mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1023 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1023 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "convert.hpp"
 | |
| #include "dmmv.hpp"
 | |
| #include "dequantize.hpp"
 | |
| #include "presets.hpp"
 | |
| 
 | |
| static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const sycl::half *x = (const sycl::half *)vx;
 | |
| 
 | |
|     // automatic half -> float type cast if dfloat == float
 | |
|     v.x() = x[ib + iqs + 0];
 | |
|     v.y() = x[ib + iqs + 1];
 | |
| }
 | |
| 
 | |
| static void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const float * x = (const float *) vx;
 | |
| 
 | |
|     // automatic half -> float type cast if dfloat == float
 | |
|     v.x() = x[ib + iqs + 0];
 | |
|     v.y() = x[ib + iqs + 1];
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
 | |
| static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows,
 | |
|                                    const sycl::nd_item<3> &item_ct1) {
 | |
|     // qk = quantized weights per x block
 | |
|     // qr = number of quantized weights per data value in x block
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
| 
 | |
|     if (row >= nrows) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int tid = item_ct1.get_local_id(2);
 | |
| 
 | |
|     const int iter_stride = 2*GGML_SYCL_DMMV_X;
 | |
|     const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
| // partial sum for each thread
 | |
| #ifdef GGML_SYCL_F16
 | |
|     sycl::half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
 | |
| #else
 | |
|     float tmp = 0.0f;
 | |
| #endif // GGML_SYCL_F16
 | |
| 
 | |
|     for (int i = 0; i < ncols; i += iter_stride) {
 | |
|         const int col = i + vals_per_iter*tid;
 | |
|         const int ib = (row*ncols + col)/qk; // x block index
 | |
|         const int iqs = (col%qk)/qr; // x quant index
 | |
|         const int iybs = col - col%qk; // y block start index
 | |
| 
 | |
| // processing >2 values per i iter is faster for fast GPUs
 | |
| #pragma unroll
 | |
|         for (int j = 0; j < vals_per_iter; j += 2) {
 | |
|             // process 2 vals per j iter
 | |
| 
 | |
|             // dequantize
 | |
|             // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
 | |
|             dfloat2 v;
 | |
|             dequantize_kernel(vx, ib, iqs + j/qr, v);
 | |
| 
 | |
|             // matrix multiplication
 | |
|             // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
 | |
| #ifdef GGML_SYCL_F16
 | |
|             dfloat2 t1{y[iybs + iqs + j / qr + 0],
 | |
|                         y[iybs + iqs + j / qr + y_offset]};
 | |
| 
 | |
|             tmp += v * t1;
 | |
| #else
 | |
|             tmp += v.x() * y[iybs + iqs + j / qr + 0];
 | |
|             tmp += v.y() * y[iybs + iqs + j / qr + y_offset];
 | |
| #endif // GGML_SYCL_F16
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
| #ifdef GGML_SYCL_F16
 | |
|         dst[row] = tmp.x() + tmp.y();
 | |
| #else
 | |
|         dst[row] = tmp;
 | |
| #endif // GGML_SYCL_F16
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
 | |
|                                          float *dst, const int ncols,
 | |
|                                          const int nrows,
 | |
|                                          dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
 | |
|                                                           nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
| DPCT1110:4: The total declared local variable size in device function
 | |
| dequantize_mul_mat_vec_q2_k exceeds 128 bytes and may cause high register
 | |
| pressure. Consult with your hardware vendor to find the total register size
 | |
| available and adjust the code, or use smaller sub-group size to avoid high
 | |
| register pressure.
 | |
| */
 | |
| static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
 | |
|                                         const float *__restrict__ yy,
 | |
|                                         float *__restrict__ dst,
 | |
|                                         const int ncols, int nrows,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
 | |
| 
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     if (row > nrows) return;
 | |
| 
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q2_K * x = (const block_q2_K *)vx + ib0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const int tid =
 | |
|         item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
 | |
|     const int ix =
 | |
|         item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
 | |
| 
 | |
|     const int step = 16/K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | |
|     const int in = tid - step*im;                        // 0...15 or 0...7
 | |
| 
 | |
|     const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
 | |
|     const int q_offset = 32*im + l0;
 | |
|     const int s_offset = 8*im;
 | |
|     const int y_offset = 128*im + l0;
 | |
| 
 | |
|     uint32_t aux[4];
 | |
|     const uint8_t * d = (const uint8_t *)aux;
 | |
|     const uint8_t * m = (const uint8_t *)(aux + 2);
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y = yy + i * QK_K + y_offset;
 | |
|         const uint8_t * q = x[i].qs + q_offset;
 | |
| 
 | |
|         const float dall = x[i].dm[0];
 | |
|         const float dmin = x[i].dm[1];
 | |
| 
 | |
|         const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
 | |
|         aux[0] = a[0] & 0x0f0f0f0f;
 | |
|         aux[1] = a[1] & 0x0f0f0f0f;
 | |
|         aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
 | |
|         aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         float sum1 = 0, sum2 = 0;
 | |
|         for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | |
|             sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
 | |
|                   + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
 | |
|                   + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
 | |
|                   + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
 | |
|                   + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
 | |
|                   + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
 | |
|                   + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
 | |
|                   +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
 | |
|             sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
 | |
|                   + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
 | |
| 
 | |
|         }
 | |
|         tmp += dall * sum1 - dmin * sum2;
 | |
| 
 | |
|     }
 | |
| #else
 | |
|     const int tid = item_ct1.get_local_id(2) /
 | |
|                     (2 * K_QUANTS_PER_ITERATION); // 0...15 or 0...7
 | |
|     const int ix = item_ct1.get_local_id(2) %
 | |
|                    (2 * K_QUANTS_PER_ITERATION); // 0....1 or 0...3
 | |
|     const int offset = tid * K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     uint32_t uaux[2];
 | |
|     const uint8_t * d = (const uint8_t *)uaux;
 | |
| 
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y = yy + i * QK_K + offset;
 | |
|         const uint8_t * q = x[i].qs + offset;
 | |
|         const uint32_t * s = (const uint32_t *)x[i].scales;
 | |
| 
 | |
|         uaux[0] = s[0] & 0x0f0f0f0f;
 | |
|         uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         const sycl::float2 dall =
 | |
|             x[i].dm.convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|         float sum1 = 0, sum2 = 0;
 | |
|         for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | |
|             const uint8_t ql = q[l];
 | |
|             sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
 | |
|                   + y[l+16] * d[1] * ((ql >> 2) & 3)
 | |
|                   + y[l+32] * d[2] * ((ql >> 4) & 3)
 | |
|                   + y[l+48] * d[3] * ((ql >> 6) & 3);
 | |
|             sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
 | |
|         }
 | |
|         tmp += dall.x() * sum1 - dall.y() * sum2;
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (item_ct1.get_local_id(2) == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
| DPCT1110:5: The total declared local variable size in device function
 | |
| dequantize_mul_mat_vec_q3_k exceeds 128 bytes and may cause high register
 | |
| pressure. Consult with your hardware vendor to find the total register size
 | |
| available and adjust the code, or use smaller sub-group size to avoid high
 | |
| register pressure.
 | |
| */
 | |
| static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
 | |
|                                         const float *__restrict__ yy,
 | |
|                                         float *__restrict__ dst,
 | |
|                                         const int ncols, int nrows,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     if (row > nrows) return;
 | |
| 
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q3_K * x = (const block_q3_K *)vx + ib0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|     const uint16_t kmask1 = 0x0303;
 | |
|     const uint16_t kmask2 = 0x0f0f;
 | |
| 
 | |
|     const int tid =
 | |
|         item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
 | |
|     const int ix =
 | |
|         item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
 | |
| 
 | |
|     const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
 | |
|     const int step = 16/K_QUANTS_PER_ITERATION;
 | |
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | |
|     const int in = tid - step*im;                        // 0....15 or 0...7
 | |
| 
 | |
|     const uint8_t m = 1 << (4*im);
 | |
| 
 | |
|     const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
 | |
|     const int q_offset =  32*im + l0;
 | |
|     const int y_offset = 128*im + l0;
 | |
| 
 | |
|     uint16_t utmp[4];
 | |
|     const int8_t * s = (const int8_t *)utmp;
 | |
| 
 | |
|     const uint16_t s_shift = 4*im;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y  = yy + i * QK_K + y_offset;
 | |
|         const uint8_t * q = x[i].qs + q_offset;
 | |
|         const uint8_t * h = x[i].hmask + l0;
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
 | |
|         utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
 | |
|         utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
 | |
|         utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
 | |
| 
 | |
|         const float d = x[i].d;
 | |
| 
 | |
|         float sum = 0;
 | |
|         for (int l = 0; l < n; ++l) {
 | |
|             sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
 | |
|                  + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
 | |
|                  + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
 | |
|                  + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
 | |
|             sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
 | |
|                  + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
 | |
|                  + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
 | |
|                 + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
 | |
|         }
 | |
|         tmp += d * sum;
 | |
| 
 | |
|     }
 | |
| #else
 | |
| 
 | |
|     const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
 | |
|     const int ix  = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
 | |
|     const int offset = tid * K_QUANTS_PER_ITERATION;         // 0...15 or 0...14
 | |
|     const int in = offset/8;                                 // 0 or 1
 | |
|     const int im = offset%8;                                 // 0...7
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y = yy + i * QK_K + offset;
 | |
|         const uint8_t * q = x[i].qs + offset;
 | |
|         const uint8_t * s = x[i].scales;
 | |
| 
 | |
|         const float dall = (float)x[i].d;
 | |
| 
 | |
|         float sum = 0;
 | |
|         for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | |
|             const uint8_t hl = x[i].hmask[im+l] >> in;
 | |
|             const uint8_t ql = q[l];
 | |
|             sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
 | |
|                  + y[l+16] * dall * ((s[0] >>  4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
 | |
|                  + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
 | |
|                  + y[l+48] * dall * ((s[1] >>  4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
 | |
|         }
 | |
|         tmp += sum;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (item_ct1.get_local_id(2) == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
| DPCT1110:6: The total declared local variable size in device function
 | |
| dequantize_mul_mat_vec_q4_k exceeds 128 bytes and may cause high register
 | |
| pressure. Consult with your hardware vendor to find the total register size
 | |
| available and adjust the code, or use smaller sub-group size to avoid high
 | |
| register pressure.
 | |
| */
 | |
| static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
 | |
|                                         const float *__restrict__ yy,
 | |
|                                         float *__restrict__ dst,
 | |
|                                         const int ncols, int nrows,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     if (row > nrows) return;
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q4_K * x = (const block_q4_K *)vx + ib0;
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const uint16_t kmask1 = 0x3f3f;
 | |
|     const uint16_t kmask2 = 0x0f0f;
 | |
|     const uint16_t kmask3 = 0xc0c0;
 | |
| 
 | |
|     const int tid =
 | |
|         item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
 | |
|     const int ix =
 | |
|         item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
 | |
| 
 | |
|     const int step = 8/K_QUANTS_PER_ITERATION;           // 8 or 4
 | |
| 
 | |
|     const int il  = tid/step;                            // 0...3
 | |
|     const int ir  = tid - step*il;                       // 0...7 or 0...3
 | |
|     const int n   = 2 * K_QUANTS_PER_ITERATION;          // 2 or 4
 | |
| 
 | |
|     const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
 | |
|     const int in = il%2;
 | |
| 
 | |
|     const int l0 = n*(2*ir + in);
 | |
|     const int q_offset = 32*im + l0;
 | |
|     const int y_offset = 64*im + l0;
 | |
| 
 | |
|     uint16_t aux[4];
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 2
 | |
|     uint32_t q32[4];
 | |
|     const uint8_t * q4 = (const uint8_t *)q32;
 | |
| #else
 | |
|     uint16_t q16[4];
 | |
|     const uint8_t * q4 = (const uint8_t *)q16;
 | |
| #endif
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y1 = yy + i*QK_K + y_offset;
 | |
|         const float   * y2 = y1 + 128;
 | |
| 
 | |
|         const float dall = x[i].dm[0];
 | |
|         const float dmin = x[i].dm[1];
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux[0] = a[im+0] & kmask1;
 | |
|         aux[1] = a[im+2] & kmask1;
 | |
|         aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
 | |
|         aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 2
 | |
|         const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
 | |
|         const uint32_t * q2 = q1 + 16;
 | |
| 
 | |
|         q32[0] = q1[0] & 0x0f0f0f0f;
 | |
|         q32[1] = q1[0] & 0xf0f0f0f0;
 | |
|         q32[2] = q2[0] & 0x0f0f0f0f;
 | |
|         q32[3] = q2[0] & 0xf0f0f0f0;
 | |
| 
 | |
|         sycl::float4 s = {0.f, 0.f, 0.f, 0.f};
 | |
|         float smin = 0;
 | |
|         for (int l = 0; l < 4; ++l) {
 | |
|             s.x() += y1[l] * q4[l + 0]; s.y() += y1[l + 32] * q4[l + 4];
 | |
|             s.z() += y2[l] * q4[l + 8]; s.w() += y2[l + 32] * q4[l + 12];
 | |
|             smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
 | |
|         }
 | |
|         tmp += dall * (s.x() * sc[0] + s.y() * sc[1] * 1.f / 16.f +
 | |
|                        s.z() * sc[4] + s.w() * sc[5] * 1.f / 16.f) -
 | |
|                dmin * smin;
 | |
| #else
 | |
|         const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
 | |
|         const uint16_t * q2 = q1 + 32;
 | |
| 
 | |
|         q16[0] = q1[0] & 0x0f0f;
 | |
|         q16[1] = q1[0] & 0xf0f0;
 | |
|         q16[2] = q2[0] & 0x0f0f;
 | |
|         q16[3] = q2[0] & 0xf0f0;
 | |
| 
 | |
|         float4 s = {0.f, 0.f, 0.f, 0.f};
 | |
|         float smin = 0;
 | |
|         for (int l = 0; l < 2; ++l) {
 | |
|             s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
 | |
|             s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
 | |
|             smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
 | |
|         }
 | |
|         tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
 | |
| #endif
 | |
| 
 | |
|     }
 | |
| #else
 | |
|     const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION);  // 0...15
 | |
|     const int ix  = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
 | |
| 
 | |
|     const int step = tid * K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const uint8_t * s = (const uint8_t *)aux16;
 | |
| 
 | |
|     float tmp = 0;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
|         const uint8_t * q = x[i].qs + step;
 | |
|         const float   * y = yy + i*QK_K + step;
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a[0] & 0x0f0f;
 | |
|         aux16[1] = (a[0] >> 4) & 0x0f0f;
 | |
|         const float d = (float)x[i].dm[0];
 | |
|         const float m = (float)x[i].dm[1];
 | |
|         float sum = 0.f;
 | |
|         for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
 | |
|             sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
 | |
|                  + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
 | |
|                  + y[j+32] * (d * s[1] * (q[j+ 0] >>  4) - m * s[3])
 | |
|                  + y[j+48] * (d * s[1] * (q[j+16] >>  4) - m * s[3]);
 | |
|         }
 | |
|         tmp += sum;
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
| DPCT1110:7: The total declared local variable size in device function
 | |
| dequantize_mul_mat_vec_q5_k exceeds 128 bytes and may cause high register
 | |
| pressure. Consult with your hardware vendor to find the total register size
 | |
| available and adjust the code, or use smaller sub-group size to avoid high
 | |
| register pressure.
 | |
| */
 | |
| static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
 | |
|                                         const float *__restrict__ yy,
 | |
|                                         float *__restrict__ dst,
 | |
|                                         const int ncols,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const int row = item_ct1.get_group(2);
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q5_K * x = (const block_q5_K *)vx + ib0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const uint16_t kmask1 = 0x3f3f;
 | |
|     const uint16_t kmask2 = 0x0f0f;
 | |
|     const uint16_t kmask3 = 0xc0c0;
 | |
| 
 | |
|     const int tid = item_ct1.get_local_id(2) / 2; // 0...15
 | |
|     const int ix = item_ct1.get_local_id(2) % 2;
 | |
| 
 | |
|     const int il  = tid/4;     // 0...3
 | |
|     const int ir  = tid - 4*il;// 0...3
 | |
|     const int n   = 2;
 | |
| 
 | |
|     const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
 | |
|     const int in = il%2;
 | |
| 
 | |
|     const int l0 = n*(2*ir + in);
 | |
|     const int q_offset = 32*im + l0;
 | |
|     const int y_offset = 64*im + l0;
 | |
| 
 | |
|     const uint8_t hm1  = 1 << (2*im);
 | |
|     const uint8_t hm2  = hm1 << 4;
 | |
| 
 | |
|     uint16_t aux[4];
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
| 
 | |
|     uint16_t q16[8];
 | |
|     const uint8_t * q4 = (const uint8_t *)q16;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2) {
 | |
| 
 | |
|         const uint8_t * ql1 = x[i].qs + q_offset;
 | |
|         const uint8_t * qh  = x[i].qh + l0;
 | |
|         const float   * y1  = yy + i*QK_K + y_offset;
 | |
|         const float   * y2  = y1 + 128;
 | |
| 
 | |
|         const float dall = x[i].dm[0];
 | |
|         const float dmin = x[i].dm[1];
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux[0] = a[im+0] & kmask1;
 | |
|         aux[1] = a[im+2] & kmask1;
 | |
|         aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
 | |
|         aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
 | |
| 
 | |
|         sycl::float4 sum = {0.f, 0.f, 0.f, 0.f};
 | |
|         float smin = 0;
 | |
|         const uint16_t * q1 = (const uint16_t *)ql1;
 | |
|         const uint16_t * q2 = q1 + 32;
 | |
|         q16[0] = q1[0] & 0x0f0f;
 | |
|         q16[1] = q1[8] & 0x0f0f;
 | |
|         q16[2] = (q1[0] >> 4) & 0x0f0f;
 | |
|         q16[3] = (q1[8] >> 4) & 0x0f0f;
 | |
|         q16[4] = q2[0] & 0x0f0f;
 | |
|         q16[5] = q2[8] & 0x0f0f;
 | |
|         q16[6] = (q2[0] >> 4) & 0x0f0f;
 | |
|         q16[7] = (q2[8] >> 4) & 0x0f0f;
 | |
|         for (int l = 0; l < n; ++l) {
 | |
|             sum.x() +=
 | |
|                 y1[l + 0] * (q4[l + 0] + (qh[l + 0] & (hm1 << 0) ? 16 : 0)) +
 | |
|                 y1[l + 16] * (q4[l + 2] + (qh[l + 16] & (hm1 << 0) ? 16 : 0));
 | |
|             sum.y() +=
 | |
|                 y1[l + 32] * (q4[l + 4] + (qh[l + 0] & (hm1 << 1) ? 16 : 0)) +
 | |
|                 y1[l + 48] * (q4[l + 6] + (qh[l + 16] & (hm1 << 1) ? 16 : 0));
 | |
|             sum.z() +=
 | |
|                 y2[l + 0] * (q4[l + 8] + (qh[l + 0] & (hm2 << 0) ? 16 : 0)) +
 | |
|                 y2[l + 16] * (q4[l + 10] + (qh[l + 16] & (hm2 << 0) ? 16 : 0));
 | |
|             sum.w() +=
 | |
|                 y2[l + 32] * (q4[l + 12] + (qh[l + 0] & (hm2 << 1) ? 16 : 0)) +
 | |
|                 y2[l + 48] * (q4[l + 14] + (qh[l + 16] & (hm2 << 1) ? 16 : 0));
 | |
|             smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
 | |
|                   + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
 | |
|         }
 | |
|         tmp += dall * (sum.x() * sc[0] + sum.y() * sc[1] + sum.z() * sc[4] +
 | |
|                        sum.w() * sc[5]) -
 | |
|                dmin * smin;
 | |
|     }
 | |
| 
 | |
| #else
 | |
|     const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION);  // 0...15
 | |
|     const int ix  = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
 | |
|     const int step = tid * K_QUANTS_PER_ITERATION;
 | |
|     const int im = step/8;
 | |
|     const int in = step%8;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
|         const uint8_t * q = x[i].qs + step;
 | |
|         const int8_t  * s = x[i].scales;
 | |
|         const float   * y = yy + i*QK_K + step;
 | |
|         const float     d = x[i].d;
 | |
|         float sum = 0.f;
 | |
|         for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
 | |
|             const uint8_t h = x[i].qh[in+j] >> im;
 | |
|             sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
 | |
|                  + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
 | |
|                  + y[j+32] * d * s[2] * ((q[j+ 0] >>  4) - ((h >> 4) & 1 ? 0 : 16))
 | |
|                  + y[j+48] * d * s[3] * ((q[j+16] >>  4) - ((h >> 6) & 1 ? 0 : 16));
 | |
|         }
 | |
|         tmp += sum;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (item_ct1.get_local_id(2) == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
 | |
| 
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     if (row > nrows) return;
 | |
| 
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q6_K * x = (const block_q6_K *)vx + ib0;
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|     const int tid =
 | |
|         item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
 | |
|     const int ix =
 | |
|         item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0, 1
 | |
| 
 | |
|     const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8
 | |
| 
 | |
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | |
|     const int in = tid - step*im;                        // 0...15 or 0...7
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 1
 | |
|     const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
 | |
|     const int is = 0;
 | |
| #else
 | |
|     const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
 | |
|     const int is = in / 4;
 | |
| #endif
 | |
|     const int ql_offset = 64*im + l0;
 | |
|     const int qh_offset = 32*im + l0;
 | |
|     const int s_offset  =  8*im + is;
 | |
|     const int y_offset = 128*im + l0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y  = yy + i * QK_K + y_offset;
 | |
|         const uint8_t * ql = x[i].ql + ql_offset;
 | |
|         const uint8_t * qh = x[i].qh + qh_offset;
 | |
|         const int8_t  * s  = x[i].scales + s_offset;
 | |
| 
 | |
|         const float d = x[i].d;
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 1
 | |
|         float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
 | |
|                   + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
 | |
|                   + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
 | |
|                   + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
 | |
|                   + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
 | |
|                   + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
 | |
|                   + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
 | |
|                   +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
 | |
|         tmp += sum;
 | |
| #else
 | |
|         float sum = 0;
 | |
|         for (int l = 0; l < 4; ++l) {
 | |
|             sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
 | |
|                  + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
 | |
|                  + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
 | |
|                  + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
 | |
|         }
 | |
|         tmp += sum;
 | |
| #endif
 | |
| 
 | |
|     }
 | |
| 
 | |
| #else
 | |
| 
 | |
|     const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION);  // 0...7
 | |
|     const int ix  = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);  // 0...3
 | |
| 
 | |
|     const int step = tid * K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y  = yy + i * QK_K + step;
 | |
|         const uint8_t * ql = x[i].ql + step;
 | |
|         const uint8_t * qh = x[i].qh + step;
 | |
|         const int8_t  * s  = x[i].scales;
 | |
| 
 | |
|         const float d = x[i+0].d;
 | |
| 
 | |
|         float sum = 0;
 | |
|         for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
 | |
|             sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
 | |
|                  + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
 | |
|                  + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >>  4) | ((qh[j] & 0x30) >> 0)) - 32)
 | |
|                  + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >>  4) | ((qh[j] & 0xc0) >> 2)) - 32);
 | |
|         }
 | |
|         tmp += sum;
 | |
| 
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, ny, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2 / K_QUANTS_PER_ITERATION;
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, ny, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2 / K_QUANTS_PER_ITERATION;
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, ny, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const sycl::range<3> block_dims(1, 1, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2 / K_QUANTS_PER_ITERATION;
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, ny, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| void ggml_sycl_op_dequantize_mul_mat_vec(
 | |
|     ggml_backend_sycl_context & ctx,
 | |
|     const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
 | |
|     const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
 | |
|     float *dst_dd_i, const int64_t row_low, const int64_t row_high,
 | |
|     const int64_t src1_ncols, const int64_t src1_padded_row_size,
 | |
|     const dpct::queue_ptr &stream) {
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
 | |
| #ifdef GGML_SYCL_F16
 | |
|     ggml_sycl_pool_alloc<sycl::half> src1_dfloat_a(ctx.pool());
 | |
|     sycl::half *src1_dfloat = nullptr; // dfloat == half
 | |
| 
 | |
|     bool src1_convert_f16 =
 | |
|         src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
 | |
|         src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
 | |
|         src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
 | |
| 
 | |
|     if (src1_convert_f16) {
 | |
|         src1_dfloat = src1_dfloat_a.alloc(ne00);
 | |
|         const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
 | |
|         GGML_ASSERT(to_fp16_sycl != nullptr);
 | |
|         to_fp16_sycl(src1_ddf_i, src1_dfloat, ne00, stream);
 | |
|     }
 | |
| #else
 | |
|     const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
 | |
| #endif // GGML_SYCL_F16
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             dequantize_mul_mat_vec_q2_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             dequantize_mul_mat_vec_q3_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             dequantize_mul_mat_vec_q4_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             dequantize_mul_mat_vec_q5_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             dequantize_mul_mat_vec_q6_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_F16:
 | |
|             convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         default:
 | |
|             printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type);
 | |
|             GGML_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_ddq_i;
 | |
|     (void) src1_ncols;
 | |
|     (void) src1_padded_row_size;
 | |
| }
 | 
