr->seq_add(seq_id, p0, p1, shift);
 | 
						|
}
 | 
						|
 | 
						|
void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
 | 
						|
    mem_attn->seq_div(seq_id, p0, p1, d);
 | 
						|
    mem_recr->seq_div(seq_id, p0, p1, d);
 | 
						|
}
 | 
						|
 | 
						|
llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const {
 | 
						|
    // the min of the total cache is the max of the two caches' min values
 | 
						|
    return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
 | 
						|
}
 | 
						|
 | 
						|
llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const {
 | 
						|
    // the max of the total cache is the min of the two caches' max values
 | 
						|
    return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
 | 
						|
}
 | 
						|
 | 
						|
std::map<ggml_backend_buffer_type_t, size_t> llama_memory_hybrid::memory_breakdown() const {
 | 
						|
    std::map<ggml_backend_buffer_type_t, size_t> mb = mem_attn->memory_breakdown();
 | 
						|
    for (const auto & buft_size : mem_recr->memory_breakdown()) {
 | 
						|
        mb[buft_size.first] += buft_size.second;
 | 
						|
    }
 | 
						|
    return mb;
 | 
						|
}
 | 
						|
 | 
						|
void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
 | 
						|
    GGML_UNUSED(flags);
 | 
						|
 | 
						|
    mem_attn->state_write(io, seq_id);
 | 
						|
    mem_recr->state_write(io, seq_id);
 | 
						|
}
 | 
						|
 | 
						|
void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
 | 
						|
    GGML_UNUSED(flags);
 | 
						|
 | 
						|
    mem_attn->state_read(io, seq_id);
 | 
						|
    mem_recr->state_read(io, seq_id);
 | 
						|
}
 | 
						|
 | 
						|
llama_kv_cache * llama_memory_hybrid::get_mem_attn() const {
 | 
						|
    return mem_attn.get();
 | 
						|
}
 | 
						|
 | 
						|
llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const {
 | 
						|
    return mem_recr.get();
 | 
						|
}
 | 
						|
 | 
						|
llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_status status) : status(status) {}
 | 
						|
 | 
						|
llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_hybrid * mem) :
 | 
						|
    ctx_attn(mem->get_mem_attn()->init_full()),
 | 
						|
    ctx_recr(mem->get_mem_recr()->init_full()),
 | 
						|
    status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
 | 
						|
}
 | 
						|
 | 
						|
llama_memory_hybrid_context::llama_memory_hybrid_context(
 | 
						|
        llama_memory_hybrid * mem,
 | 
						|
              llama_context * lctx,
 | 
						|
                       bool   optimize) :
 | 
						|
    ctx_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
 | 
						|
    ctx_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
 | 
						|
    status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
 | 
						|
}
 | 
						|
 | 
						|
llama_memory_hybrid_context::llama_memory_hybrid_context(
 | 
						|
              llama_memory_hybrid * mem,
 | 
						|
                  slot_info_vec_t   sinfos_attn,
 | 
						|
        std::vector<llama_ubatch>   ubatches) :
 | 
						|
    ubatches(std::move(ubatches)),
 | 
						|
    // note: here we copy the ubatches. not sure if this is ideal
 | 
						|
    ctx_attn(new llama_kv_cache_context(mem->get_mem_attn(), std::move(sinfos_attn), this->ubatches)),
 | 
						|
    ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(),                        this->ubatches)),
 | 
						|
    status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
 | 
						|
}
 | 
						|
 | 
						|
bool llama_memory_hybrid_context::next() {
 | 
						|
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
 | 
						|
 | 
						|
    ctx_attn->next();
 | 
						|
    ctx_recr->next();
 | 
						|
 | 
						|
    if (++i_next >= ubatches.size()) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
bool llama_memory_hybrid_context::apply() {
 | 
						|
    assert(!llama_memory_status_is_fail(status));
 | 
						|
 | 
						|
    bool res = true;
 | 
						|
 | 
						|
    res = res & ctx_attn->apply();
 | 
						|
    res = res & ctx_recr->apply();
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
llama_memory_status llama_memory_hybrid_context::get_status() const {
 | 
						|
    return status;
 | 
						|
}
 | 
						|
 | 
						|
const llama_ubatch & llama_memory_hybrid_context::get_ubatch() const {
 | 
						|
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
 | 
						|
    return ubatches[i_next];
 | 
						|
}
 | 
						|
 | 
						|
const llama_kv_cache_context * llama_memory_hybrid_context::get_attn() const {
 | 
						|
    return static_cast<const llama_kv_cache_context *>(ctx_attn.get());
 | 
						|
}
 | 
						|
 | 
						|
const llama_memory_recurrent_context * llama_memory_hybrid_context::get_recr() const {
 | 
						|
    return static_cast<const llama_memory_recurrent_context *>(ctx_recr.get());
 | 
						|
}
 |