mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1067 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1067 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "clip.h"
 | 
						|
#include "clip-impl.h"
 | 
						|
#include "mtmd.h"
 | 
						|
#include "mtmd-audio.h"
 | 
						|
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cerrno>
 | 
						|
#include <cstdio>
 | 
						|
#include <cstdlib>
 | 
						|
#include <cstring>
 | 
						|
#include <limits>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
// represents raw image data, layout is RGBRGBRGB...
 | 
						|
// length of data must be nx * ny * 3
 | 
						|
struct mtmd_bitmap {
 | 
						|
    uint32_t nx;
 | 
						|
    uint32_t ny;
 | 
						|
    std::vector<unsigned char> data;
 | 
						|
    std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
 | 
						|
    bool is_audio = false; // true if the bitmap is audio
 | 
						|
};
 | 
						|
 | 
						|
struct mtmd_image_tokens {
 | 
						|
    uint32_t nx; // number of tokens in x direction
 | 
						|
    uint32_t ny; // number of tokens in y direction
 | 
						|
    bool use_mrope_pos = false; // use M-RoPE position counting (the whole image is 1 temporal position)
 | 
						|
    uint32_t n_tokens() const { return nx * ny; }
 | 
						|
    clip_image_f32_batch batch_f32; // preprocessed image patches
 | 
						|
    std::string id; // optional user-defined ID, useful for KV cache tracking
 | 
						|
 | 
						|
    mtmd_image_tokens clone() {
 | 
						|
        return mtmd_image_tokens{
 | 
						|
            nx,
 | 
						|
            ny,
 | 
						|
            use_mrope_pos,
 | 
						|
            batch_f32.clone(),
 | 
						|
            id
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens>;
 | 
						|
 | 
						|
struct mtmd_audio_tokens {
 | 
						|
    uint32_t n_tokens; // number of tokens
 | 
						|
    clip_image_f32_batch batch_f32; // preprocessed image patches
 | 
						|
    std::string id; // optional user-defined ID, useful for KV cache tracking
 | 
						|
 | 
						|
    mtmd_audio_tokens clone() {
 | 
						|
        return mtmd_audio_tokens{
 | 
						|
            n_tokens,
 | 
						|
            batch_f32.clone(),
 | 
						|
            id
 | 
						|
        };
 | 
						|
    }
 | 
						|
};
 | 
						|
using mtmd_audio_tokens_ptr = std::unique_ptr<mtmd_audio_tokens>;
 | 
						|
 | 
						|
struct mtmd_input_chunk {
 | 
						|
    mtmd_input_chunk_type type;
 | 
						|
    std::vector<llama_token> tokens_text;
 | 
						|
    mtmd_image_tokens_ptr tokens_image;
 | 
						|
    mtmd_audio_tokens_ptr tokens_audio;
 | 
						|
};
 | 
						|
 | 
						|
struct mtmd_input_chunks {
 | 
						|
    std::vector<mtmd_input_chunk> entries;
 | 
						|
};
 | 
						|
 | 
						|
// slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
 | 
						|
// models not having it (llava-1.6) will process embeddings without any special tokens in-between
 | 
						|
enum mtmd_slice_tmpl {
 | 
						|
    MTMD_SLICE_TMPL_NONE,
 | 
						|
    MTMD_SLICE_TMPL_MINICPMV_2_5,
 | 
						|
    MTMD_SLICE_TMPL_MINICPMV_2_6,
 | 
						|
    MTMD_SLICE_TMPL_LLAMA4,
 | 
						|
    // TODO @ngxson : add support for idefics (SmolVLM)
 | 
						|
};
 | 
						|
 | 
						|
const char * mtmd_default_marker() {
 | 
						|
    return "<__media__>";
 | 
						|
}
 | 
						|
 | 
						|
mtmd_context_params mtmd_context_params_default() {
 | 
						|
    mtmd_context_params params;
 | 
						|
    params.use_gpu = true;
 | 
						|
    params.print_timings = true;
 | 
						|
    params.n_threads = 4;
 | 
						|
    params.verbosity = GGML_LOG_LEVEL_INFO;
 | 
						|
    params.image_marker = MTMD_DEFAULT_IMAGE_MARKER;
 | 
						|
    params.media_marker = mtmd_default_marker();
 | 
						|
    return params;
 | 
						|
}
 | 
						|
 | 
						|
struct mtmd_context {
 | 
						|
    struct clip_ctx * ctx_v; // vision
 | 
						|
    struct clip_ctx * ctx_a; // audio
 | 
						|
    const struct llama_model * text_model;
 | 
						|
    std::vector<float> image_embd_v; // image embedding vector
 | 
						|
 | 
						|
    bool print_timings;
 | 
						|
    int n_threads;
 | 
						|
    std::string media_marker;
 | 
						|
    const int n_embd_text;
 | 
						|
 | 
						|
    // these are not token, but strings used to mark the beginning and end of image/audio embeddings
 | 
						|
    std::string img_beg;
 | 
						|
    std::string img_end;
 | 
						|
    std::string aud_beg;
 | 
						|
    std::string aud_end;
 | 
						|
 | 
						|
    // for llava-uhd style models, we need special tokens in-between slices
 | 
						|
    // minicpmv calls them "slices", llama 4 calls them "tiles"
 | 
						|
    mtmd_slice_tmpl slice_tmpl    = MTMD_SLICE_TMPL_NONE;
 | 
						|
    llama_token tok_ov_img_start  = LLAMA_TOKEN_NULL; // overview image
 | 
						|
    llama_token tok_ov_img_end    = LLAMA_TOKEN_NULL; // overview image
 | 
						|
    llama_token tok_slices_start  = LLAMA_TOKEN_NULL; // start of all slices
 | 
						|
    llama_token tok_slices_end    = LLAMA_TOKEN_NULL; // end of all slices
 | 
						|
    llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice start
 | 
						|
    llama_token tok_sli_img_end   = LLAMA_TOKEN_NULL; // single slice end
 | 
						|
    llama_token tok_sli_img_mid   = LLAMA_TOKEN_NULL; // between 2 slices
 | 
						|
    llama_token tok_row_end       = LLAMA_TOKEN_NULL; // end of row
 | 
						|
    bool        tok_row_end_trail = false;
 | 
						|
    bool        ov_img_first      = false;
 | 
						|
 | 
						|
    bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
 | 
						|
 | 
						|
    // for whisper, we pre-calculate the mel filter bank
 | 
						|
    whisper_preprocessor::whisper_filters w_filters;
 | 
						|
 | 
						|
    // TODO @ngxson : add timings
 | 
						|
 | 
						|
    mtmd_context(const char * mmproj_fname,
 | 
						|
                   const llama_model * text_model,
 | 
						|
                   const mtmd_context_params & ctx_params) :
 | 
						|
        text_model   (text_model),
 | 
						|
        print_timings(ctx_params.print_timings),
 | 
						|
        n_threads    (ctx_params.n_threads),
 | 
						|
        media_marker (ctx_params.media_marker),
 | 
						|
        n_embd_text  (llama_model_n_embd(text_model))
 | 
						|
    {
 | 
						|
        if (std::string(ctx_params.image_marker) != MTMD_DEFAULT_IMAGE_MARKER) {
 | 
						|
            throw std::runtime_error("custom image_marker is not supported anymore, use media_marker instead");
 | 
						|
        }
 | 
						|
 | 
						|
        if (media_marker.empty()) {
 | 
						|
            throw std::runtime_error("media_marker must not be empty");
 | 
						|
        }
 | 
						|
 | 
						|
        clip_context_params ctx_clip_params;
 | 
						|
        ctx_clip_params.use_gpu   = ctx_params.use_gpu;
 | 
						|
        ctx_clip_params.verbosity = ctx_params.verbosity;
 | 
						|
        auto res = clip_init(mmproj_fname, ctx_clip_params);
 | 
						|
        ctx_v = res.ctx_v;
 | 
						|
        ctx_a = res.ctx_a;
 | 
						|
        if (!ctx_v && !ctx_a) {
 | 
						|
            throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
 | 
						|
        }
 | 
						|
 | 
						|
        // if both vision and audio mmproj are present, we need to validate their n_embd
 | 
						|
        if (ctx_v && ctx_a) {
 | 
						|
            int n_embd_v = clip_n_mmproj_embd(ctx_v);
 | 
						|
            int n_embd_a = clip_n_mmproj_embd(ctx_a);
 | 
						|
            if (n_embd_v != n_embd_a) {
 | 
						|
                throw std::runtime_error(string_format(
 | 
						|
                    "mismatch between vision and audio mmproj (n_embd_v = %d, n_embd_a = %d)\n",
 | 
						|
                    n_embd_v, n_embd_a));
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // since we already validate n_embd of vision and audio mmproj,
 | 
						|
        // we can safely assume that they are the same
 | 
						|
        int n_embd_clip = clip_n_mmproj_embd(ctx_v ? ctx_v : ctx_a);
 | 
						|
        if (n_embd_text != n_embd_clip) {
 | 
						|
            throw std::runtime_error(string_format(
 | 
						|
                "mismatch between text model (n_embd = %d) and mmproj (n_embd = %d)\n"
 | 
						|
                "hint: you may be using wrong mmproj\n",
 | 
						|
                n_embd_text, n_embd_clip));
 | 
						|
        }
 | 
						|
        if (ctx_v) {
 | 
						|
            init_vision();
 | 
						|
        }
 | 
						|
        if (ctx_a) {
 | 
						|
            init_audio();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    void init_vision() {
 | 
						|
        GGML_ASSERT(ctx_v != nullptr);
 | 
						|
        use_mrope = clip_is_qwen2vl(ctx_v);
 | 
						|
 | 
						|
        projector_type proj = clip_get_projector_type(ctx_v);
 | 
						|
        int minicpmv_version = clip_is_minicpmv(ctx_v);
 | 
						|
        if (minicpmv_version == 2) {
 | 
						|
            // minicpmv 2.5 format:
 | 
						|
            // <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
 | 
						|
            slice_tmpl        = MTMD_SLICE_TMPL_MINICPMV_2_5;
 | 
						|
            tok_ov_img_start  = lookup_token("<image>");
 | 
						|
            tok_ov_img_end    = lookup_token("</image>");
 | 
						|
            tok_slices_start  = lookup_token("<slice>");
 | 
						|
            tok_slices_end    = lookup_token("</slice>");
 | 
						|
            tok_sli_img_start = tok_ov_img_start;
 | 
						|
            tok_sli_img_end   = tok_ov_img_end;
 | 
						|
            tok_row_end       = lookup_token("\n");
 | 
						|
            tok_row_end_trail = false; // no trailing end-of-row token
 | 
						|
            ov_img_first      = true;
 | 
						|
 | 
						|
        } else if (minicpmv_version == 3 || minicpmv_version == 4 || minicpmv_version == 5 || minicpmv_version == 6) {
 | 
						|
            // minicpmv 2.6 format:
 | 
						|
            // <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
 | 
						|
            slice_tmpl        = MTMD_SLICE_TMPL_MINICPMV_2_6;
 | 
						|
            tok_ov_img_start  = lookup_token("<image>");
 | 
						|
            tok_ov_img_end    = lookup_token("</image>");
 | 
						|
            tok_sli_img_start = lookup_token("<slice>");
 | 
						|
            tok_sli_img_end   = lookup_token("</slice>");
 | 
						|
            tok_row_end       = lookup_token("\n");
 | 
						|
            tok_row_end_trail = false; // no trailing end-of-row token
 | 
						|
            ov_img_first      = true;
 | 
						|
 | 
						|
        } else if (minicpmv_version != 0) {
 | 
						|
            GGML_ASSERT(false && "unsupported minicpmv version");
 | 
						|
        } else if (proj == PROJECTOR_TYPE_LLAMA4) {
 | 
						|
            // llama 4 format:
 | 
						|
            // <|image_start|>
 | 
						|
            //     (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
 | 
						|
            //     (slice) <|tile_x_separator|> (slice) <|tile_x_separator|> ... <|tile_y_separator|>
 | 
						|
            //     ... <|tile_y_separator|>   <-- trailing end-of-row token
 | 
						|
            // <|image|> (overview)           <-- overview image is last
 | 
						|
            // <|image_end|>
 | 
						|
            slice_tmpl        = MTMD_SLICE_TMPL_LLAMA4;
 | 
						|
            tok_ov_img_start  = lookup_token("<|image|>");
 | 
						|
            tok_sli_img_mid   = lookup_token("<|tile_x_separator|>");
 | 
						|
            tok_row_end       = lookup_token("<|tile_y_separator|>");
 | 
						|
            tok_row_end_trail = true; // add trailing end-of-row token
 | 
						|
            ov_img_first      = false; // overview image is last
 | 
						|
        }
 | 
						|
 | 
						|
        // set boi/eoi
 | 
						|
        if (proj == PROJECTOR_TYPE_GEMMA3) {
 | 
						|
            // <start_of_image> ... (image embeddings) ... <end_of_image>
 | 
						|
            img_beg = "<start_of_image>";
 | 
						|
            img_end = "<end_of_image>";
 | 
						|
 | 
						|
        } else if (proj == PROJECTOR_TYPE_IDEFICS3) {
 | 
						|
            // https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
 | 
						|
            img_beg = "<fake_token_around_image><global-img>";
 | 
						|
            img_end = "<fake_token_around_image>";
 | 
						|
 | 
						|
        } else if (proj == PROJECTOR_TYPE_PIXTRAL) {
 | 
						|
            // https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
 | 
						|
            img_end = "[IMG_END]";
 | 
						|
 | 
						|
        } else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL) {
 | 
						|
            // <|vision_start|> ... (image embeddings) ... <|vision_end|>
 | 
						|
            img_beg = "<|vision_start|>";
 | 
						|
            img_end = "<|vision_end|>";
 | 
						|
 | 
						|
        } else if (proj == PROJECTOR_TYPE_LLAMA4) {
 | 
						|
            // (more details in mtmd_context constructor)
 | 
						|
            img_beg = "<|image_start|>";
 | 
						|
            img_end = "<|image_end|>";
 | 
						|
            LOG_WRN("%s: llama 4 vision is known to have degraded quality:\n"
 | 
						|
                    "    https://github.com/ggml-org/llama.cpp/pull/13282\n", __func__);
 | 
						|
 | 
						|
        } else if (proj == PROJECTOR_TYPE_INTERNVL) {
 | 
						|
            // <img> ... (image embeddings) ... </img>
 | 
						|
            img_beg = "<img>";
 | 
						|
            img_end = "</img>";
 | 
						|
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    void init_audio() {
 | 
						|
        GGML_ASSERT(ctx_a != nullptr);
 | 
						|
        projector_type proj = clip_get_projector_type(ctx_a);
 | 
						|
 | 
						|
        if (clip_has_whisper_encoder(ctx_a)) {
 | 
						|
            // TODO @ngxson : check if model n_mel is 128 or 80
 | 
						|
            w_filters = whisper_precalc_filters::get_128_bins();
 | 
						|
        }
 | 
						|
 | 
						|
        LOG_WRN("%s: audio input is in experimental stage and may have reduced quality:\n"
 | 
						|
                "    https://github.com/ggml-org/llama.cpp/discussions/13759\n", __func__);
 | 
						|
 | 
						|
        if (proj == PROJECTOR_TYPE_QWEN2A) {
 | 
						|
            // <|audio_bos|> ... (embeddings) ... <|audio_eos|>
 | 
						|
            aud_beg = "<|audio_bos|>";
 | 
						|
            aud_end = "<|audio_eos|>";
 | 
						|
 | 
						|
        } else if (proj == PROJECTOR_TYPE_ULTRAVOX) {
 | 
						|
            // [BEGIN_AUDIO] ... (embeddings) ...
 | 
						|
            aud_beg = "[BEGIN_AUDIO]";
 | 
						|
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // get clip ctx based on chunk type
 | 
						|
    clip_ctx * get_clip_ctx(const mtmd_input_chunk * chunk) const {
 | 
						|
        if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
            return ctx_v;
 | 
						|
        } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | 
						|
            return ctx_a;
 | 
						|
        }
 | 
						|
        GGML_ABORT("unknown chunk type");
 | 
						|
    }
 | 
						|
 | 
						|
    projector_type proj_type_v() const {
 | 
						|
        return ctx_v ? clip_get_projector_type(ctx_v) : PROJECTOR_TYPE_UNKNOWN;
 | 
						|
    }
 | 
						|
 | 
						|
    projector_type proj_type_a() const {
 | 
						|
        return ctx_a ? clip_get_projector_type(ctx_a) : PROJECTOR_TYPE_UNKNOWN;
 | 
						|
    }
 | 
						|
 | 
						|
    ~mtmd_context() {
 | 
						|
        clip_free(ctx_a);
 | 
						|
        clip_free(ctx_v);
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
    llama_token lookup_token(const std::string & token_text) {
 | 
						|
        const llama_vocab * vocab = llama_model_get_vocab(text_model);
 | 
						|
        const int n_vocab = llama_vocab_n_tokens(vocab);
 | 
						|
        for (int i = 0; i < n_vocab; i++) {
 | 
						|
            if (token_to_piece(vocab, i, true) == token_text) {
 | 
						|
                return i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return LLAMA_TOKEN_NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) {
 | 
						|
        std::string piece;
 | 
						|
        piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
 | 
						|
        const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | 
						|
        if (n_chars < 0) {
 | 
						|
            piece.resize(-n_chars);
 | 
						|
            int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
 | 
						|
            GGML_ASSERT(check == -n_chars);
 | 
						|
        } else {
 | 
						|
            piece.resize(n_chars);
 | 
						|
        }
 | 
						|
        return piece;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
 | 
						|
        const struct llama_model * text_model,
 | 
						|
        const struct mtmd_context_params ctx_params) {
 | 
						|
    try {
 | 
						|
        return new mtmd_context(mmproj_fname, text_model, ctx_params);
 | 
						|
    } catch (const std::exception & e) {
 | 
						|
        LOG_ERR("%s: error: %s\n", __func__, e.what());
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void mtmd_free(mtmd_context * ctx) {
 | 
						|
    if (ctx) {
 | 
						|
        delete ctx;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
struct mtmd_tokenizer {
 | 
						|
    mtmd_context * ctx;
 | 
						|
    std::vector<const mtmd_bitmap *> bitmaps;
 | 
						|
 | 
						|
    std::string input_text;
 | 
						|
    bool add_special;
 | 
						|
    bool parse_special;
 | 
						|
    const llama_vocab * vocab;
 | 
						|
 | 
						|
    mtmd_input_chunks cur;
 | 
						|
 | 
						|
    mtmd_tokenizer(mtmd_context * ctx,
 | 
						|
            const mtmd_input_text * text,
 | 
						|
            const mtmd_bitmap ** bitmaps,
 | 
						|
            size_t n_bitmaps) : ctx(ctx), bitmaps(bitmaps, bitmaps + n_bitmaps) {
 | 
						|
        add_special   = text->add_special;
 | 
						|
        parse_special = text->parse_special;
 | 
						|
        input_text    = text->text;
 | 
						|
        vocab         = llama_model_get_vocab(ctx->text_model);
 | 
						|
 | 
						|
        // for compatibility, we convert image marker to media marker
 | 
						|
        string_replace_all(input_text, MTMD_DEFAULT_IMAGE_MARKER, ctx->media_marker);
 | 
						|
    }
 | 
						|
 | 
						|
    int32_t tokenize(mtmd_input_chunks * output) {
 | 
						|
        cur.entries.clear();
 | 
						|
        std::vector<std::string> parts = split_text(input_text, ctx->media_marker);
 | 
						|
        size_t i_bm = 0; // index of the current bitmap
 | 
						|
        for (auto & part : parts) {
 | 
						|
            if (part == ctx->media_marker) {
 | 
						|
                // this is a marker, we should add the next bitmap
 | 
						|
                if (i_bm >= bitmaps.size()) {
 | 
						|
                    LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n",
 | 
						|
                            __func__, bitmaps.size(), parts.size() - 1);
 | 
						|
                    return 1;
 | 
						|
                }
 | 
						|
                const mtmd_bitmap * bitmap = bitmaps[i_bm++];
 | 
						|
                int32_t res = add_media(bitmap);
 | 
						|
                if (res != 0) {
 | 
						|
                    return res;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                // this is a text part, we should add it as text
 | 
						|
                add_text(part, parse_special);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (add_special && llama_vocab_get_add_bos(vocab)) {
 | 
						|
            // if first chunk is text, we add BOS token to first text chunk
 | 
						|
            // otherwise, create a new text chunk with BOS token
 | 
						|
            if (!cur.entries.empty() && cur.entries[0].type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | 
						|
                // add BOS token to the beginning of first text chunk
 | 
						|
                cur.entries[0].tokens_text.insert(cur.entries[0].tokens_text.begin(), llama_vocab_bos(vocab));
 | 
						|
            } else {
 | 
						|
                // create a new text chunk with BOS token at the beginning
 | 
						|
                mtmd_input_chunk bos_chunk{
 | 
						|
                    MTMD_INPUT_CHUNK_TYPE_TEXT,
 | 
						|
                    {llama_vocab_bos(vocab)},
 | 
						|
                    nullptr, // image tokens
 | 
						|
                    nullptr, // audio tokens
 | 
						|
                };
 | 
						|
                cur.entries.insert(cur.entries.begin(), std::move(bos_chunk));
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (add_special && llama_vocab_get_add_eos(vocab)) {
 | 
						|
            // if last chunk is text, we add EOS token to it
 | 
						|
            add_text({llama_vocab_eos(vocab)});
 | 
						|
        }
 | 
						|
 | 
						|
        if (i_bm != bitmaps.size()) {
 | 
						|
            LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n",
 | 
						|
                    __func__, bitmaps.size(), parts.size() - 1);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
 | 
						|
        *output = std::move(cur);
 | 
						|
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    void add_text(const std::string & txt, bool parse_special) {
 | 
						|
        LOG_DBG("%s: %s\n", __func__, txt.c_str());
 | 
						|
        auto tokens = mtmd_tokenize_text_internal(vocab, txt, /* add_special */ false, parse_special);
 | 
						|
        add_text(tokens);
 | 
						|
    }
 | 
						|
 | 
						|
    void add_text(const std::vector<llama_token> & tokens) {
 | 
						|
        if (tokens.empty()) {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        // if last entry is also a text chunk, add tokens to it instead of creating new chunk
 | 
						|
        if (!cur.entries.empty() && cur.entries.back().type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | 
						|
            cur.entries.back().tokens_text.insert(
 | 
						|
                                            cur.entries.back().tokens_text.end(),
 | 
						|
                                            tokens.begin(),
 | 
						|
                                            tokens.end());
 | 
						|
        } else {
 | 
						|
            mtmd_input_chunk chunk{
 | 
						|
                MTMD_INPUT_CHUNK_TYPE_TEXT,
 | 
						|
                tokens,
 | 
						|
                nullptr, // image tokens
 | 
						|
                nullptr, // audio tokens
 | 
						|
            };
 | 
						|
            cur.entries.emplace_back(std::move(chunk));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    int32_t add_media(const mtmd_bitmap * bitmap) {
 | 
						|
        if (!bitmap->is_audio) {
 | 
						|
            // handle image
 | 
						|
 | 
						|
            if (!ctx->ctx_v) {
 | 
						|
                LOG_ERR("%s: error: model does not support vision input\n", __func__);
 | 
						|
                return 2;
 | 
						|
            }
 | 
						|
 | 
						|
            if (!ctx->img_beg.empty()) {
 | 
						|
                add_text(ctx->img_beg, true); // add image begin token
 | 
						|
            }
 | 
						|
 | 
						|
            // convert mtmd_bitmap to clip_image_u8
 | 
						|
            clip_image_u8_ptr img_u8(clip_image_u8_init());
 | 
						|
            img_u8->nx = bitmap->nx;
 | 
						|
            img_u8->ny = bitmap->ny;
 | 
						|
            img_u8->buf.resize(bitmap->data.size());
 | 
						|
            std::memcpy(img_u8->buf.data(), bitmap->data.data(), img_u8->nx * img_u8->ny * 3);
 | 
						|
 | 
						|
            // preprocess image
 | 
						|
            clip_image_f32_batch batch_f32;
 | 
						|
            bool ok = clip_image_preprocess(ctx->ctx_v, img_u8.get(), &batch_f32);
 | 
						|
            if (!ok) {
 | 
						|
                LOG_ERR("Unable to preprocess image\n");
 | 
						|
                return 2;
 | 
						|
            }
 | 
						|
 | 
						|
            // handle llava-uhd style preprocessing
 | 
						|
            if (
 | 
						|
                ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5
 | 
						|
                || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
 | 
						|
                || ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
 | 
						|
            ) {
 | 
						|
                const int n_col = batch_f32.grid_x;
 | 
						|
                const int n_row = batch_f32.grid_y;
 | 
						|
                // split batch into chunks of single images
 | 
						|
                // NOTE: batch_f32 will be invalidated after this call
 | 
						|
                auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmap->id);
 | 
						|
                GGML_ASSERT(chunks.size() > 0);
 | 
						|
 | 
						|
                auto ov_chunk = std::move(chunks.front());
 | 
						|
                chunks.erase(chunks.begin());
 | 
						|
 | 
						|
                // add overview image (first)
 | 
						|
                if (ctx->ov_img_first) {
 | 
						|
                    if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
 | 
						|
                        add_text({ctx->tok_ov_img_start});
 | 
						|
                    }
 | 
						|
                    cur.entries.emplace_back(std::move(ov_chunk));
 | 
						|
                    if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
 | 
						|
                        add_text({ctx->tok_ov_img_end});
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                // add slices (or tiles)
 | 
						|
                if (!chunks.empty()) {
 | 
						|
                    GGML_ASSERT((int)chunks.size() == n_row * n_col);
 | 
						|
                    if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
 | 
						|
                        add_text({ctx->tok_slices_start});
 | 
						|
                    }
 | 
						|
                    for (int y = 0; y < n_row; y++) {
 | 
						|
                        for (int x = 0; x < n_col; x++) {
 | 
						|
                            const bool is_last_in_row = (x == n_col - 1);
 | 
						|
                            if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
 | 
						|
                                add_text({ctx->tok_sli_img_start});
 | 
						|
                            }
 | 
						|
                            cur.entries.emplace_back(std::move(chunks[y * n_col + x]));
 | 
						|
                            if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
 | 
						|
                                add_text({ctx->tok_sli_img_end});
 | 
						|
                            }
 | 
						|
                            if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) {
 | 
						|
                                add_text({ctx->tok_sli_img_mid});
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) {
 | 
						|
                            add_text({ctx->tok_row_end});
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
 | 
						|
                        add_text({ctx->tok_slices_end});
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                // add overview image (last)
 | 
						|
                if (!ctx->ov_img_first) {
 | 
						|
                    if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) {
 | 
						|
                        add_text({ctx->tok_ov_img_start});
 | 
						|
                    }
 | 
						|
                    cur.entries.emplace_back(std::move(ov_chunk));
 | 
						|
                    if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) {
 | 
						|
                        add_text({ctx->tok_ov_img_end});
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
            } else {
 | 
						|
                size_t n_tokens = 0;
 | 
						|
                for (const auto & entry : batch_f32.entries) {
 | 
						|
                    n_tokens += clip_n_output_tokens(ctx->ctx_v, entry.get());
 | 
						|
                }
 | 
						|
 | 
						|
                mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | 
						|
                if (ctx->use_mrope) {
 | 
						|
                    // for Qwen2VL, we need this information for M-RoPE decoding positions
 | 
						|
                    image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_v, batch_f32.entries[0].get());
 | 
						|
                    image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_v, batch_f32.entries[0].get());
 | 
						|
                    image_tokens->use_mrope_pos = true;
 | 
						|
                } else {
 | 
						|
                    // other models, we only need the total number of tokens
 | 
						|
                    image_tokens->nx = n_tokens;
 | 
						|
                    image_tokens->ny = 1;
 | 
						|
                }
 | 
						|
                image_tokens->batch_f32 = std::move(batch_f32);
 | 
						|
                image_tokens->id = bitmap->id; // optional
 | 
						|
 | 
						|
                LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
 | 
						|
                LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
 | 
						|
                LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size());
 | 
						|
 | 
						|
                mtmd_input_chunk chunk{
 | 
						|
                    MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | 
						|
                    {}, // text tokens
 | 
						|
                    std::move(image_tokens),
 | 
						|
                    nullptr, // audio tokens
 | 
						|
                };
 | 
						|
                cur.entries.emplace_back(std::move(chunk));
 | 
						|
            }
 | 
						|
 | 
						|
            if (!ctx->img_end.empty()) {
 | 
						|
                add_text(ctx->img_end, true); // add image end token
 | 
						|
            }
 | 
						|
 | 
						|
        } else {
 | 
						|
            // handle audio
 | 
						|
 | 
						|
            if (!ctx->ctx_a) {
 | 
						|
                LOG_ERR("%s: error: model does not support audio input\n", __func__);
 | 
						|
                return 2;
 | 
						|
            }
 | 
						|
 | 
						|
            if (bitmap->data.size() == 0) {
 | 
						|
                LOG_ERR("%s: error: empty audio data\n", __func__);
 | 
						|
                return 2;
 | 
						|
            }
 | 
						|
 | 
						|
            if (!ctx->aud_beg.empty()) {
 | 
						|
                add_text(ctx->aud_beg, true); // add audio begin token
 | 
						|
            }
 | 
						|
 | 
						|
            // preprocess audio
 | 
						|
            GGML_ASSERT(ctx->w_filters.n_mel); // make sure we have filter preloaded
 | 
						|
            std::vector<whisper_preprocessor::whisper_mel> mel_spec_chunks;
 | 
						|
            const float * samples = (const float *)bitmap->data.data();
 | 
						|
            size_t n_samples = bitmap->data.size() / sizeof(float);
 | 
						|
            bool ok = whisper_preprocessor::preprocess_audio(samples, n_samples, ctx->w_filters, mel_spec_chunks);
 | 
						|
            if (!ok) {
 | 
						|
                LOG_ERR("Unable to preprocess audio\n");
 | 
						|
                return 2;
 | 
						|
            }
 | 
						|
 | 
						|
            // consider each mel_spec as a separate audio chunk
 | 
						|
            // TODO: maybe support batching, but this may come with memory cost
 | 
						|
            for (auto & mel_spec : mel_spec_chunks) {
 | 
						|
                clip_image_f32_ptr mel_f32(clip_image_f32_init());
 | 
						|
                mel_f32->nx  = mel_spec.n_len;
 | 
						|
                mel_f32->ny  = mel_spec.n_mel;
 | 
						|
                mel_f32->buf = std::move(mel_spec.data);
 | 
						|
                size_t n_tokens = clip_n_output_tokens(ctx->ctx_a, mel_f32.get());
 | 
						|
 | 
						|
                clip_image_f32_batch batch_f32;
 | 
						|
                batch_f32.is_audio = true;
 | 
						|
                batch_f32.entries.push_back(std::move(mel_f32));
 | 
						|
 | 
						|
                mtmd_audio_tokens_ptr audio_tokens(new mtmd_audio_tokens);
 | 
						|
                audio_tokens->n_tokens = n_tokens;
 | 
						|
                audio_tokens->batch_f32 = std::move(batch_f32);
 | 
						|
                audio_tokens->id = bitmap->id; // optional
 | 
						|
 | 
						|
                LOG_DBG("audio_tokens->n_tokens = %d\n", audio_tokens->n_tokens);
 | 
						|
 | 
						|
                mtmd_input_chunk chunk{
 | 
						|
                    MTMD_INPUT_CHUNK_TYPE_AUDIO,
 | 
						|
                    {}, // text tokens
 | 
						|
                    nullptr, // image tokens
 | 
						|
                    std::move(audio_tokens),
 | 
						|
                };
 | 
						|
                cur.entries.emplace_back(std::move(chunk));
 | 
						|
            }
 | 
						|
 | 
						|
            if (!ctx->aud_end.empty()) {
 | 
						|
                add_text(ctx->aud_end, true); // add audio end token
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<mtmd_input_chunk> split_batch_to_chunk(clip_image_f32_batch && batch_f32, const std::string & id) {
 | 
						|
        std::vector<mtmd_input_chunk> chunks;
 | 
						|
 | 
						|
        for (auto & entry : batch_f32.entries) {
 | 
						|
            mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | 
						|
            image_tokens->nx = clip_n_output_tokens(ctx->ctx_v, entry.get());
 | 
						|
            image_tokens->ny = 1;
 | 
						|
            image_tokens->batch_f32.entries.push_back(std::move(entry));
 | 
						|
            image_tokens->id = id;
 | 
						|
 | 
						|
            mtmd_input_chunk chunk{
 | 
						|
                MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | 
						|
                {}, // text tokens
 | 
						|
                std::move(image_tokens),
 | 
						|
                nullptr, // audio tokens
 | 
						|
            };
 | 
						|
            chunks.emplace_back(std::move(chunk));
 | 
						|
        }
 | 
						|
 | 
						|
        return chunks;
 | 
						|
    }
 | 
						|
 | 
						|
    // for example: "a <__media__> b <__media__> c" --> "a", "<__media__>", "b", "<__media__>", "c"
 | 
						|
    static std::vector<std::string> split_text(const std::string & input, const std::string & delimiter) {
 | 
						|
        std::vector<std::string> result;
 | 
						|
        if (input.empty()) {
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
        size_t start = 0;
 | 
						|
        size_t pos = 0;
 | 
						|
        while ((pos = input.find(delimiter, start)) != std::string::npos) {
 | 
						|
            if (pos > start) {
 | 
						|
                result.push_back(input.substr(start, pos - start));
 | 
						|
            }
 | 
						|
            result.push_back(delimiter);
 | 
						|
            start = pos + delimiter.length();
 | 
						|
        }
 | 
						|
        if (start < input.length()) {
 | 
						|
            result.push_back(input.substr(start));
 | 
						|
        }
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
 | 
						|
    // copied from common_tokenize
 | 
						|
    static std::vector<llama_token> mtmd_tokenize_text_internal(
 | 
						|
        const struct llama_vocab * vocab,
 | 
						|
               const std::string & text,
 | 
						|
                            bool   add_special,
 | 
						|
                            bool   parse_special) {
 | 
						|
        // upper limit for the number of tokens
 | 
						|
        int n_tokens = text.length() + 2 * add_special;
 | 
						|
        std::vector<llama_token> result(n_tokens);
 | 
						|
        n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | 
						|
        if (n_tokens < 0) {
 | 
						|
            result.resize(-n_tokens);
 | 
						|
            int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
 | 
						|
            GGML_ASSERT(check == -n_tokens);
 | 
						|
        } else {
 | 
						|
            result.resize(n_tokens);
 | 
						|
        }
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
int32_t mtmd_tokenize(mtmd_context * ctx,
 | 
						|
            mtmd_input_chunks * output,
 | 
						|
            const mtmd_input_text * text,
 | 
						|
            const mtmd_bitmap ** bitmaps,
 | 
						|
            size_t n_bitmaps) {
 | 
						|
    mtmd_tokenizer tokenizer(ctx, text, bitmaps, n_bitmaps);
 | 
						|
    return tokenizer.tokenize(output);
 | 
						|
}
 | 
						|
 | 
						|
int32_t mtmd_encode_chunk(mtmd_context * ctx, const mtmd_input_chunk * chunk) {
 | 
						|
    if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | 
						|
        LOG_WRN("mtmd_encode_chunk has no effect for text chunks\n");
 | 
						|
        return 0;
 | 
						|
    } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
        if (!ctx->ctx_v) {
 | 
						|
            LOG_ERR("%s: model does not support vision input\n", __func__);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        return mtmd_encode(ctx, chunk->tokens_image.get());
 | 
						|
    } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | 
						|
        if (!ctx->ctx_a) {
 | 
						|
            LOG_ERR("%s: model does not support audio input\n", __func__);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        int n_mmproj_embd = ctx->n_embd_text;
 | 
						|
        ctx->image_embd_v.resize(chunk->tokens_audio->n_tokens * n_mmproj_embd);
 | 
						|
        bool ok = clip_image_batch_encode(
 | 
						|
            ctx->ctx_a,
 | 
						|
            ctx->n_threads,
 | 
						|
            &chunk->tokens_audio->batch_f32,
 | 
						|
            ctx->image_embd_v.data());
 | 
						|
        return ok ? 0 : 1;
 | 
						|
    }
 | 
						|
 | 
						|
    LOG_ERR("%s: unknown chunk type %d\n", __func__, (int)chunk->type);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
 | 
						|
    clip_ctx * ctx_clip = ctx->ctx_v;
 | 
						|
    if (!ctx_clip) {
 | 
						|
        LOG_ERR("%s: this API does not support non-vision input, please use mtmd_encode_chunk instead\n", __func__);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    int n_mmproj_embd = clip_n_mmproj_embd(ctx_clip);
 | 
						|
    ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
 | 
						|
    bool ok = false;
 | 
						|
 | 
						|
    if (clip_is_llava(ctx_clip) || clip_is_minicpmv(ctx_clip) || clip_is_glm(ctx_clip)) {
 | 
						|
        // TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
 | 
						|
        const auto & entries = image_tokens->batch_f32.entries;
 | 
						|
        for (size_t i = 0; i < entries.size(); i++) {
 | 
						|
            int n_tokens_per_image = clip_n_output_tokens(ctx_clip, entries[i].get());
 | 
						|
            ok = clip_image_encode(
 | 
						|
                ctx_clip,
 | 
						|
                ctx->n_threads,
 | 
						|
                entries[i].get(),
 | 
						|
                ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        ok = clip_image_batch_encode(
 | 
						|
            ctx_clip,
 | 
						|
            ctx->n_threads,
 | 
						|
            &image_tokens->batch_f32,
 | 
						|
            ctx->image_embd_v.data());
 | 
						|
    }
 | 
						|
 | 
						|
    return ok ? 0 : 1;
 | 
						|
}
 | 
						|
 | 
						|
float * mtmd_get_output_embd(mtmd_context * ctx) {
 | 
						|
    return ctx->image_embd_v.data();
 | 
						|
}
 | 
						|
 | 
						|
bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
 | 
						|
    if (ctx->ctx_v && clip_get_projector_type(ctx->ctx_v) == PROJECTOR_TYPE_GEMMA3) {
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool mtmd_decode_use_mrope(mtmd_context * ctx) {
 | 
						|
    return ctx->use_mrope;
 | 
						|
}
 | 
						|
 | 
						|
bool mtmd_support_vision(mtmd_context * ctx) {
 | 
						|
    return ctx->ctx_v != nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool mtmd_support_audio(mtmd_context * ctx) {
 | 
						|
    return ctx->ctx_a != nullptr;
 | 
						|
}
 | 
						|
 | 
						|
int mtmd_get_audio_bitrate(mtmd_context * ctx) {
 | 
						|
    if (!ctx->ctx_a) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    // for now, we assume that all audio models have the same bitrate
 | 
						|
    return 16000; // 16kHz
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// public API functions
 | 
						|
//
 | 
						|
 | 
						|
// mtmd_bitmap
 | 
						|
 | 
						|
mtmd_bitmap * mtmd_bitmap_init(uint32_t nx,
 | 
						|
                               uint32_t ny,
 | 
						|
                               const unsigned char * data) {
 | 
						|
    mtmd_bitmap * bitmap = new mtmd_bitmap;
 | 
						|
    bitmap->nx = nx;
 | 
						|
    bitmap->ny = ny;
 | 
						|
    size_t data_size = (size_t)nx * ny * 3;
 | 
						|
    bitmap->data.resize(data_size);
 | 
						|
    std::memcpy(bitmap->data.data(), data, data_size);
 | 
						|
    return bitmap;
 | 
						|
}
 | 
						|
 | 
						|
mtmd_bitmap * mtmd_bitmap_init_from_audio(size_t n_samples,
 | 
						|
                                          const float * data) {
 | 
						|
    mtmd_bitmap * bitmap = new mtmd_bitmap;
 | 
						|
    bitmap->nx = n_samples;
 | 
						|
    bitmap->ny = 1;
 | 
						|
    bitmap->is_audio = true;
 | 
						|
    size_t data_size = n_samples * sizeof(float);
 | 
						|
    bitmap->data.resize(data_size);
 | 
						|
    std::memcpy(bitmap->data.data(), data, data_size);
 | 
						|
    return bitmap;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t mtmd_bitmap_get_nx(const mtmd_bitmap * bitmap) {
 | 
						|
    return bitmap->nx;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t mtmd_bitmap_get_ny(const mtmd_bitmap * bitmap) {
 | 
						|
    return bitmap->ny;
 | 
						|
}
 | 
						|
 | 
						|
const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) {
 | 
						|
    return bitmap->data.data();
 | 
						|
}
 | 
						|
 | 
						|
size_t mtmd_bitmap_get_n_bytes(const mtmd_bitmap * bitmap) {
 | 
						|
    return bitmap->data.size();
 | 
						|
}
 | 
						|
 | 
						|
bool mtmd_bitmap_is_audio(const mtmd_bitmap * bitmap) {
 | 
						|
    return bitmap->is_audio;
 | 
						|
}
 | 
						|
 | 
						|
const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap) {
 | 
						|
    return bitmap->id.c_str();
 | 
						|
}
 | 
						|
 | 
						|
void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id) {
 | 
						|
    if (id) {
 | 
						|
        bitmap->id = std::string(id);
 | 
						|
    } else {
 | 
						|
        bitmap->id.clear();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void mtmd_bitmap_free(mtmd_bitmap * bitmap) {
 | 
						|
    if (bitmap) {
 | 
						|
        delete bitmap;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// mtmd_input_chunks
 | 
						|
 | 
						|
mtmd_input_chunks * mtmd_input_chunks_init() {
 | 
						|
    return new mtmd_input_chunks;
 | 
						|
}
 | 
						|
 | 
						|
size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks) {
 | 
						|
    return chunks->entries.size();
 | 
						|
}
 | 
						|
 | 
						|
const mtmd_input_chunk * mtmd_input_chunks_get(const mtmd_input_chunks * chunks, size_t idx) {
 | 
						|
    if (idx >= chunks->entries.size()) {
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
    return &chunks->entries[idx];
 | 
						|
}
 | 
						|
 | 
						|
void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
 | 
						|
    if (chunks) {
 | 
						|
        delete chunks;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// mtmd_input_chunk
 | 
						|
 | 
						|
enum mtmd_input_chunk_type mtmd_input_chunk_get_type(const mtmd_input_chunk * chunk) {
 | 
						|
    return chunk->type;
 | 
						|
}
 | 
						|
 | 
						|
const llama_token * mtmd_input_chunk_get_tokens_text(const mtmd_input_chunk * chunk, size_t * n_tokens_output) {
 | 
						|
    if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | 
						|
        *n_tokens_output = chunk->tokens_text.size();
 | 
						|
        return chunk->tokens_text.data();
 | 
						|
    }
 | 
						|
    *n_tokens_output = 0;
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk) {
 | 
						|
    if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
        return chunk->tokens_image.get();
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
size_t mtmd_input_chunk_get_n_tokens(const mtmd_input_chunk * chunk) {
 | 
						|
    if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | 
						|
        return chunk->tokens_text.size();
 | 
						|
    } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
        return mtmd_image_tokens_get_n_tokens(chunk->tokens_image.get());
 | 
						|
    } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | 
						|
        return chunk->tokens_audio->n_tokens;
 | 
						|
    } else {
 | 
						|
        GGML_ABORT("invalid chunk type");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
llama_pos mtmd_input_chunk_get_n_pos(const mtmd_input_chunk * chunk) {
 | 
						|
    if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
 | 
						|
        return chunk->tokens_text.size();
 | 
						|
    } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
        return mtmd_image_tokens_get_n_pos(chunk->tokens_image.get());
 | 
						|
    } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | 
						|
        return chunk->tokens_audio->n_tokens;
 | 
						|
    } else {
 | 
						|
        GGML_ABORT("invalid chunk type");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
const char * mtmd_input_chunk_get_id(const mtmd_input_chunk * chunk) {
 | 
						|
    if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
 | 
						|
        return chunk->tokens_image->id.c_str();
 | 
						|
    } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
 | 
						|
        return chunk->tokens_audio->id.c_str();
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk) {
 | 
						|
    mtmd_input_chunk * copy = new mtmd_input_chunk{
 | 
						|
        chunk->type,
 | 
						|
        chunk->tokens_text,
 | 
						|
        nullptr,
 | 
						|
        nullptr,
 | 
						|
    };
 | 
						|
    if (chunk->tokens_image) {
 | 
						|
        // copy the image tokens
 | 
						|
        copy->tokens_image = mtmd_image_tokens_ptr(new mtmd_image_tokens());
 | 
						|
        *copy->tokens_image = chunk->tokens_image->clone();
 | 
						|
    }
 | 
						|
    if (chunk->tokens_audio) {
 | 
						|
        // copy the audio tokens
 | 
						|
        copy->tokens_audio = mtmd_audio_tokens_ptr(new mtmd_audio_tokens());
 | 
						|
        *copy->tokens_audio = chunk->tokens_audio->clone();
 | 
						|
    }
 | 
						|
    return copy;
 | 
						|
}
 | 
						|
 | 
						|
void mtmd_input_chunk_free(mtmd_input_chunk * chunk) {
 | 
						|
    if (chunk) {
 | 
						|
        delete chunk;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// mtmd_image_tokens
 | 
						|
 | 
						|
size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
 | 
						|
    return image_tokens->n_tokens();
 | 
						|
}
 | 
						|
 | 
						|
size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
 | 
						|
    return image_tokens->nx;
 | 
						|
}
 | 
						|
 | 
						|
size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
 | 
						|
    return image_tokens->ny;
 | 
						|
}
 | 
						|
 | 
						|
const char * mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
 | 
						|
    return image_tokens->id.c_str();
 | 
						|
}
 | 
						|
 | 
						|
llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
 | 
						|
    if (image_tokens->use_mrope_pos) {
 | 
						|
        return 1; // for M-RoPE, the whole image is 1 in temporal dimension
 | 
						|
    }
 | 
						|
    return image_tokens->n_tokens();
 | 
						|
}
 | 
						|
 | 
						|
// test function
 | 
						|
 | 
						|
mtmd_input_chunks * mtmd_test_create_input_chunks() {
 | 
						|
    mtmd_input_chunks * chunks = mtmd_input_chunks_init();
 | 
						|
    if (!chunks) {
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // create a text chunk
 | 
						|
    std::vector<llama_token> tokens_text = { 1, 2, 3, 4, 5 };
 | 
						|
    mtmd_input_chunk chunk_text{
 | 
						|
        MTMD_INPUT_CHUNK_TYPE_TEXT,
 | 
						|
        std::move(tokens_text),
 | 
						|
        nullptr, // image tokens
 | 
						|
        nullptr, // audio tokens
 | 
						|
    };
 | 
						|
    chunks->entries.emplace_back(std::move(chunk_text));
 | 
						|
 | 
						|
    // create an image chunk
 | 
						|
    mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
 | 
						|
    image_tokens->nx = 4;
 | 
						|
    image_tokens->ny = 4;
 | 
						|
    image_tokens->batch_f32.entries.resize(16);
 | 
						|
    image_tokens->id = "image_1";
 | 
						|
    mtmd_input_chunk chunk_image{
 | 
						|
        MTMD_INPUT_CHUNK_TYPE_IMAGE,
 | 
						|
        {}, // text tokens
 | 
						|
        std::move(image_tokens),
 | 
						|
        nullptr, // audio tokens
 | 
						|
    };
 | 
						|
    chunks->entries.emplace_back(std::move(chunk_image));
 | 
						|
 | 
						|
    return chunks;
 | 
						|
}
 |