mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-31 08:51:55 +00:00 
			
		
		
		
	 70c29da118
			
		
	
	70c29da118
	
	
	
		
			
			* Fix mirostat state when using multiple sequences * Fix mirostat by completely refactoring sampling! * Try to fix zig build. * Export function to fetch/create default sampler states Code formatting cleanups and add some comments Silence a warning about id not being used when logging is disabled * Apply some renaming suggestions. Fix comments that were out of sync with the pull. * Use more consistant naming convention for sampling contexts
		
			
				
	
	
		
			222 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "build-info.h"
 | |
| #include "common.h"
 | |
| #include "embd-input.h"
 | |
| 
 | |
| #include <cassert>
 | |
| #include <cinttypes>
 | |
| #include <cmath>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <fstream>
 | |
| #include <iostream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| static llama_context ** g_ctx;
 | |
| 
 | |
| extern "C" {
 | |
| 
 | |
| struct MyModel* create_mymodel(int argc, char ** argv) {
 | |
|     gpt_params params;
 | |
| 
 | |
|     if (!gpt_params_parse(argc, argv, params)) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     print_build_info();
 | |
| 
 | |
|     if (params.seed == LLAMA_DEFAULT_SEED) {
 | |
|         params.seed = uint32_t(time(NULL));
 | |
|     }
 | |
|     fprintf(stderr, "%s: seed  = %d\n", __func__, params.seed);
 | |
| 
 | |
|     llama_backend_init(params.numa);
 | |
| 
 | |
|     llama_model * model;
 | |
|     llama_context * ctx;
 | |
| 
 | |
|     g_ctx = &ctx;
 | |
| 
 | |
|     // load the model and apply lora adapter, if any
 | |
|     std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | |
|     if (model == NULL) {
 | |
|         fprintf(stderr, "%s: error: unable to load model\n", __func__);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // print system information
 | |
|     {
 | |
|         fprintf(stderr, "\n");
 | |
|         fprintf(stderr, "%s\n", get_system_info(params).c_str());
 | |
|     }
 | |
|     struct MyModel * ret = new MyModel();
 | |
|     ret->ctx = ctx;
 | |
|     ret->params = params;
 | |
|     ret->n_past = 0;
 | |
|     // printf("ctx: %d\n", ret->ctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void free_mymodel(struct MyModel * mymodel) {
 | |
|     llama_context * ctx = mymodel->ctx;
 | |
|     llama_print_timings(ctx);
 | |
|     llama_free(ctx);
 | |
|     delete mymodel;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool eval_float(void * model, float * input, int N){
 | |
|     MyModel * mymodel = (MyModel*)model;
 | |
|     llama_context * ctx = mymodel->ctx;
 | |
|     gpt_params params = mymodel->params;
 | |
|     int n_emb = llama_n_embd(llama_get_model(ctx));
 | |
|     int n_past = mymodel->n_past;
 | |
|     int n_batch = N; // params.n_batch;
 | |
| 
 | |
|     for (int i = 0; i < (int) N; i += n_batch) {
 | |
|         int n_eval = (int) N - i;
 | |
|         if (n_eval > n_batch) {
 | |
|             n_eval = n_batch;
 | |
|         }
 | |
|         llama_batch batch = {  int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
 | |
|         if (llama_decode(ctx, batch)) {
 | |
|             fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|         n_past += n_eval;
 | |
|     }
 | |
|     mymodel->n_past = n_past;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool eval_tokens(void * model, std::vector<llama_token> tokens) {
 | |
|     MyModel * mymodel = (MyModel* )model;
 | |
|     llama_context * ctx;
 | |
|     ctx = mymodel->ctx;
 | |
|     gpt_params params = mymodel->params;
 | |
|     int n_past = mymodel->n_past;
 | |
|     for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
 | |
|         int n_eval = (int) tokens.size() - i;
 | |
|         if (n_eval > params.n_batch) {
 | |
|             n_eval = params.n_batch;
 | |
|         }
 | |
|         if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) {
 | |
|             fprintf(stderr, "%s : failed to eval\n", __func__);
 | |
|             return false;
 | |
|         }
 | |
|         n_past += n_eval;
 | |
|     }
 | |
|     mymodel->n_past = n_past;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool eval_id(struct MyModel* mymodel, int id) {
 | |
|     std::vector<llama_token> tokens;
 | |
|     tokens.push_back(id);
 | |
|     return eval_tokens(mymodel, tokens);
 | |
| }
 | |
| 
 | |
| bool eval_string(struct MyModel * mymodel,const char* str){
 | |
|     llama_context * ctx = mymodel->ctx;
 | |
|     std::string str2 = str;
 | |
|     std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
 | |
|     eval_tokens(mymodel, embd_inp);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| llama_token sampling_id(struct MyModel* mymodel) {
 | |
|     llama_context* ctx = mymodel->ctx;
 | |
|     gpt_params params = mymodel->params;
 | |
|     llama_sampling_params & sparams = params.sampling_params;
 | |
|     // int n_ctx = llama_n_ctx(ctx);
 | |
| 
 | |
|     // out of user input, sample next token
 | |
|     const float   temp            = sparams.temp;
 | |
|     const int32_t top_k           = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : sparams.top_k;
 | |
|     const float   top_p           = sparams.top_p;
 | |
|     const float   tfs_z           = sparams.tfs_z;
 | |
|     const float   typical_p       = sparams.typical_p;
 | |
|     // const int32_t repeat_last_n   = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
 | |
|     // const float   repeat_penalty  = params.repeat_penalty;
 | |
|     // const float   alpha_presence  = params.presence_penalty;
 | |
|     // const float   alpha_frequency = params.frequency_penalty;
 | |
|     const int     mirostat        = sparams.mirostat;
 | |
|     const float   mirostat_tau    = sparams.mirostat_tau;
 | |
|     const float   mirostat_eta    = sparams.mirostat_eta;
 | |
|     // const bool    penalize_nl     = params.penalize_nl;
 | |
| 
 | |
|     llama_token id = 0;
 | |
|     {
 | |
|         auto logits  = llama_get_logits(ctx);
 | |
|         auto n_vocab = llama_n_vocab(llama_get_model(ctx));
 | |
| 
 | |
|         // Apply params.logit_bias map
 | |
|         for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
 | |
|             logits[it->first] += it->second;
 | |
|         }
 | |
| 
 | |
|         std::vector<llama_token_data> candidates;
 | |
|         candidates.reserve(n_vocab);
 | |
|         for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
 | |
|             candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | |
|         }
 | |
| 
 | |
|         llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
 | |
| 
 | |
|         // TODO: Apply penalties
 | |
|         // float nl_logit = logits[llama_token_nl(ctx)];
 | |
|         // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
 | |
|         // llama_sample_repetition_penalty(ctx, &candidates_p,
 | |
|         //      last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | |
|         //      last_n_repeat, repeat_penalty);
 | |
|         // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
 | |
|         // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | |
|         // last_n_repeat, alpha_frequency, alpha_presence);
 | |
|         // if (!penalize_nl) {
 | |
|         //     logits[llama_token_nl(ctx)] = nl_logit;
 | |
|         // }
 | |
| 
 | |
|         if (temp <= 0) {
 | |
|             // Greedy sampling
 | |
|             id = llama_sample_token_greedy(ctx, &candidates_p);
 | |
|         } else {
 | |
|             if (mirostat == 1) {
 | |
|                 static float mirostat_mu = 2.0f * mirostat_tau;
 | |
|                 const int mirostat_m = 100;
 | |
|                 llama_sample_temp(ctx, &candidates_p, temp);
 | |
|                 id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
 | |
|             } else if (mirostat == 2) {
 | |
|                 static float mirostat_mu = 2.0f * mirostat_tau;
 | |
|                 llama_sample_temp(ctx, &candidates_p, temp);
 | |
|                 id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
 | |
|             } else {
 | |
|                 // Temperature sampling
 | |
|                 llama_sample_top_k(ctx, &candidates_p, top_k, 1);
 | |
|                 llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
 | |
|                 llama_sample_typical(ctx, &candidates_p, typical_p, 1);
 | |
|                 llama_sample_top_p(ctx, &candidates_p, top_p, 1);
 | |
|                 llama_sample_temp(ctx, &candidates_p, temp);
 | |
|                 id = llama_sample_token(ctx, &candidates_p);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| const char * sampling(struct MyModel * mymodel) {
 | |
|     llama_context * ctx = mymodel->ctx;
 | |
|     int id = sampling_id(mymodel);
 | |
|     static std::string ret;
 | |
|     if (id == llama_token_eos(ctx)) {
 | |
|         ret = "</s>";
 | |
|     } else {
 | |
|         ret = llama_token_to_piece(ctx, id);
 | |
|     }
 | |
|     eval_id(mymodel, id);
 | |
|     return ret.c_str();
 | |
| }
 | |
| 
 | |
| }
 |