mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-29 08:41:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			15128 lines
		
	
	
		
			577 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			15128 lines
		
	
	
		
			577 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // MIT license
 | |
| // Copyright (C) 2024 Intel Corporation
 | |
| // SPDX-License-Identifier: MIT
 | |
| //
 | |
| 
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <assert.h>
 | |
| #include <atomic>
 | |
| #include <cinttypes>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <float.h>
 | |
| #include <limits>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <vector>
 | |
| #include <cmath>
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| 
 | |
| #include <sycl/sycl.hpp>
 | |
| #include <sycl/half_type.hpp>
 | |
| 
 | |
| #include "ggml-sycl.h"
 | |
| #include "ggml.h"
 | |
| #include "ggml-backend-impl.h"
 | |
| 
 | |
| /*
 | |
| Following definition copied from DPCT head files, which are used by ggml-sycl.cpp
 | |
| */
 | |
| // COPY from DPCT head files
 | |
| #include <sycl/sycl.hpp>
 | |
| #include <oneapi/mkl.hpp>
 | |
| #include <map>
 | |
| 
 | |
| #if defined(__linux__)
 | |
| #include <sys/mman.h>
 | |
| #elif defined(_WIN64)
 | |
| #ifndef NOMINMAX
 | |
| #define NOMINMAX
 | |
| #endif
 | |
| #include <windows.h>
 | |
| #else
 | |
| #error "Only support Windows and Linux."
 | |
| #endif
 | |
| 
 | |
| #if defined(__linux__)
 | |
| #include <unistd.h>
 | |
| #include <sys/syscall.h>
 | |
| #endif
 | |
| #if defined(_WIN64)
 | |
| #ifndef NOMINMAX
 | |
| #define NOMINMAX
 | |
| #endif
 | |
| #include <windows.h>
 | |
| #endif
 | |
| 
 | |
| #define DPCT_COMPATIBILITY_TEMP (900)
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #define __dpct_align__(n) __declspec(align(n))
 | |
| #define __dpct_inline__ __forceinline
 | |
| #else
 | |
| #define __dpct_align__(n) __attribute__((aligned(n)))
 | |
| #define __dpct_inline__ __inline__ __attribute__((always_inline))
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #define __dpct_noinline__ __declspec(noinline)
 | |
| #else
 | |
| #define __dpct_noinline__ __attribute__((noinline))
 | |
| #endif
 | |
| 
 | |
| namespace dpct
 | |
| {
 | |
|     typedef sycl::queue *queue_ptr;
 | |
|     typedef sycl::event *event_ptr;
 | |
|     typedef char *device_ptr;
 | |
|     typedef uint8_t byte_t;
 | |
|     typedef sycl::buffer<byte_t> buffer_t;
 | |
| 
 | |
|     /// SYCL default exception handler
 | |
|     inline auto exception_handler = [](sycl::exception_list exceptions)
 | |
|     {
 | |
|         for (std::exception_ptr const &e : exceptions)
 | |
|         {
 | |
|             try
 | |
|             {
 | |
|                 std::rethrow_exception(e);
 | |
|             }
 | |
|             catch (sycl::exception const &e)
 | |
|             {
 | |
|                 std::cerr << "Caught asynchronous SYCL exception:" << std::endl
 | |
|                           << e.what() << std::endl
 | |
|                           << "Exception caught at file:" << __FILE__
 | |
|                           << ", line:" << __LINE__ << std::endl;
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     enum error_code
 | |
|     {
 | |
|         success = 0,
 | |
|         default_error = 999
 | |
|     };
 | |
| 
 | |
|     enum memcpy_direction
 | |
|     {
 | |
|         host_to_host,
 | |
|         host_to_device,
 | |
|         device_to_host,
 | |
|         device_to_device,
 | |
|         automatic
 | |
|     };
 | |
| 
 | |
|     enum memory_region
 | |
|     {
 | |
|         global = 0, // device global memory
 | |
|         constant,   // device constant memory
 | |
|         local,      // device local memory
 | |
|         shared,     // memory which can be accessed by host and device
 | |
|     };
 | |
| 
 | |
|     enum class library_data_t : unsigned char
 | |
|     {
 | |
|         real_float = 0,
 | |
|         complex_float,
 | |
|         real_double,
 | |
|         complex_double,
 | |
|         real_half,
 | |
|         complex_half,
 | |
|         real_bfloat16,
 | |
|         complex_bfloat16,
 | |
|         real_int4,
 | |
|         complex_int4,
 | |
|         real_uint4,
 | |
|         complex_uint4,
 | |
|         real_int8,
 | |
|         complex_int8,
 | |
|         real_uint8,
 | |
|         complex_uint8,
 | |
|         real_int16,
 | |
|         complex_int16,
 | |
|         real_uint16,
 | |
|         complex_uint16,
 | |
|         real_int32,
 | |
|         complex_int32,
 | |
|         real_uint32,
 | |
|         complex_uint32,
 | |
|         real_int64,
 | |
|         complex_int64,
 | |
|         real_uint64,
 | |
|         complex_uint64,
 | |
|         real_int8_4,
 | |
|         real_int8_32,
 | |
|         real_uint8_4,
 | |
|         library_data_t_size
 | |
|     };
 | |
| 
 | |
|     template <typename T>
 | |
|     struct DataType
 | |
|     {
 | |
|         using T2 = T;
 | |
|     };
 | |
|     template <typename T>
 | |
|     struct DataType<sycl::vec<T, 2>>
 | |
|     {
 | |
|         using T2 = std::complex<T>;
 | |
|     };
 | |
| 
 | |
|     static void destroy_event(event_ptr event)
 | |
|     {
 | |
|         delete event;
 | |
|     }
 | |
| 
 | |
|     static inline unsigned int get_tid()
 | |
|     {
 | |
| #if defined(__linux__)
 | |
|         return syscall(SYS_gettid);
 | |
| #elif defined(_WIN64)
 | |
|         return GetCurrentThreadId();
 | |
| #else
 | |
| #error "Only support Windows and Linux."
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     namespace detail
 | |
|     {
 | |
|         static void get_version(const sycl::device &dev, int &major, int &minor)
 | |
|         {
 | |
|             // Version string has the following format:
 | |
|             // a. OpenCL<space><major.minor><space><vendor-specific-information>
 | |
|             // b. <major.minor>
 | |
|             std::string ver;
 | |
|             ver = dev.get_info<sycl::info::device::version>();
 | |
|             std::string::size_type i = 0;
 | |
|             while (i < ver.size())
 | |
|             {
 | |
|                 if (isdigit(ver[i]))
 | |
|                     break;
 | |
|                 i++;
 | |
|             }
 | |
|             major = std::stoi(&(ver[i]));
 | |
|             while (i < ver.size())
 | |
|             {
 | |
|                 if (ver[i] == '.')
 | |
|                     break;
 | |
|                 i++;
 | |
|             }
 | |
|             i++;
 | |
|             minor = std::stoi(&(ver[i]));
 | |
|         }
 | |
| 
 | |
|         template <typename tag, typename T>
 | |
|         class generic_error_type
 | |
|         {
 | |
|         public:
 | |
|             generic_error_type() = default;
 | |
|             generic_error_type(T value) : value{value} {}
 | |
|             operator T() const { return value; }
 | |
| 
 | |
|         private:
 | |
|             T value;
 | |
|         };
 | |
| 
 | |
|     } // namespace detail
 | |
| 
 | |
|     /// Pitched 2D/3D memory data.
 | |
|     class pitched_data
 | |
|     {
 | |
|     public:
 | |
|         pitched_data() : pitched_data(nullptr, 0, 0, 0) {}
 | |
|         pitched_data(void *data, size_t pitch, size_t x, size_t y)
 | |
|             : _data(data), _pitch(pitch), _x(x), _y(y) {}
 | |
| 
 | |
|         void *get_data_ptr() { return _data; }
 | |
|         void set_data_ptr(void *data) { _data = data; }
 | |
| 
 | |
|         size_t get_pitch() { return _pitch; }
 | |
|         void set_pitch(size_t pitch) { _pitch = pitch; }
 | |
| 
 | |
|         size_t get_x() { return _x; }
 | |
|         void set_x(size_t x) { _x = x; };
 | |
| 
 | |
|         size_t get_y() { return _y; }
 | |
|         void set_y(size_t y) { _y = y; }
 | |
| 
 | |
|     private:
 | |
|         void *_data;
 | |
|         size_t _pitch, _x, _y;
 | |
|     };
 | |
| 
 | |
|     class device_info
 | |
|     {
 | |
|     public:
 | |
|         // get interface
 | |
|         const char *get_name() const { return _name; }
 | |
|         char *get_name() { return _name; }
 | |
|         template <typename WorkItemSizesTy = sycl::range<3>,
 | |
|                   std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
 | |
|                                        std::is_same_v<WorkItemSizesTy, int *>,
 | |
|                                    int> = 0>
 | |
|         auto get_max_work_item_sizes() const
 | |
|         {
 | |
|             if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
 | |
|                 return sycl::range<3>(_max_work_item_sizes_i[0],
 | |
|                                       _max_work_item_sizes_i[1],
 | |
|                                       _max_work_item_sizes_i[2]);
 | |
|             else
 | |
|             {
 | |
|                 return _max_work_item_sizes_i;
 | |
|             }
 | |
|         }
 | |
|         template <typename WorkItemSizesTy = sycl::range<3>,
 | |
|                   std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
 | |
|                                        std::is_same_v<WorkItemSizesTy, int *>,
 | |
|                                    int> = 0>
 | |
|         auto get_max_work_item_sizes()
 | |
|         {
 | |
|             if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
 | |
|                 return sycl::range<3>(_max_work_item_sizes_i[0],
 | |
|                                       _max_work_item_sizes_i[1],
 | |
|                                       _max_work_item_sizes_i[2]);
 | |
|             else
 | |
|             {
 | |
|                 return _max_work_item_sizes_i;
 | |
|             }
 | |
|         }
 | |
|         bool get_host_unified_memory() const { return _host_unified_memory; }
 | |
|         int get_major_version() const { return _major; }
 | |
|         int get_minor_version() const { return _minor; }
 | |
|         int get_integrated() const { return _integrated; }
 | |
|         int get_max_clock_frequency() const { return _frequency; }
 | |
|         int get_max_compute_units() const { return _max_compute_units; }
 | |
|         int get_max_work_group_size() const { return _max_work_group_size; }
 | |
|         int get_max_sub_group_size() const { return _max_sub_group_size; }
 | |
|         int get_max_work_items_per_compute_unit() const
 | |
|         {
 | |
|             return _max_work_items_per_compute_unit;
 | |
|         }
 | |
|         int get_max_register_size_per_work_group() const
 | |
|         {
 | |
|             return _max_register_size_per_work_group;
 | |
|         }
 | |
|         template <typename NDRangeSizeTy = size_t *,
 | |
|                   std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
 | |
|                                        std::is_same_v<NDRangeSizeTy, int *>,
 | |
|                                    int> = 0>
 | |
|         auto get_max_nd_range_size() const
 | |
|         {
 | |
|             if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
 | |
|                 return _max_nd_range_size;
 | |
|             else
 | |
|                 return _max_nd_range_size_i;
 | |
|         }
 | |
|         template <typename NDRangeSizeTy = size_t *,
 | |
|                   std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
 | |
|                                        std::is_same_v<NDRangeSizeTy, int *>,
 | |
|                                    int> = 0>
 | |
|         auto get_max_nd_range_size()
 | |
|         {
 | |
|             if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
 | |
|                 return _max_nd_range_size;
 | |
|             else
 | |
|                 return _max_nd_range_size_i;
 | |
|         }
 | |
|         size_t get_global_mem_size() const { return _global_mem_size; }
 | |
|         size_t get_local_mem_size() const { return _local_mem_size; }
 | |
|         size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
 | |
|         /// Returns the maximum clock rate of device's global memory in kHz. If
 | |
|         /// compiler does not support this API then returns default value 3200000 kHz.
 | |
|         unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
 | |
|         /// Returns the maximum bus width between device and memory in bits. If
 | |
|         /// compiler does not support this API then returns default value 64 bits.
 | |
|         unsigned int get_memory_bus_width() const { return _memory_bus_width; }
 | |
|         uint32_t get_device_id() const { return _device_id; }
 | |
|         std::array<unsigned char, 16> get_uuid() const { return _uuid; }
 | |
|         /// Returns global memory cache size in bytes.
 | |
|         unsigned int get_global_mem_cache_size() const
 | |
|         {
 | |
|             return _global_mem_cache_size;
 | |
|         }
 | |
| 
 | |
|         // set interface
 | |
|         void set_name(const char *name)
 | |
|         {
 | |
|             size_t length = strlen(name);
 | |
|             if (length < 256)
 | |
|             {
 | |
|                 std::memcpy(_name, name, length + 1);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 std::memcpy(_name, name, 255);
 | |
|                 _name[255] = '\0';
 | |
|             }
 | |
|         }
 | |
|         void set_max_work_item_sizes(const sycl::range<3> max_work_item_sizes)
 | |
|         {
 | |
|             for (int i = 0; i < 3; ++i)
 | |
|                 _max_work_item_sizes_i[i] = max_work_item_sizes[i];
 | |
|         }
 | |
|         [[deprecated]] void
 | |
|         set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes)
 | |
|         {
 | |
|             for (int i = 0; i < 3; ++i)
 | |
|             {
 | |
|                 _max_work_item_sizes_i[i] = max_work_item_sizes[i];
 | |
|             }
 | |
|         }
 | |
|         void set_host_unified_memory(bool host_unified_memory)
 | |
|         {
 | |
|             _host_unified_memory = host_unified_memory;
 | |
|         }
 | |
|         void set_major_version(int major) { _major = major; }
 | |
|         void set_minor_version(int minor) { _minor = minor; }
 | |
|         void set_integrated(int integrated) { _integrated = integrated; }
 | |
|         void set_max_clock_frequency(int frequency) { _frequency = frequency; }
 | |
|         void set_max_compute_units(int max_compute_units)
 | |
|         {
 | |
|             _max_compute_units = max_compute_units;
 | |
|         }
 | |
|         void set_global_mem_size(size_t global_mem_size)
 | |
|         {
 | |
|             _global_mem_size = global_mem_size;
 | |
|         }
 | |
|         void set_local_mem_size(size_t local_mem_size)
 | |
|         {
 | |
|             _local_mem_size = local_mem_size;
 | |
|         }
 | |
|         void set_max_mem_alloc_size(size_t max_mem_alloc_size)
 | |
|         {
 | |
|             _max_mem_alloc_size = max_mem_alloc_size;
 | |
|         }
 | |
|         void set_max_work_group_size(int max_work_group_size)
 | |
|         {
 | |
|             _max_work_group_size = max_work_group_size;
 | |
|         }
 | |
|         void set_max_sub_group_size(int max_sub_group_size)
 | |
|         {
 | |
|             _max_sub_group_size = max_sub_group_size;
 | |
|         }
 | |
|         void
 | |
|         set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit)
 | |
|         {
 | |
|             _max_work_items_per_compute_unit = max_work_items_per_compute_unit;
 | |
|         }
 | |
|         void set_max_nd_range_size(int max_nd_range_size[])
 | |
|         {
 | |
|             for (int i = 0; i < 3; i++)
 | |
|             {
 | |
|                 _max_nd_range_size[i] = max_nd_range_size[i];
 | |
|                 _max_nd_range_size_i[i] = max_nd_range_size[i];
 | |
|             }
 | |
|         }
 | |
|         void set_memory_clock_rate(unsigned int memory_clock_rate)
 | |
|         {
 | |
|             _memory_clock_rate = memory_clock_rate;
 | |
|         }
 | |
|         void set_memory_bus_width(unsigned int memory_bus_width)
 | |
|         {
 | |
|             _memory_bus_width = memory_bus_width;
 | |
|         }
 | |
|         void
 | |
|         set_max_register_size_per_work_group(int max_register_size_per_work_group)
 | |
|         {
 | |
|             _max_register_size_per_work_group = max_register_size_per_work_group;
 | |
|         }
 | |
|         void set_device_id(uint32_t device_id)
 | |
|         {
 | |
|             _device_id = device_id;
 | |
|         }
 | |
|         void set_uuid(std::array<unsigned char, 16> uuid)
 | |
|         {
 | |
|             _uuid = std::move(uuid);
 | |
|         }
 | |
|         void set_global_mem_cache_size(unsigned int global_mem_cache_size)
 | |
|         {
 | |
|             _global_mem_cache_size = global_mem_cache_size;
 | |
|         }
 | |
| 
 | |
|     private:
 | |
|         char _name[256];
 | |
|         int _max_work_item_sizes_i[3];
 | |
|         bool _host_unified_memory = false;
 | |
|         int _major;
 | |
|         int _minor;
 | |
|         int _integrated = 0;
 | |
|         int _frequency;
 | |
|         // Set estimated value 3200000 kHz as default value.
 | |
|         unsigned int _memory_clock_rate = 3200000;
 | |
|         // Set estimated value 64 bits as default value.
 | |
|         unsigned int _memory_bus_width = 64;
 | |
|         unsigned int _global_mem_cache_size;
 | |
|         int _max_compute_units;
 | |
|         int _max_work_group_size;
 | |
|         int _max_sub_group_size;
 | |
|         int _max_work_items_per_compute_unit;
 | |
|         int _max_register_size_per_work_group;
 | |
|         size_t _global_mem_size;
 | |
|         size_t _local_mem_size;
 | |
|         size_t _max_mem_alloc_size;
 | |
|         size_t _max_nd_range_size[3];
 | |
|         int _max_nd_range_size_i[3];
 | |
|         uint32_t _device_id;
 | |
|         std::array<unsigned char, 16> _uuid;
 | |
|     };
 | |
| 
 | |
|     static int get_major_version(const sycl::device &dev)
 | |
|     {
 | |
|         int major, minor;
 | |
|         detail::get_version(dev, major, minor);
 | |
|         return major;
 | |
|     }
 | |
| 
 | |
|     static int get_minor_version(const sycl::device &dev)
 | |
|     {
 | |
|         int major, minor;
 | |
|         detail::get_version(dev, major, minor);
 | |
|         return minor;
 | |
|     }
 | |
| 
 | |
|     static void get_device_info(device_info &out, const sycl::device &dev)
 | |
|     {
 | |
|         device_info prop;
 | |
|         prop.set_name(dev.get_info<sycl::info::device::name>().c_str());
 | |
| 
 | |
|         int major, minor;
 | |
|         detail::get_version(dev, major, minor);
 | |
|         prop.set_major_version(major);
 | |
|         prop.set_minor_version(minor);
 | |
| 
 | |
|         prop.set_max_work_item_sizes(
 | |
| #if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION < 20220902)
 | |
|             // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes
 | |
|             // is an enum class element
 | |
|             dev.get_info<sycl::info::device::max_work_item_sizes>());
 | |
| #else
 | |
|             // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by
 | |
|             // an int
 | |
|             dev.get_info<sycl::info::device::max_work_item_sizes<3>>());
 | |
| #endif
 | |
|         prop.set_host_unified_memory(dev.has(sycl::aspect::usm_host_allocations));
 | |
| 
 | |
|         prop.set_max_clock_frequency(
 | |
|             dev.get_info<sycl::info::device::max_clock_frequency>() * 1000);
 | |
| 
 | |
|         prop.set_max_compute_units(
 | |
|             dev.get_info<sycl::info::device::max_compute_units>());
 | |
|         prop.set_max_work_group_size(
 | |
|             dev.get_info<sycl::info::device::max_work_group_size>());
 | |
|         prop.set_global_mem_size(dev.get_info<sycl::info::device::global_mem_size>());
 | |
|         prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
 | |
|         prop.set_max_mem_alloc_size(dev.get_info<sycl::info::device::max_mem_alloc_size>());
 | |
| 
 | |
| #if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
 | |
|         if (dev.has(sycl::aspect::ext_intel_memory_clock_rate))
 | |
|         {
 | |
|             unsigned int tmp =
 | |
|                 dev.get_info<sycl::ext::intel::info::device::memory_clock_rate>();
 | |
|             if (tmp != 0)
 | |
|                 prop.set_memory_clock_rate(1000 * tmp);
 | |
|         }
 | |
|         if (dev.has(sycl::aspect::ext_intel_memory_bus_width))
 | |
|         {
 | |
|             prop.set_memory_bus_width(
 | |
|                 dev.get_info<sycl::ext::intel::info::device::memory_bus_width>());
 | |
|         }
 | |
|         if (dev.has(sycl::aspect::ext_intel_device_id))
 | |
|         {
 | |
|             prop.set_device_id(
 | |
|                 dev.get_info<sycl::ext::intel::info::device::device_id>());
 | |
|         }
 | |
|         if (dev.has(sycl::aspect::ext_intel_device_info_uuid))
 | |
|         {
 | |
|             prop.set_uuid(dev.get_info<sycl::ext::intel::info::device::uuid>());
 | |
|         }
 | |
| #elif defined(_MSC_VER) && !defined(__clang__)
 | |
| #pragma message("get_device_info: querying memory_clock_rate and \
 | |
|         memory_bus_width are not supported by the compiler used. \
 | |
|         Use 3200000 kHz as memory_clock_rate default value. \
 | |
|         Use 64 bits as memory_bus_width default value.")
 | |
| #else
 | |
| #warning "get_device_info: querying memory_clock_rate and \
 | |
|         memory_bus_width are not supported by the compiler used. \
 | |
|         Use 3200000 kHz as memory_clock_rate default value. \
 | |
|         Use 64 bits as memory_bus_width default value."
 | |
| #endif
 | |
| 
 | |
|         size_t max_sub_group_size = 1;
 | |
|         std::vector<size_t> sub_group_sizes =
 | |
|             dev.get_info<sycl::info::device::sub_group_sizes>();
 | |
| 
 | |
|         for (const auto &sub_group_size : sub_group_sizes)
 | |
|         {
 | |
|             if (max_sub_group_size < sub_group_size)
 | |
|                 max_sub_group_size = sub_group_size;
 | |
|         }
 | |
| 
 | |
|         prop.set_max_sub_group_size(max_sub_group_size);
 | |
| 
 | |
|         prop.set_max_work_items_per_compute_unit(
 | |
|             dev.get_info<sycl::info::device::max_work_group_size>());
 | |
|         int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
 | |
|         prop.set_max_nd_range_size(max_nd_range_size);
 | |
| 
 | |
|         // Estimates max register size per work group, feel free to update the value
 | |
|         // according to device properties.
 | |
|         prop.set_max_register_size_per_work_group(65536);
 | |
| 
 | |
|         prop.set_global_mem_cache_size(
 | |
|             dev.get_info<sycl::info::device::global_mem_cache_size>());
 | |
|         out = prop;
 | |
|     }
 | |
| 
 | |
|     /// dpct device extension
 | |
|     class device_ext : public sycl::device
 | |
|     {
 | |
|         typedef std::mutex mutex_type;
 | |
| 
 | |
|     public:
 | |
|         device_ext() : sycl::device(), _ctx(*this) {}
 | |
|         ~device_ext()
 | |
|         {
 | |
|             std::lock_guard<mutex_type> lock(m_mutex);
 | |
|             clear_queues();
 | |
|         }
 | |
|         device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this)
 | |
|         {
 | |
|             std::lock_guard<mutex_type> lock(m_mutex);
 | |
|             init_queues();
 | |
|         }
 | |
| 
 | |
|         int is_native_atomic_supported() { return 0; }
 | |
|         int get_major_version() const
 | |
|         {
 | |
|             return dpct::get_major_version(*this);
 | |
|         }
 | |
| 
 | |
|         int get_minor_version() const
 | |
|         {
 | |
|             return dpct::get_minor_version(*this);
 | |
|         }
 | |
| 
 | |
|         int get_max_compute_units() const
 | |
|         {
 | |
|             return get_device_info().get_max_compute_units();
 | |
|         }
 | |
| 
 | |
|         /// Return the maximum clock frequency of this device in KHz.
 | |
|         int get_max_clock_frequency() const
 | |
|         {
 | |
|             return get_device_info().get_max_clock_frequency();
 | |
|         }
 | |
| 
 | |
|         int get_integrated() const { return get_device_info().get_integrated(); }
 | |
| 
 | |
|         int get_max_sub_group_size() const
 | |
|         {
 | |
|             return get_device_info().get_max_sub_group_size();
 | |
|         }
 | |
| 
 | |
|         int get_max_register_size_per_work_group() const
 | |
|         {
 | |
|             return get_device_info().get_max_register_size_per_work_group();
 | |
|         }
 | |
| 
 | |
|         int get_max_work_group_size() const
 | |
|         {
 | |
|             return get_device_info().get_max_work_group_size();
 | |
|         }
 | |
| 
 | |
|         int get_mem_base_addr_align() const
 | |
|         {
 | |
|             return get_info<sycl::info::device::mem_base_addr_align>();
 | |
|         }
 | |
| 
 | |
|         size_t get_global_mem_size() const
 | |
|         {
 | |
|             return get_device_info().get_global_mem_size();
 | |
|         }
 | |
| 
 | |
|         size_t get_max_mem_alloc_size() const
 | |
|         {
 | |
|             return get_device_info().get_max_mem_alloc_size();
 | |
|         }
 | |
| 
 | |
|         /// Get the number of bytes of free and total memory on the SYCL device.
 | |
|         /// \param [out] free_memory The number of bytes of free memory on the SYCL device.
 | |
|         /// \param [out] total_memory The number of bytes of total memory on the SYCL device.
 | |
|         void get_memory_info(size_t &free_memory, size_t &total_memory)
 | |
|         {
 | |
| #if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
 | |
|             if (!has(sycl::aspect::ext_intel_free_memory))
 | |
|             {
 | |
|                 std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl;
 | |
|                 free_memory = 0;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
 | |
|             }
 | |
| #else
 | |
|             std::cerr << "get_memory_info: ext_intel_free_memory is not supported." << std::endl;
 | |
|             free_memory = 0;
 | |
| #if defined(_MSC_VER) && !defined(__clang__)
 | |
| #pragma message("Querying the number of bytes of free memory is not supported")
 | |
| #else
 | |
| #warning "Querying the number of bytes of free memory is not supported"
 | |
| #endif
 | |
| #endif
 | |
|             total_memory = get_device_info().get_global_mem_size();
 | |
|         }
 | |
| 
 | |
|         void get_device_info(device_info &out) const
 | |
|         {
 | |
|             dpct::get_device_info(out, *this);
 | |
|         }
 | |
| 
 | |
|         device_info get_device_info() const
 | |
|         {
 | |
|             device_info prop;
 | |
|             dpct::get_device_info(prop, *this);
 | |
|             return prop;
 | |
|         }
 | |
| 
 | |
|         void reset()
 | |
|         {
 | |
|             std::lock_guard<mutex_type> lock(m_mutex);
 | |
|             clear_queues();
 | |
|             init_queues();
 | |
|         }
 | |
| 
 | |
|         sycl::queue &in_order_queue() { return *_q_in_order; }
 | |
| 
 | |
|         sycl::queue &out_of_order_queue() { return *_q_out_of_order; }
 | |
| 
 | |
|         sycl::queue &default_queue()
 | |
|         {
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|             return out_of_order_queue();
 | |
| #else
 | |
|             return in_order_queue();
 | |
| #endif // DPCT_USM_LEVEL_NONE
 | |
|         }
 | |
| 
 | |
|         void queues_wait_and_throw()
 | |
|         {
 | |
|             std::unique_lock<mutex_type> lock(m_mutex);
 | |
|             std::vector<std::shared_ptr<sycl::queue>> current_queues(
 | |
|                 _queues);
 | |
|             lock.unlock();
 | |
|             for (const auto &q : current_queues)
 | |
|             {
 | |
|                 q->wait_and_throw();
 | |
|             }
 | |
|             // Guard the destruct of current_queues to make sure the ref count is safe.
 | |
|             lock.lock();
 | |
|         }
 | |
| 
 | |
|         sycl::queue *create_queue(bool enable_exception_handler = false)
 | |
|         {
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|             return create_out_of_order_queue(enable_exception_handler);
 | |
| #else
 | |
|             return create_in_order_queue(enable_exception_handler);
 | |
| #endif // DPCT_USM_LEVEL_NONE
 | |
|         }
 | |
| 
 | |
|         sycl::queue *create_in_order_queue(bool enable_exception_handler = false)
 | |
|         {
 | |
|             std::lock_guard<mutex_type> lock(m_mutex);
 | |
|             return create_queue_impl(enable_exception_handler,
 | |
|                                      sycl::property::queue::in_order());
 | |
|         }
 | |
| 
 | |
|         sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false)
 | |
|         {
 | |
|             std::lock_guard<mutex_type> lock(m_mutex);
 | |
|             return create_queue_impl(enable_exception_handler);
 | |
|         }
 | |
| 
 | |
|         void destroy_queue(sycl::queue *&queue)
 | |
|         {
 | |
|             std::lock_guard<mutex_type> lock(m_mutex);
 | |
|             _queues.erase(std::remove_if(_queues.begin(), _queues.end(),
 | |
|                                          [=](const std::shared_ptr<sycl::queue> &q) -> bool
 | |
|                                          {
 | |
|                                              return q.get() == queue;
 | |
|                                          }),
 | |
|                           _queues.end());
 | |
|             queue = nullptr;
 | |
|         }
 | |
|         void set_saved_queue(sycl::queue *q)
 | |
|         {
 | |
|             std::lock_guard<mutex_type> lock(m_mutex);
 | |
|             _saved_queue = q;
 | |
|         }
 | |
|         sycl::queue *get_saved_queue() const
 | |
|         {
 | |
|             std::lock_guard<mutex_type> lock(m_mutex);
 | |
|             return _saved_queue;
 | |
|         }
 | |
|         sycl::context get_context() const { return _ctx; }
 | |
| 
 | |
|     private:
 | |
|         void clear_queues()
 | |
|         {
 | |
|             _queues.clear();
 | |
|             _q_in_order = _q_out_of_order = _saved_queue = nullptr;
 | |
|         }
 | |
| 
 | |
|         void init_queues()
 | |
|         {
 | |
|             _q_in_order = create_queue_impl(true, sycl::property::queue::in_order());
 | |
|             _q_out_of_order = create_queue_impl(true);
 | |
|             _saved_queue = &default_queue();
 | |
|         }
 | |
| 
 | |
|         /// Caller should acquire resource \p m_mutex before calling this function.
 | |
|         template <class... Properties>
 | |
|         sycl::queue *create_queue_impl(bool enable_exception_handler,
 | |
|                                        Properties... properties)
 | |
|         {
 | |
|             sycl::async_handler eh = {};
 | |
|             if (enable_exception_handler)
 | |
|             {
 | |
|                 eh = exception_handler;
 | |
|             }
 | |
|             _queues.push_back(std::make_shared<sycl::queue>(
 | |
|                 _ctx, *this, eh,
 | |
|                 sycl::property_list(
 | |
| #ifdef DPCT_PROFILING_ENABLED
 | |
|                     sycl::property::queue::enable_profiling(),
 | |
| #endif
 | |
|                     properties...)));
 | |
| 
 | |
|             return _queues.back().get();
 | |
|         }
 | |
| 
 | |
|         void get_version(int &major, int &minor) const
 | |
|         {
 | |
|             detail::get_version(*this, major, minor);
 | |
|         }
 | |
|         sycl::queue *_q_in_order, *_q_out_of_order;
 | |
|         sycl::queue *_saved_queue;
 | |
|         sycl::context _ctx;
 | |
|         std::vector<std::shared_ptr<sycl::queue>> _queues;
 | |
|         mutable mutex_type m_mutex;
 | |
|     };
 | |
| 
 | |
|     /// device manager
 | |
|     class dev_mgr
 | |
|     {
 | |
|     public:
 | |
|         device_ext ¤t_device()
 | |
|         {
 | |
|             unsigned int dev_id = current_device_id();
 | |
|             check_id(dev_id);
 | |
|             return *_devs[dev_id];
 | |
|         }
 | |
|         device_ext &cpu_device() const
 | |
|         {
 | |
|             std::lock_guard<std::recursive_mutex> lock(m_mutex);
 | |
|             if (_cpu_device == -1)
 | |
|             {
 | |
|                 throw std::runtime_error("no valid cpu device");
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 return *_devs[_cpu_device];
 | |
|             }
 | |
|         }
 | |
|         device_ext &get_device(unsigned int id) const
 | |
|         {
 | |
|             std::lock_guard<std::recursive_mutex> lock(m_mutex);
 | |
|             check_id(id);
 | |
|             return *_devs[id];
 | |
|         }
 | |
|         unsigned int current_device_id() const
 | |
|         {
 | |
|             std::lock_guard<std::recursive_mutex> lock(m_mutex);
 | |
|             auto it = _thread2dev_map.find(get_tid());
 | |
|             if (it != _thread2dev_map.end())
 | |
|                 return it->second;
 | |
|             return DEFAULT_DEVICE_ID;
 | |
|         }
 | |
| 
 | |
|         /// Select device with a device ID.
 | |
|         /// \param [in] id The id of the device which can
 | |
|         /// be obtained through get_device_id(const sycl::device).
 | |
|         void select_device(unsigned int id)
 | |
|         {
 | |
|             std::lock_guard<std::recursive_mutex> lock(m_mutex);
 | |
|             check_id(id);
 | |
|             _thread2dev_map[get_tid()] = id;
 | |
|         }
 | |
|         unsigned int device_count() { return _devs.size(); }
 | |
| 
 | |
|         unsigned int get_device_id(const sycl::device &dev)
 | |
|         {
 | |
|             unsigned int id = 0;
 | |
|             for (auto dev_item : _devs)
 | |
|             {
 | |
|                 if (*dev_item == dev)
 | |
|                 {
 | |
|                     break;
 | |
|                 }
 | |
|                 id++;
 | |
|             }
 | |
|             return id;
 | |
|         }
 | |
| 
 | |
|         template <class DeviceSelector>
 | |
|         std::enable_if_t<
 | |
|             std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>>
 | |
|         select_device(const DeviceSelector &selector = sycl::gpu_selector_v)
 | |
|         {
 | |
|             sycl::device selected_device = sycl::device(selector);
 | |
|             unsigned int selected_device_id = get_device_id(selected_device);
 | |
|             select_device(selected_device_id);
 | |
|         }
 | |
| 
 | |
|         /// Returns the instance of device manager singleton.
 | |
|         static dev_mgr &instance()
 | |
|         {
 | |
|             static dev_mgr d_m;
 | |
|             return d_m;
 | |
|         }
 | |
|         dev_mgr(const dev_mgr &) = delete;
 | |
|         dev_mgr &operator=(const dev_mgr &) = delete;
 | |
|         dev_mgr(dev_mgr &&) = delete;
 | |
|         dev_mgr &operator=(dev_mgr &&) = delete;
 | |
| 
 | |
|     private:
 | |
|         mutable std::recursive_mutex m_mutex;
 | |
|         dev_mgr()
 | |
|         {
 | |
|             sycl::device default_device =
 | |
|                 sycl::device(sycl::default_selector_v);
 | |
|             _devs.push_back(std::make_shared<device_ext>(default_device));
 | |
| 
 | |
|             std::vector<sycl::device> sycl_all_devs =
 | |
|                 sycl::device::get_devices(sycl::info::device_type::all);
 | |
|             // Collect other devices except for the default device.
 | |
|             if (default_device.is_cpu())
 | |
|                 _cpu_device = 0;
 | |
|             for (auto &dev : sycl_all_devs)
 | |
|             {
 | |
|                 if (dev == default_device)
 | |
|                 {
 | |
|                     continue;
 | |
|                 }
 | |
|                 _devs.push_back(std::make_shared<device_ext>(dev));
 | |
|                 if (_cpu_device == -1 && dev.is_cpu())
 | |
|                 {
 | |
|                     _cpu_device = _devs.size() - 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         void check_id(unsigned int id) const
 | |
|         {
 | |
|             if (id >= _devs.size())
 | |
|             {
 | |
|                 throw std::runtime_error("invalid device id");
 | |
|             }
 | |
|         }
 | |
|         std::vector<std::shared_ptr<device_ext>> _devs;
 | |
|         /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current
 | |
|         /// thread id in _thread2dev_map, which means default device should be used
 | |
|         /// for the current thread.
 | |
|         const unsigned int DEFAULT_DEVICE_ID = 0;
 | |
|         /// thread-id to device-id map.
 | |
|         std::map<unsigned int, unsigned int> _thread2dev_map;
 | |
|         int _cpu_device = -1;
 | |
|     };
 | |
| 
 | |
|     static inline sycl::queue &get_default_queue()
 | |
|     {
 | |
|         return dev_mgr::instance().current_device().default_queue();
 | |
|     }
 | |
| 
 | |
|     namespace detail
 | |
|     {
 | |
|         enum class pointer_access_attribute
 | |
|         {
 | |
|             host_only = 0,
 | |
|             device_only,
 | |
|             host_device,
 | |
|             end
 | |
|         };
 | |
| 
 | |
|         static pointer_access_attribute get_pointer_attribute(sycl::queue &q,
 | |
|                                                               const void *ptr)
 | |
|         {
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|             return mem_mgr::instance().is_device_ptr(ptr)
 | |
|                        ? pointer_access_attribute::device_only
 | |
|                        : pointer_access_attribute::host_only;
 | |
| #else
 | |
|             switch (sycl::get_pointer_type(ptr, q.get_context()))
 | |
|             {
 | |
|             case sycl::usm::alloc::unknown:
 | |
|                 return pointer_access_attribute::host_only;
 | |
|             case sycl::usm::alloc::device:
 | |
|                 return pointer_access_attribute::device_only;
 | |
|             case sycl::usm::alloc::shared:
 | |
|             case sycl::usm::alloc::host:
 | |
|                 return pointer_access_attribute::host_device;
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         template <typename ArgT>
 | |
|         inline constexpr std::uint64_t get_type_combination_id(ArgT Val)
 | |
|         {
 | |
|             static_assert((unsigned char)library_data_t::library_data_t_size <=
 | |
|                               std::numeric_limits<unsigned char>::max() &&
 | |
|                           "library_data_t size exceeds limit.");
 | |
|             static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT");
 | |
|             return (std::uint64_t)Val;
 | |
|         }
 | |
| 
 | |
|         template <typename FirstT, typename... RestT>
 | |
|         inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal,
 | |
|                                                                RestT... RestVal)
 | |
|         {
 | |
|             static_assert((std::uint8_t)library_data_t::library_data_t_size <=
 | |
|                               std::numeric_limits<unsigned char>::max() &&
 | |
|                           "library_data_t size exceeds limit.");
 | |
|             static_assert(sizeof...(RestT) <= 8 && "Too many parameters");
 | |
|             static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT");
 | |
|             return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal);
 | |
|         }
 | |
| 
 | |
|         class mem_mgr
 | |
|         {
 | |
|             mem_mgr()
 | |
|             {
 | |
|                 // Reserved address space, no real memory allocation happens here.
 | |
| #if defined(__linux__)
 | |
|                 mapped_address_space =
 | |
|                     (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE,
 | |
|                                    MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | |
| #elif defined(_WIN64)
 | |
|                 mapped_address_space = (byte_t *)VirtualAlloc(
 | |
|                     NULL,               // NULL specified as the base address parameter
 | |
|                     mapped_region_size, // Size of allocation
 | |
|                     MEM_RESERVE,        // Allocate reserved pages
 | |
|                     PAGE_NOACCESS);     // Protection = no access
 | |
| #else
 | |
| #error "Only support Windows and Linux."
 | |
| #endif
 | |
|                 next_free = mapped_address_space;
 | |
|             };
 | |
| 
 | |
|         public:
 | |
|             using buffer_id_t = int;
 | |
| 
 | |
|             struct allocation
 | |
|             {
 | |
|                 buffer_t buffer;
 | |
|                 byte_t *alloc_ptr;
 | |
|                 size_t size;
 | |
|             };
 | |
| 
 | |
|             ~mem_mgr()
 | |
|             {
 | |
| #if defined(__linux__)
 | |
|                 munmap(mapped_address_space, mapped_region_size);
 | |
| #elif defined(_WIN64)
 | |
|                 VirtualFree(mapped_address_space, 0, MEM_RELEASE);
 | |
| #else
 | |
| #error "Only support Windows and Linux."
 | |
| #endif
 | |
|             };
 | |
| 
 | |
|             mem_mgr(const mem_mgr &) = delete;
 | |
|             mem_mgr &operator=(const mem_mgr &) = delete;
 | |
|             mem_mgr(mem_mgr &&) = delete;
 | |
|             mem_mgr &operator=(mem_mgr &&) = delete;
 | |
| 
 | |
|             /// Allocate
 | |
|             void *mem_alloc(size_t size)
 | |
|             {
 | |
|                 if (!size)
 | |
|                     return nullptr;
 | |
|                 std::lock_guard<std::mutex> lock(m_mutex);
 | |
|                 if (next_free + size > mapped_address_space + mapped_region_size)
 | |
|                 {
 | |
|                     throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool");
 | |
|                 }
 | |
|                 // Allocation
 | |
|                 sycl::range<1> r(size);
 | |
|                 buffer_t buf(r);
 | |
|                 allocation A{buf, next_free, size};
 | |
|                 // Map allocation to device pointer
 | |
|                 void *result = next_free;
 | |
|                 m_map.emplace(next_free + size, A);
 | |
|                 // Update pointer to the next free space.
 | |
|                 next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1);
 | |
| 
 | |
|                 return result;
 | |
|             }
 | |
| 
 | |
|             /// Deallocate
 | |
|             void mem_free(const void *ptr)
 | |
|             {
 | |
|                 if (!ptr)
 | |
|                     return;
 | |
|                 std::lock_guard<std::mutex> lock(m_mutex);
 | |
|                 auto it = get_map_iterator(ptr);
 | |
|                 m_map.erase(it);
 | |
|             }
 | |
| 
 | |
|             /// map: device pointer -> allocation(buffer, alloc_ptr, size)
 | |
|             allocation translate_ptr(const void *ptr)
 | |
|             {
 | |
|                 std::lock_guard<std::mutex> lock(m_mutex);
 | |
|                 auto it = get_map_iterator(ptr);
 | |
|                 return it->second;
 | |
|             }
 | |
| 
 | |
|             /// Check if the pointer represents device pointer or not.
 | |
|             bool is_device_ptr(const void *ptr) const
 | |
|             {
 | |
|                 std::lock_guard<std::mutex> lock(m_mutex);
 | |
|                 return (mapped_address_space <= ptr) &&
 | |
|                        (ptr < mapped_address_space + mapped_region_size);
 | |
|             }
 | |
| 
 | |
|             /// Returns the instance of memory manager singleton.
 | |
|             static mem_mgr &instance()
 | |
|             {
 | |
|                 static mem_mgr m;
 | |
|                 return m;
 | |
|             }
 | |
| 
 | |
|         private:
 | |
|             std::map<byte_t *, allocation> m_map;
 | |
|             mutable std::mutex m_mutex;
 | |
|             byte_t *mapped_address_space;
 | |
|             byte_t *next_free;
 | |
|             const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024;
 | |
|             const size_t alignment = 256;
 | |
|             /// This padding may be defined to some positive value to debug
 | |
|             /// out of bound accesses.
 | |
|             const size_t extra_padding = 0;
 | |
| 
 | |
|             std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr)
 | |
|             {
 | |
|                 auto it = m_map.upper_bound((byte_t *)ptr);
 | |
|                 if (it == m_map.end())
 | |
|                 {
 | |
|                     // Not a virtual pointer.
 | |
|                     throw std::runtime_error("can not get buffer from non-virtual pointer");
 | |
|                 }
 | |
|                 const allocation &alloc = it->second;
 | |
|                 if (ptr < alloc.alloc_ptr)
 | |
|                 {
 | |
|                     // Out of bound.
 | |
|                     // This may happen if there's a gap between allocations due to alignment
 | |
|                     // or extra padding and pointer points to this gap.
 | |
|                     throw std::runtime_error("invalid virtual pointer");
 | |
|                 }
 | |
|                 return it;
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         template <class T, memory_region Memory, size_t Dimension>
 | |
|         class accessor;
 | |
|         template <memory_region Memory, class T = byte_t>
 | |
|         class memory_traits
 | |
|         {
 | |
|         public:
 | |
|             static constexpr sycl::access::target target =
 | |
|                 sycl::access::target::device;
 | |
|             static constexpr sycl::access_mode mode =
 | |
|                 (Memory == constant) ? sycl::access_mode::read
 | |
|                                      : sycl::access_mode::read_write;
 | |
|             static constexpr size_t type_size = sizeof(T);
 | |
|             using element_t =
 | |
|                 typename std::conditional<Memory == constant, const T, T>::type;
 | |
|             using value_t = typename std::remove_cv<T>::type;
 | |
|             template <size_t Dimension = 1>
 | |
|             using accessor_t = typename std::conditional<
 | |
|                 Memory == local, sycl::local_accessor<value_t, Dimension>,
 | |
|                 sycl::accessor<T, Dimension, mode, target>>::type;
 | |
|             using pointer_t = T *;
 | |
|         };
 | |
| 
 | |
|         static inline void *dpct_malloc(size_t size, sycl::queue &q)
 | |
|         {
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|             return mem_mgr::instance().mem_alloc(size * sizeof(byte_t));
 | |
| #else
 | |
|             return sycl::malloc_device(size, q.get_device(), q.get_context());
 | |
| #endif // DPCT_USM_LEVEL_NONE
 | |
|         }
 | |
| 
 | |
| #define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F))
 | |
|         static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z,
 | |
|                                         sycl::queue &q)
 | |
|         {
 | |
|             pitch = PITCH_DEFAULT_ALIGN(x);
 | |
|             return dpct_malloc(pitch * y * z, q);
 | |
|         }
 | |
| 
 | |
|         /**
 | |
|          * @brief Sets \p value to the first \p size elements starting from \p dev_ptr in \p q.
 | |
|          * @tparam valueT The type of the element to be set.
 | |
|          * @param [in] q The queue in which the operation is done.
 | |
|          * @param [in] dev_ptr Pointer to the virtual device memory address.
 | |
|          * @param [in] value The value to be set.
 | |
|          * @param [in] size Number of elements to be set to the value.
 | |
|          * @return An event representing the memset operation.
 | |
|          */
 | |
|         template <typename valueT>
 | |
|         static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr,
 | |
|                                               valueT value, size_t size)
 | |
|         {
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|             auto &mm = mem_mgr::instance();
 | |
|             assert(mm.is_device_ptr(dev_ptr));
 | |
|             auto alloc = mm.translate_ptr(dev_ptr);
 | |
|             size_t offset = (valueT *)dev_ptr - (valueT *)alloc.alloc_ptr;
 | |
| 
 | |
|             return q.submit([&](sycl::handler &cgh)
 | |
|                             {
 | |
|     auto r = sycl::range<1>(size);
 | |
|     auto o = sycl::id<1>(offset);
 | |
|     auto new_buffer = alloc.buffer.reinterpret<valueT>(
 | |
|         sycl::range<1>(alloc.size / sizeof(valueT)));
 | |
|     sycl::accessor<valueT, 1, sycl::access_mode::write,
 | |
|                 sycl::access::target::device>
 | |
|         acc(new_buffer, cgh, r, o);
 | |
|     cgh.fill(acc, value); });
 | |
| #else
 | |
|             return q.fill(dev_ptr, value, size);
 | |
| #endif // DPCT_USM_LEVEL_NONE
 | |
|         }
 | |
| 
 | |
|         /**
 | |
|          * @brief Sets \p value to the 3D memory region pointed by \p data in \p q.
 | |
|          * @tparam valueT The type of the element to be set.
 | |
|          * @param [in] q The queue in which the operation is done.
 | |
|          * @param [in] data Pointer to the pitched device memory region.
 | |
|          * @param [in] value The value to be set.
 | |
|          * @param [in] size 3D memory region by number of elements.
 | |
|          * @return An event list representing the memset operations.
 | |
|          */
 | |
|         template <typename valueT>
 | |
|         static inline std::vector<sycl::event>
 | |
|         dpct_memset(sycl::queue &q, pitched_data data, valueT value,
 | |
|                     sycl::range<3> size)
 | |
|         {
 | |
|             std::vector<sycl::event> event_list;
 | |
|             size_t slice = data.get_pitch() * data.get_y();
 | |
|             unsigned char *data_surface = (unsigned char *)data.get_data_ptr();
 | |
|             for (size_t z = 0; z < size.get(2); ++z)
 | |
|             {
 | |
|                 unsigned char *data_ptr = data_surface;
 | |
|                 for (size_t y = 0; y < size.get(1); ++y)
 | |
|                 {
 | |
|                     event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0)));
 | |
|                     data_ptr += data.get_pitch();
 | |
|                 }
 | |
|                 data_surface += slice;
 | |
|             }
 | |
|             return event_list;
 | |
|         }
 | |
| 
 | |
|         /**
 | |
|          * @brief Sets \p val to the pitched 2D memory region pointed by \p ptr in \p q.
 | |
|          * @tparam valueT The type of the element to be set.
 | |
|          * @param [in] q The queue in which the operation is done.
 | |
|          * @param [in] ptr Pointer to the virtual device memory.
 | |
|          * @param [in] pitch The pitch size by number of elements, including padding.
 | |
|          * @param [in] val The value to be set.
 | |
|          * @param [in] x The width of memory region by number of elements.
 | |
|          * @param [in] y The height of memory region by number of elements.
 | |
|          * @return An event list representing the memset operations.
 | |
|          */
 | |
|         template <typename valueT>
 | |
|         static inline std::vector<sycl::event>
 | |
|         dpct_memset(sycl::queue &q, void *ptr, size_t pitch, valueT val, size_t x,
 | |
|                     size_t y)
 | |
|         {
 | |
|             return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val,
 | |
|                                sycl::range<3>(x, y, 1));
 | |
|         }
 | |
| 
 | |
|         static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr,
 | |
|                                                         const void *from_ptr,
 | |
|                                                         memcpy_direction dir)
 | |
|         {
 | |
|             switch (dir)
 | |
|             {
 | |
|             case memcpy_direction::host_to_host:
 | |
|             case memcpy_direction::host_to_device:
 | |
|             case memcpy_direction::device_to_host:
 | |
|             case memcpy_direction::device_to_device:
 | |
|                 return dir;
 | |
|             case memcpy_direction::automatic:
 | |
|             {
 | |
|                 // table[to_attribute][from_attribute]
 | |
|                 static const memcpy_direction
 | |
|                     direction_table[static_cast<unsigned>(pointer_access_attribute::end)]
 | |
|                                    [static_cast<unsigned>(pointer_access_attribute::end)] =
 | |
|                                        {{memcpy_direction::host_to_host,
 | |
|                                          memcpy_direction::device_to_host,
 | |
|                                          memcpy_direction::host_to_host},
 | |
|                                         {memcpy_direction::host_to_device,
 | |
|                                          memcpy_direction::device_to_device,
 | |
|                                          memcpy_direction::device_to_device},
 | |
|                                         {memcpy_direction::host_to_host,
 | |
|                                          memcpy_direction::device_to_device,
 | |
|                                          memcpy_direction::device_to_device}};
 | |
|                 return direction_table[static_cast<unsigned>(get_pointer_attribute(
 | |
|                     q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))];
 | |
|             }
 | |
|             default:
 | |
|                 throw std::runtime_error("dpct_memcpy: invalid direction value");
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         static sycl::event
 | |
|         dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
 | |
|                     memcpy_direction direction,
 | |
|                     const std::vector<sycl::event> &dep_events = {})
 | |
|         {
 | |
|             if (!size)
 | |
|                 return sycl::event{};
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|             auto &mm = mem_mgr::instance();
 | |
|             auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
 | |
| 
 | |
|             switch (real_direction)
 | |
|             {
 | |
|             case host_to_host:
 | |
|                 return q.submit([&](sycl::handler &cgh)
 | |
|                                 {
 | |
|     cgh.depends_on(dep_events);
 | |
|     cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); });
 | |
|             case host_to_device:
 | |
|             {
 | |
|                 auto alloc = mm.translate_ptr(to_ptr);
 | |
|                 size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr;
 | |
|                 return q.submit([&](sycl::handler &cgh)
 | |
|                                 {
 | |
|     cgh.depends_on(dep_events);
 | |
|     auto r = sycl::range<1>(size);
 | |
|     auto o = sycl::id<1>(offset);
 | |
|     sycl::accessor<byte_t, 1, sycl::access_mode::write,
 | |
|                         sycl::access::target::device>
 | |
|         acc(alloc.buffer, cgh, r, o);
 | |
|     cgh.copy(from_ptr, acc); });
 | |
|             }
 | |
|             case device_to_host:
 | |
|             {
 | |
|                 auto alloc = mm.translate_ptr(from_ptr);
 | |
|                 size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr;
 | |
|                 return q.submit([&](sycl::handler &cgh)
 | |
|                                 {
 | |
|     cgh.depends_on(dep_events);
 | |
|     auto r = sycl::range<1>(size);
 | |
|     auto o = sycl::id<1>(offset);
 | |
|     sycl::accessor<byte_t, 1, sycl::access_mode::read,
 | |
|                         sycl::access::target::device>
 | |
|         acc(alloc.buffer, cgh, r, o);
 | |
|     cgh.copy(acc, to_ptr); });
 | |
|             }
 | |
|             case device_to_device:
 | |
|             {
 | |
|                 auto to_alloc = mm.translate_ptr(to_ptr);
 | |
|                 auto from_alloc = mm.translate_ptr(from_ptr);
 | |
|                 size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr;
 | |
|                 size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr;
 | |
|                 return q.submit([&](sycl::handler &cgh)
 | |
|                                 {
 | |
|     cgh.depends_on(dep_events);
 | |
|     auto r = sycl::range<1>(size);
 | |
|     auto to_o = sycl::id<1>(to_offset);
 | |
|     auto from_o = sycl::id<1>(from_offset);
 | |
|     sycl::accessor<byte_t, 1, sycl::access_mode::write,
 | |
|                         sycl::access::target::device>
 | |
|         to_acc(to_alloc.buffer, cgh, r, to_o);
 | |
|     sycl::accessor<byte_t, 1, sycl::access_mode::read,
 | |
|                         sycl::access::target::device>
 | |
|         from_acc(from_alloc.buffer, cgh, r, from_o);
 | |
|     cgh.copy(from_acc, to_acc); });
 | |
|             }
 | |
|             default:
 | |
|                 throw std::runtime_error("dpct_memcpy: invalid direction value");
 | |
|             }
 | |
| #else
 | |
|             return q.memcpy(to_ptr, from_ptr, size, dep_events);
 | |
|             GGML_UNUSED(direction);
 | |
| #endif // DPCT_USM_LEVEL_NONE
 | |
|         }
 | |
| 
 | |
|         // Get actual copy range and make sure it will not exceed range.
 | |
|         static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
 | |
|                                             size_t pitch)
 | |
|         {
 | |
|             return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
 | |
|         }
 | |
| 
 | |
|         static inline size_t get_offset(sycl::id<3> id, size_t slice,
 | |
|                                         size_t pitch)
 | |
|         {
 | |
|             return slice * id.get(2) + pitch * id.get(1) + id.get(0);
 | |
|         }
 | |
| 
 | |
|         /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
 | |
|         /// and \p from_range to another specified by \p to_ptr and \p to_range.
 | |
|         static inline std::vector<sycl::event>
 | |
|         dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
 | |
|                     sycl::range<3> to_range, sycl::range<3> from_range,
 | |
|                     sycl::id<3> to_id, sycl::id<3> from_id,
 | |
|                     sycl::range<3> size, memcpy_direction direction,
 | |
|                     const std::vector<sycl::event> &dep_events = {})
 | |
|         {
 | |
|             // RAII for host pointer
 | |
|             class host_buffer
 | |
|             {
 | |
|                 void *_buf;
 | |
|                 size_t _size;
 | |
|                 sycl::queue &_q;
 | |
|                 const std::vector<sycl::event> &_deps; // free operation depends
 | |
| 
 | |
|             public:
 | |
|                 host_buffer(size_t size, sycl::queue &q,
 | |
|                             const std::vector<sycl::event> &deps)
 | |
|                     : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
 | |
|                 void *get_ptr() const { return _buf; }
 | |
|                 size_t get_size() const { return _size; }
 | |
|                 ~host_buffer()
 | |
|                 {
 | |
|                     if (_buf)
 | |
|                     {
 | |
|                         _q.submit([&](sycl::handler &cgh)
 | |
|                                   {
 | |
|         cgh.depends_on(_deps);
 | |
|         cgh.host_task([buf = _buf] { std::free(buf); }); });
 | |
|                     }
 | |
|                 }
 | |
|             };
 | |
|             std::vector<sycl::event> event_list;
 | |
| 
 | |
|             size_t to_slice = to_range.get(1) * to_range.get(0),
 | |
|                    from_slice = from_range.get(1) * from_range.get(0);
 | |
|             unsigned char *to_surface =
 | |
|                 (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
 | |
|             const unsigned char *from_surface =
 | |
|                 (const unsigned char *)from_ptr +
 | |
|                 get_offset(from_id, from_slice, from_range.get(0));
 | |
| 
 | |
|             if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
 | |
|             {
 | |
|                 return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
 | |
|                                     direction, dep_events)};
 | |
|             }
 | |
|             direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
 | |
|             size_t size_slice = size.get(1) * size.get(0);
 | |
|             switch (direction)
 | |
|             {
 | |
|             case host_to_host:
 | |
|                 for (size_t z = 0; z < size.get(2); ++z)
 | |
|                 {
 | |
|                     unsigned char *to_ptr = to_surface;
 | |
|                     const unsigned char *from_ptr = from_surface;
 | |
|                     if (to_range.get(0) == from_range.get(0) &&
 | |
|                         to_range.get(0) == size.get(0))
 | |
|                     {
 | |
|                         event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
 | |
|                                                          direction, dep_events));
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         for (size_t y = 0; y < size.get(1); ++y)
 | |
|                         {
 | |
|                             event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
 | |
|                                                              direction, dep_events));
 | |
|                             to_ptr += to_range.get(0);
 | |
|                             from_ptr += from_range.get(0);
 | |
|                         }
 | |
|                     }
 | |
|                     to_surface += to_slice;
 | |
|                     from_surface += from_slice;
 | |
|                 }
 | |
|                 break;
 | |
|             case host_to_device:
 | |
|             {
 | |
|                 host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
 | |
|                                 event_list);
 | |
|                 std::vector<sycl::event> host_events;
 | |
|                 if (to_slice == size_slice)
 | |
|                 {
 | |
|                     // Copy host data to a temp host buffer with the shape of target.
 | |
|                     host_events =
 | |
|                         dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
 | |
|                                     sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
 | |
|                                     host_to_host, dep_events);
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Copy host data to a temp host buffer with the shape of target.
 | |
|                     host_events = dpct_memcpy(
 | |
|                         q, buf.get_ptr(), from_surface, to_range, from_range,
 | |
|                         sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
 | |
|                         // If has padding data, not sure whether it is useless. So fill temp
 | |
|                         // buffer with it.
 | |
|                         std::vector<sycl::event>{
 | |
|                             dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
 | |
|                                         device_to_host, dep_events)});
 | |
|                 }
 | |
|                 // Copy from temp host buffer to device with only one submit.
 | |
|                 event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
 | |
|                                                  buf.get_size(), host_to_device,
 | |
|                                                  host_events));
 | |
|                 break;
 | |
|             }
 | |
|             case device_to_host:
 | |
|             {
 | |
|                 host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
 | |
|                                 event_list);
 | |
|                 // Copy from host temp buffer to host target with reshaping.
 | |
|                 event_list = dpct_memcpy(
 | |
|                     q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
 | |
|                     sycl::id<3>(0, 0, 0), size, host_to_host,
 | |
|                     // Copy from device to temp host buffer with only one submit.
 | |
|                     std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
 | |
|                                                          buf.get_size(),
 | |
|                                                          device_to_host, dep_events)});
 | |
|                 break;
 | |
|             }
 | |
|             case device_to_device:
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|             {
 | |
|                 auto &mm = mem_mgr::instance();
 | |
|                 auto to_alloc = mm.translate_ptr(to_surface);
 | |
|                 auto from_alloc = mm.translate_ptr(from_surface);
 | |
|                 size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr;
 | |
|                 size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr;
 | |
|                 event_list.push_back(q.submit([&](sycl::handler &cgh)
 | |
|                                               {
 | |
|     cgh.depends_on(dep_events);
 | |
|     auto to_o = sycl::id<1>(to_offset);
 | |
|     auto from_o = sycl::id<1>(from_offset);
 | |
|     sycl::accessor<byte_t, 1, sycl::access_mode::write,
 | |
|                         sycl::access::target::device>
 | |
|         to_acc(to_alloc.buffer, cgh,
 | |
|                 get_copy_range(size, to_slice, to_range.get(0)), to_o);
 | |
|     sycl::accessor<byte_t, 1, sycl::access_mode::read,
 | |
|                         sycl::access::target::device>
 | |
|         from_acc(from_alloc.buffer, cgh,
 | |
|                 get_copy_range(size, from_slice, from_range.get(0)), from_o);
 | |
|     cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>(
 | |
|         size,
 | |
|         [=](sycl::id<3> id) {
 | |
|             to_acc[get_offset(id, to_slice, to_range.get(0))] =
 | |
|                 from_acc[get_offset(id, from_slice, from_range.get(0))];
 | |
|         }); }));
 | |
|             }
 | |
| #else
 | |
|                 event_list.push_back(q.submit([&](sycl::handler &cgh)
 | |
|                                               {
 | |
|     cgh.depends_on(dep_events);
 | |
|     cgh.parallel_for<class dpct_memcpy_3d_detail>(
 | |
|         size,
 | |
|         [=](sycl::id<3> id) {
 | |
|             to_surface[get_offset(id, to_slice, to_range.get(0))] =
 | |
|                 from_surface[get_offset(id, from_slice, from_range.get(0))];
 | |
|         }); }));
 | |
| #endif
 | |
|             break;
 | |
|             default:
 | |
|                 throw std::runtime_error("dpct_memcpy: invalid direction value");
 | |
|             }
 | |
|             return event_list;
 | |
|         }
 | |
| 
 | |
|         /// memcpy 2D/3D matrix specified by pitched_data.
 | |
|         static inline std::vector<sycl::event>
 | |
|         dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
 | |
|                     pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
 | |
|                     memcpy_direction direction = automatic)
 | |
|         {
 | |
|             return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
 | |
|                                sycl::range<3>(to.get_pitch(), to.get_y(), 1),
 | |
|                                sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
 | |
|                                size, direction);
 | |
|         }
 | |
| 
 | |
|         /// memcpy 2D matrix with pitch.
 | |
|         static inline std::vector<sycl::event>
 | |
|         dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
 | |
|                     size_t to_pitch, size_t from_pitch, size_t x, size_t y,
 | |
|                     memcpy_direction direction = automatic)
 | |
|         {
 | |
|             return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
 | |
|                                sycl::range<3>(from_pitch, y, 1),
 | |
|                                sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
 | |
|                                sycl::range<3>(x, y, 1), direction);
 | |
|         }
 | |
| 
 | |
|         namespace deprecated
 | |
|         {
 | |
| 
 | |
|             template <typename T, sycl::usm::alloc AllocKind>
 | |
|             class usm_allocator
 | |
|             {
 | |
|             private:
 | |
|                 using Alloc = sycl::usm_allocator<T, AllocKind>;
 | |
|                 Alloc _impl;
 | |
| 
 | |
|             public:
 | |
|                 using value_type = typename std::allocator_traits<Alloc>::value_type;
 | |
|                 using pointer = typename std::allocator_traits<Alloc>::pointer;
 | |
|                 using const_pointer = typename std::allocator_traits<Alloc>::const_pointer;
 | |
|                 using void_pointer = typename std::allocator_traits<Alloc>::void_pointer;
 | |
|                 using const_void_pointer =
 | |
|                     typename std::allocator_traits<Alloc>::const_void_pointer;
 | |
|                 using reference = typename std::allocator_traits<Alloc>::value_type &;
 | |
|                 using const_reference =
 | |
|                     const typename std::allocator_traits<Alloc>::value_type &;
 | |
|                 using difference_type =
 | |
|                     typename std::allocator_traits<Alloc>::difference_type;
 | |
|                 using size_type = typename std::allocator_traits<Alloc>::size_type;
 | |
|                 using propagate_on_container_copy_assignment = typename std::allocator_traits<
 | |
|                     Alloc>::propagate_on_container_copy_assignment;
 | |
|                 using propagate_on_container_move_assignment = typename std::allocator_traits<
 | |
|                     Alloc>::propagate_on_container_move_assignment;
 | |
|                 using propagate_on_container_swap =
 | |
|                     typename std::allocator_traits<Alloc>::propagate_on_container_swap;
 | |
|                 using is_always_equal =
 | |
|                     typename std::allocator_traits<Alloc>::is_always_equal;
 | |
| 
 | |
|                 template <typename U>
 | |
|                 struct rebind
 | |
|                 {
 | |
|                     typedef usm_allocator<U, AllocKind> other;
 | |
|                 };
 | |
| 
 | |
|                 usm_allocator() : _impl(dpct::get_default_queue()) {}
 | |
|                 ~usm_allocator() {}
 | |
|                 usm_allocator(const usm_allocator &other) : _impl(other._impl) {}
 | |
|                 usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {}
 | |
|                 pointer address(reference r) { return &r; }
 | |
|                 const_pointer address(const_reference r) { return &r; }
 | |
|                 pointer allocate(size_type cnt, const_void_pointer hint = nullptr)
 | |
|                 {
 | |
|                     return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint);
 | |
|                 }
 | |
|                 void deallocate(pointer p, size_type cnt)
 | |
|                 {
 | |
|                     std::allocator_traits<Alloc>::deallocate(_impl, p, cnt);
 | |
|                 }
 | |
|                 size_type max_size() const
 | |
|                 {
 | |
|                     return std::allocator_traits<Alloc>::max_size(_impl);
 | |
|                 }
 | |
|                 bool operator==(const usm_allocator &other) const { return _impl == other._impl; }
 | |
|                 bool operator!=(const usm_allocator &other) const { return _impl != other._impl; }
 | |
|             };
 | |
| 
 | |
|         } // namespace deprecated
 | |
| 
 | |
|         inline void dpct_free(void *ptr,
 | |
|                               const sycl::queue &q)
 | |
|         {
 | |
|             if (ptr)
 | |
|             {
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|                 detail::mem_mgr::instance().mem_free(ptr);
 | |
| #else
 | |
|                 sycl::free(ptr, q.get_context());
 | |
| #endif // DPCT_USM_LEVEL_NONE
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         template <typename T>
 | |
|         inline auto get_memory(const void *x)
 | |
|         {
 | |
|             T *new_x = reinterpret_cast<T *>(const_cast<void *>(x));
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|             return dpct::get_buffer<std::remove_cv_t<T>>(new_x);
 | |
| #else
 | |
|             return new_x;
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         template <typename T>
 | |
|         inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q)
 | |
|         {
 | |
|             using Ty = typename DataType<T>::T2;
 | |
|             Ty s_h;
 | |
|             if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only)
 | |
|                 detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T), device_to_host)
 | |
|                     .wait();
 | |
|             else
 | |
|                 s_h = *reinterpret_cast<const Ty *>(s);
 | |
|             return s_h;
 | |
|         }
 | |
| 
 | |
|     } // namespace detail
 | |
| 
 | |
|     template <typename T>
 | |
|     inline auto get_value(const T *s, sycl::queue &q)
 | |
|     {
 | |
|         return detail::get_value(s, q);
 | |
|     }
 | |
| 
 | |
|     namespace detail
 | |
|     {
 | |
|         template <class Ta, class Tb, class Tc, class Ts>
 | |
|         inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | |
|                               oneapi::mkl::transpose b_trans, int m, int n, int k,
 | |
|                               const void *alpha, const void *a, int lda, const void *b,
 | |
|                               int ldb, const void *beta, void *c, int ldc)
 | |
|         {
 | |
| #ifndef __INTEL_MKL__
 | |
|             GGML_UNUSED(q);
 | |
|             GGML_UNUSED(a_trans);
 | |
|             GGML_UNUSED(b_trans);
 | |
|             GGML_UNUSED(m);
 | |
|             GGML_UNUSED(n);
 | |
|             GGML_UNUSED(k);
 | |
|             GGML_UNUSED(alpha);
 | |
|             GGML_UNUSED(a);
 | |
|             GGML_UNUSED(lda);
 | |
|             GGML_UNUSED(b);
 | |
|             GGML_UNUSED(ldb);
 | |
|             GGML_UNUSED(beta);
 | |
|             GGML_UNUSED(c);
 | |
|             GGML_UNUSED(ldc);
 | |
|             throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces "
 | |
|                                      "Project does not support this API.");
 | |
| #else
 | |
|             Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
 | |
|             Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
 | |
|             auto data_a = get_memory<const Ta>(a);
 | |
|             auto data_b = get_memory<const Tb>(b);
 | |
|             auto data_c = get_memory<Tc>(c);
 | |
|             oneapi::mkl::blas::column_major::gemm(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
 | |
|                 data_b, ldb, beta_value, data_c, ldc);
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         template <typename VecT, class BinaryOperation, class = void>
 | |
|         class vectorized_binary
 | |
|         {
 | |
|         public:
 | |
|             inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
 | |
|             {
 | |
|                 VecT v4;
 | |
|                 for (size_t i = 0; i < v4.size(); ++i)
 | |
|                 {
 | |
|                     v4[i] = binary_op(a[i], b[i]);
 | |
|                 }
 | |
|                 return v4;
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         template <typename VecT, class BinaryOperation>
 | |
|         class vectorized_binary<
 | |
|             VecT, BinaryOperation,
 | |
|             std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>>
 | |
|         {
 | |
|         public:
 | |
|             inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
 | |
|             {
 | |
|                 return binary_op(a, b).template as<VecT>();
 | |
|             }
 | |
|         };
 | |
| 
 | |
|         template <class Ta, class Tb, class Tc, class Ts>
 | |
|         inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | |
|                                     oneapi::mkl::transpose b_trans, int m, int n, int k,
 | |
|                                     const void *alpha, const void **a, int lda,
 | |
|                                     const void **b, int ldb, const void *beta, void **c,
 | |
|                                     int ldc, int batch_size)
 | |
|         {
 | |
|             struct matrix_info_t
 | |
|             {
 | |
|                 oneapi::mkl::transpose transpose_info[2];
 | |
|                 Ts value_info[2];
 | |
|                 std::int64_t size_info[3];
 | |
|                 std::int64_t ld_info[3];
 | |
|                 std::int64_t groupsize_info;
 | |
|             };
 | |
| 
 | |
|             Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
 | |
|             Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
 | |
| 
 | |
|             matrix_info_t *matrix_info =
 | |
|                 (matrix_info_t *)std::malloc(sizeof(matrix_info_t));
 | |
|             matrix_info->transpose_info[0] = a_trans;
 | |
|             matrix_info->transpose_info[1] = b_trans;
 | |
|             matrix_info->value_info[0] = alpha_value;
 | |
|             matrix_info->value_info[1] = beta_value;
 | |
|             matrix_info->size_info[0] = m;
 | |
|             matrix_info->size_info[1] = n;
 | |
|             matrix_info->size_info[2] = k;
 | |
|             matrix_info->ld_info[0] = lda;
 | |
|             matrix_info->ld_info[1] = ldb;
 | |
|             matrix_info->ld_info[2] = ldc;
 | |
|             matrix_info->groupsize_info = batch_size;
 | |
| 
 | |
|             sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
 | |
|                 q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
 | |
|                 matrix_info->size_info, matrix_info->size_info + 1,
 | |
|                 matrix_info->size_info + 2, matrix_info->value_info,
 | |
|                 reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
 | |
|                 reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
 | |
|                 matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
 | |
|                 matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
 | |
| 
 | |
|             q.submit([&](sycl::handler &cgh)
 | |
|                      {
 | |
|     cgh.depends_on(e);
 | |
|     cgh.host_task([=] { std::free(matrix_info); }); });
 | |
|         }
 | |
| 
 | |
|         template <class Ta, class Tb, class Tc, class Ts>
 | |
|         inline void
 | |
|         gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | |
|                         oneapi::mkl::transpose b_trans, int m, int n,
 | |
|                         int k, const void *alpha, const void *a, int lda,
 | |
|                         long long int stride_a, const void *b, int ldb,
 | |
|                         long long int stride_b, const void *beta, void *c,
 | |
|                         int ldc, long long int stride_c, int batch_size)
 | |
|         {
 | |
|             Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
 | |
|             Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
 | |
|             auto data_a = get_memory<const Ta>(a);
 | |
|             auto data_b = get_memory<const Tb>(b);
 | |
|             auto data_c = get_memory<Tc>(c);
 | |
|             oneapi::mkl::blas::column_major::gemm_batch(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
 | |
|                 stride_a, data_b, ldb, stride_b, beta_value,
 | |
|                 data_c, ldc, stride_c, batch_size);
 | |
|         }
 | |
| 
 | |
|     } // namespace detail
 | |
| 
 | |
|     template <typename VecT, class BinaryOperation>
 | |
|     inline unsigned vectorized_binary(unsigned a, unsigned b,
 | |
|                                       const BinaryOperation binary_op)
 | |
|     {
 | |
|         sycl::vec<unsigned, 1> v0{a}, v1{b};
 | |
|         auto v2 = v0.as<VecT>();
 | |
|         auto v3 = v1.as<VecT>();
 | |
|         auto v4 =
 | |
|             detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op);
 | |
|         v0 = v4.template as<sycl::vec<unsigned, 1>>();
 | |
|         return v0;
 | |
|     }
 | |
| 
 | |
|     static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size,
 | |
|                                   memcpy_direction direction = automatic,
 | |
|                                   sycl::queue &q = dpct::get_default_queue())
 | |
|     {
 | |
|         detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction);
 | |
|     }
 | |
| 
 | |
|     static inline unsigned int select_device(unsigned int id)
 | |
|     {
 | |
|         dev_mgr::instance().select_device(id);
 | |
|         return id;
 | |
|     }
 | |
| 
 | |
|     template <typename T>
 | |
|     T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
 | |
|                                unsigned int logical_sub_group_size = 32)
 | |
|     {
 | |
|         unsigned int id = g.get_local_linear_id();
 | |
|         unsigned int start_index =
 | |
|             id / logical_sub_group_size * logical_sub_group_size;
 | |
|         unsigned int target_offset = (id % logical_sub_group_size) ^ mask;
 | |
|         return sycl::select_from_group(g, x,
 | |
|                                        target_offset < logical_sub_group_size
 | |
|                                            ? start_index + target_offset
 | |
|                                            : id);
 | |
|     }
 | |
| 
 | |
|     template <typename T>
 | |
|     sycl::vec<T, 4> extract_and_sign_or_zero_extend4(T val)
 | |
|     {
 | |
|         return sycl::vec<T, 1>(val)
 | |
|             .template as<sycl::vec<
 | |
|                 std::conditional_t<std::is_signed_v<T>, int8_t, uint8_t>, 4>>()
 | |
|             .template convert<T>();
 | |
|     }
 | |
| 
 | |
|     template <typename T1, typename T2>
 | |
|     using dot_product_acc_t =
 | |
|         std::conditional_t<std::is_unsigned_v<T1> && std::is_unsigned_v<T2>,
 | |
|                            uint32_t, int32_t>;
 | |
| 
 | |
|     template <typename T1, typename T2, typename T3>
 | |
|     inline auto dp4a(T1 a, T2 b, T3 c)
 | |
|     {
 | |
|         dot_product_acc_t<T1, T2> res = c;
 | |
|         auto va = extract_and_sign_or_zero_extend4(a);
 | |
|         auto vb = extract_and_sign_or_zero_extend4(b);
 | |
|         res += va[0] * vb[0];
 | |
|         res += va[1] * vb[1];
 | |
|         res += va[2] * vb[2];
 | |
|         res += va[3] * vb[3];
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     struct sub_sat
 | |
|     {
 | |
|         template <typename T>
 | |
|         auto operator()(const T x, const T y) const
 | |
|         {
 | |
|             return sycl::sub_sat(x, y);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     template <typename S, typename T>
 | |
|     inline T vectorized_min(T a, T b)
 | |
|     {
 | |
|         sycl::vec<T, 1> v0{a}, v1{b};
 | |
|         auto v2 = v0.template as<S>();
 | |
|         auto v3 = v1.template as<S>();
 | |
|         auto v4 = sycl::min(v2, v3);
 | |
|         v0 = v4.template as<sycl::vec<T, 1>>();
 | |
|         return v0;
 | |
|     }
 | |
| 
 | |
|     inline float pow(const float a, const int b) { return sycl::pown(a, b); }
 | |
|     inline double pow(const double a, const int b) { return sycl::pown(a, b); }
 | |
|     inline float pow(const float a, const float b) { return sycl::pow(a, b); }
 | |
|     inline double pow(const double a, const double b) { return sycl::pow(a, b); }
 | |
|     template <typename T, typename U>
 | |
|     inline typename std::enable_if_t<std::is_floating_point_v<T>, T>
 | |
|     pow(const T a, const U b)
 | |
|     {
 | |
|         return sycl::pow(a, static_cast<T>(b));
 | |
|     }
 | |
|     template <typename T, typename U>
 | |
|     inline typename std::enable_if_t<!std::is_floating_point_v<T>, double>
 | |
|     pow(const T a, const U b)
 | |
|     {
 | |
|         return sycl::pow(static_cast<double>(a), static_cast<double>(b));
 | |
|     }
 | |
| 
 | |
|     inline double min(const double a, const float b)
 | |
|     {
 | |
|         return sycl::fmin(a, static_cast<double>(b));
 | |
|     }
 | |
|     inline double min(const float a, const double b)
 | |
|     {
 | |
|         return sycl::fmin(static_cast<double>(a), b);
 | |
|     }
 | |
|     inline float min(const float a, const float b) { return sycl::fmin(a, b); }
 | |
|     inline double min(const double a, const double b) { return sycl::fmin(a, b); }
 | |
|     inline std::uint32_t min(const std::uint32_t a, const std::int32_t b)
 | |
|     {
 | |
|         return sycl::min(a, static_cast<std::uint32_t>(b));
 | |
|     }
 | |
|     inline std::uint32_t min(const std::int32_t a, const std::uint32_t b)
 | |
|     {
 | |
|         return sycl::min(static_cast<std::uint32_t>(a), b);
 | |
|     }
 | |
|     inline std::int32_t min(const std::int32_t a, const std::int32_t b)
 | |
|     {
 | |
|         return sycl::min(a, b);
 | |
|     }
 | |
|     inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b)
 | |
|     {
 | |
|         return sycl::min(a, b);
 | |
|     }
 | |
|     inline std::uint64_t min(const std::uint64_t a, const std::int64_t b)
 | |
|     {
 | |
|         return sycl::min(a, static_cast<std::uint64_t>(b));
 | |
|     }
 | |
|     inline std::uint64_t min(const std::int64_t a, const std::uint64_t b)
 | |
|     {
 | |
|         return sycl::min(static_cast<std::uint64_t>(a), b);
 | |
|     }
 | |
|     inline std::int64_t min(const std::int64_t a, const std::int64_t b)
 | |
|     {
 | |
|         return sycl::min(a, b);
 | |
|     }
 | |
|     inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b)
 | |
|     {
 | |
|         return sycl::min(a, b);
 | |
|     }
 | |
|     inline std::uint64_t min(const std::uint64_t a, const std::int32_t b)
 | |
|     {
 | |
|         return sycl::min(a, static_cast<std::uint64_t>(b));
 | |
|     }
 | |
|     inline std::uint64_t min(const std::int32_t a, const std::uint64_t b)
 | |
|     {
 | |
|         return sycl::min(static_cast<std::uint64_t>(a), b);
 | |
|     }
 | |
|     inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b)
 | |
|     {
 | |
|         return sycl::min(a, static_cast<std::uint64_t>(b));
 | |
|     }
 | |
|     inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b)
 | |
|     {
 | |
|         return sycl::min(static_cast<std::uint64_t>(a), b);
 | |
|     }
 | |
|     // max function overloads.
 | |
|     // For floating-point types, `float` or `double` arguments are acceptable.
 | |
|     // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or
 | |
|     // `std::int64_t` type arguments are acceptable.
 | |
|     inline double max(const double a, const float b)
 | |
|     {
 | |
|         return sycl::fmax(a, static_cast<double>(b));
 | |
|     }
 | |
|     inline double max(const float a, const double b)
 | |
|     {
 | |
|         return sycl::fmax(static_cast<double>(a), b);
 | |
|     }
 | |
|     inline float max(const float a, const float b) { return sycl::fmax(a, b); }
 | |
|     inline double max(const double a, const double b) { return sycl::fmax(a, b); }
 | |
|     inline std::uint32_t max(const std::uint32_t a, const std::int32_t b)
 | |
|     {
 | |
|         return sycl::max(a, static_cast<std::uint32_t>(b));
 | |
|     }
 | |
|     inline std::uint32_t max(const std::int32_t a, const std::uint32_t b)
 | |
|     {
 | |
|         return sycl::max(static_cast<std::uint32_t>(a), b);
 | |
|     }
 | |
|     inline std::int32_t max(const std::int32_t a, const std::int32_t b)
 | |
|     {
 | |
|         return sycl::max(a, b);
 | |
|     }
 | |
|     inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b)
 | |
|     {
 | |
|         return sycl::max(a, b);
 | |
|     }
 | |
|     inline std::uint64_t max(const std::uint64_t a, const std::int64_t b)
 | |
|     {
 | |
|         return sycl::max(a, static_cast<std::uint64_t>(b));
 | |
|     }
 | |
|     inline std::uint64_t max(const std::int64_t a, const std::uint64_t b)
 | |
|     {
 | |
|         return sycl::max(static_cast<std::uint64_t>(a), b);
 | |
|     }
 | |
|     inline std::int64_t max(const std::int64_t a, const std::int64_t b)
 | |
|     {
 | |
|         return sycl::max(a, b);
 | |
|     }
 | |
|     inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b)
 | |
|     {
 | |
|         return sycl::max(a, b);
 | |
|     }
 | |
|     inline std::uint64_t max(const std::uint64_t a, const std::int32_t b)
 | |
|     {
 | |
|         return sycl::max(a, static_cast<std::uint64_t>(b));
 | |
|     }
 | |
|     inline std::uint64_t max(const std::int32_t a, const std::uint64_t b)
 | |
|     {
 | |
|         return sycl::max(static_cast<std::uint64_t>(a), b);
 | |
|     }
 | |
|     inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b)
 | |
|     {
 | |
|         return sycl::max(a, static_cast<std::uint64_t>(b));
 | |
|     }
 | |
|     inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b)
 | |
|     {
 | |
|         return sycl::max(static_cast<std::uint64_t>(a), b);
 | |
|     }
 | |
| 
 | |
|     inline void
 | |
|     has_capability_or_fail(const sycl::device &dev,
 | |
|                            const std::initializer_list<sycl::aspect> &props)
 | |
|     {
 | |
|         for (const auto &it : props)
 | |
|         {
 | |
|             if (dev.has(it))
 | |
|                 continue;
 | |
|             switch (it)
 | |
|             {
 | |
|             case sycl::aspect::fp64:
 | |
|                 throw std::runtime_error("'double' is not supported in '" +
 | |
|                                          dev.get_info<sycl::info::device::name>() +
 | |
|                                          "' device");
 | |
|                 break;
 | |
|             case sycl::aspect::fp16:
 | |
|                 throw std::runtime_error("'half' is not supported in '" +
 | |
|                                          dev.get_info<sycl::info::device::name>() +
 | |
|                                          "' device");
 | |
|                 break;
 | |
|             default:
 | |
| #define __SYCL_ASPECT(ASPECT, ID) \
 | |
|     case sycl::aspect::ASPECT:    \
 | |
|         return #ASPECT;
 | |
| #define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
 | |
| #define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
 | |
|                 auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string
 | |
|                 {
 | |
|                     switch (AspectNum)
 | |
|                     {
 | |
| #include <sycl/info/aspects.def>
 | |
| #include <sycl/info/aspects_deprecated.def>
 | |
|                     default:
 | |
|                         return "unknown aspect";
 | |
|                     }
 | |
|                 };
 | |
| #undef __SYCL_ASPECT_DEPRECATED_ALIAS
 | |
| #undef __SYCL_ASPECT_DEPRECATED
 | |
| #undef __SYCL_ASPECT
 | |
|                 throw std::runtime_error(
 | |
|                     "'" + getAspectNameStr(it) + "' is not supported in '" +
 | |
|                     dev.get_info<sycl::info::device::name>() + "' device");
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     static inline unsigned int get_current_device_id()
 | |
|     {
 | |
|         return dev_mgr::instance().current_device_id();
 | |
|     }
 | |
| 
 | |
|     static inline device_ext &get_current_device()
 | |
|     {
 | |
|         return dev_mgr::instance().current_device();
 | |
|     }
 | |
| 
 | |
|     static inline sycl::queue &get_in_order_queue()
 | |
|     {
 | |
|         return dev_mgr::instance().current_device().in_order_queue();
 | |
|     }
 | |
| 
 | |
|     static sycl::event
 | |
|     dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
 | |
|                 memcpy_direction direction,
 | |
|                 const std::vector<sycl::event> &dep_events = {})
 | |
|     {
 | |
|         if (!size)
 | |
|             return sycl::event{};
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|         auto &mm = mem_mgr::instance();
 | |
|         auto real_direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
 | |
| 
 | |
|         switch (real_direction)
 | |
|         {
 | |
|         case host_to_host:
 | |
|             return q.submit([&](sycl::handler &cgh)
 | |
|                             {
 | |
|         cgh.depends_on(dep_events);
 | |
|         cgh.host_task([=] { std::memcpy(to_ptr, from_ptr, size); }); });
 | |
|         case host_to_device:
 | |
|         {
 | |
|             auto alloc = mm.translate_ptr(to_ptr);
 | |
|             size_t offset = (byte_t *)to_ptr - alloc.alloc_ptr;
 | |
|             return q.submit([&](sycl::handler &cgh)
 | |
|                             {
 | |
|         cgh.depends_on(dep_events);
 | |
|         auto r = sycl::range<1>(size);
 | |
|         auto o = sycl::id<1>(offset);
 | |
|         sycl::accessor<byte_t, 1, sycl::access_mode::write,
 | |
|                             sycl::access::target::device>
 | |
|             acc(alloc.buffer, cgh, r, o);
 | |
|         cgh.copy(from_ptr, acc); });
 | |
|         }
 | |
|         case device_to_host:
 | |
|         {
 | |
|             auto alloc = mm.translate_ptr(from_ptr);
 | |
|             size_t offset = (byte_t *)from_ptr - alloc.alloc_ptr;
 | |
|             return q.submit([&](sycl::handler &cgh)
 | |
|                             {
 | |
|         cgh.depends_on(dep_events);
 | |
|         auto r = sycl::range<1>(size);
 | |
|         auto o = sycl::id<1>(offset);
 | |
|         sycl::accessor<byte_t, 1, sycl::access_mode::read,
 | |
|                             sycl::access::target::device>
 | |
|             acc(alloc.buffer, cgh, r, o);
 | |
|         cgh.copy(acc, to_ptr); });
 | |
|         }
 | |
|         case device_to_device:
 | |
|         {
 | |
|             auto to_alloc = mm.translate_ptr(to_ptr);
 | |
|             auto from_alloc = mm.translate_ptr(from_ptr);
 | |
|             size_t to_offset = (byte_t *)to_ptr - to_alloc.alloc_ptr;
 | |
|             size_t from_offset = (byte_t *)from_ptr - from_alloc.alloc_ptr;
 | |
|             return q.submit([&](sycl::handler &cgh)
 | |
|                             {
 | |
|         cgh.depends_on(dep_events);
 | |
|         auto r = sycl::range<1>(size);
 | |
|         auto to_o = sycl::id<1>(to_offset);
 | |
|         auto from_o = sycl::id<1>(from_offset);
 | |
|         sycl::accessor<byte_t, 1, sycl::access_mode::write,
 | |
|                             sycl::access::target::device>
 | |
|             to_acc(to_alloc.buffer, cgh, r, to_o);
 | |
|         sycl::accessor<byte_t, 1, sycl::access_mode::read,
 | |
|                             sycl::access::target::device>
 | |
|             from_acc(from_alloc.buffer, cgh, r, from_o);
 | |
|         cgh.copy(from_acc, to_acc); });
 | |
|         }
 | |
|         default:
 | |
|             throw std::runtime_error("dpct_memcpy: invalid direction value");
 | |
|         }
 | |
| #else
 | |
|         return q.memcpy(to_ptr, from_ptr, size, dep_events);
 | |
|         GGML_UNUSED(direction);
 | |
| #endif // DPCT_USM_LEVEL_NONE
 | |
|     }
 | |
| 
 | |
|     // Get actual copy range and make sure it will not exceed range.
 | |
|     static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
 | |
|                                         size_t pitch)
 | |
|     {
 | |
|         return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
 | |
|     }
 | |
| 
 | |
|     static inline size_t get_offset(sycl::id<3> id, size_t slice,
 | |
|                                     size_t pitch)
 | |
|     {
 | |
|         return slice * id.get(2) + pitch * id.get(1) + id.get(0);
 | |
|     }
 | |
| 
 | |
|     /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
 | |
|     /// and \p from_range to another specified by \p to_ptr and \p to_range.
 | |
|     static inline std::vector<sycl::event>
 | |
|     dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
 | |
|                 sycl::range<3> to_range, sycl::range<3> from_range,
 | |
|                 sycl::id<3> to_id, sycl::id<3> from_id,
 | |
|                 sycl::range<3> size, memcpy_direction direction,
 | |
|                 const std::vector<sycl::event> &dep_events = {})
 | |
|     {
 | |
|         // RAII for host pointer
 | |
|         class host_buffer
 | |
|         {
 | |
|             void *_buf;
 | |
|             size_t _size;
 | |
|             sycl::queue &_q;
 | |
|             const std::vector<sycl::event> &_deps; // free operation depends
 | |
| 
 | |
|         public:
 | |
|             host_buffer(size_t size, sycl::queue &q,
 | |
|                         const std::vector<sycl::event> &deps)
 | |
|                 : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
 | |
|             void *get_ptr() const { return _buf; }
 | |
|             size_t get_size() const { return _size; }
 | |
|             ~host_buffer()
 | |
|             {
 | |
|                 if (_buf)
 | |
|                 {
 | |
|                     _q.submit([&](sycl::handler &cgh)
 | |
|                               {
 | |
|             cgh.depends_on(_deps);
 | |
|             cgh.host_task([buf = _buf] { std::free(buf); }); });
 | |
|                 }
 | |
|             }
 | |
|         };
 | |
|         std::vector<sycl::event> event_list;
 | |
| 
 | |
|         size_t to_slice = to_range.get(1) * to_range.get(0),
 | |
|                from_slice = from_range.get(1) * from_range.get(0);
 | |
|         unsigned char *to_surface =
 | |
|             (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
 | |
|         const unsigned char *from_surface =
 | |
|             (const unsigned char *)from_ptr +
 | |
|             get_offset(from_id, from_slice, from_range.get(0));
 | |
| 
 | |
|         if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
 | |
|         {
 | |
|             return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
 | |
|                                 direction, dep_events)};
 | |
|         }
 | |
|         direction = detail::deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
 | |
|         size_t size_slice = size.get(1) * size.get(0);
 | |
|         switch (direction)
 | |
|         {
 | |
|         case host_to_host:
 | |
|             for (size_t z = 0; z < size.get(2); ++z)
 | |
|             {
 | |
|                 unsigned char *to_ptr = to_surface;
 | |
|                 const unsigned char *from_ptr = from_surface;
 | |
|                 if (to_range.get(0) == from_range.get(0) &&
 | |
|                     to_range.get(0) == size.get(0))
 | |
|                 {
 | |
|                     event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
 | |
|                                                      direction, dep_events));
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     for (size_t y = 0; y < size.get(1); ++y)
 | |
|                     {
 | |
|                         event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
 | |
|                                                          direction, dep_events));
 | |
|                         to_ptr += to_range.get(0);
 | |
|                         from_ptr += from_range.get(0);
 | |
|                     }
 | |
|                 }
 | |
|                 to_surface += to_slice;
 | |
|                 from_surface += from_slice;
 | |
|             }
 | |
|             break;
 | |
|         case host_to_device:
 | |
|         {
 | |
|             host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
 | |
|                             event_list);
 | |
|             std::vector<sycl::event> host_events;
 | |
|             if (to_slice == size_slice)
 | |
|             {
 | |
|                 // Copy host data to a temp host buffer with the shape of target.
 | |
|                 host_events =
 | |
|                     dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
 | |
|                                 sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
 | |
|                                 host_to_host, dep_events);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Copy host data to a temp host buffer with the shape of target.
 | |
|                 host_events = dpct_memcpy(
 | |
|                     q, buf.get_ptr(), from_surface, to_range, from_range,
 | |
|                     sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
 | |
|                     // If has padding data, not sure whether it is useless. So fill temp
 | |
|                     // buffer with it.
 | |
|                     std::vector<sycl::event>{
 | |
|                         dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
 | |
|                                     device_to_host, dep_events)});
 | |
|             }
 | |
|             // Copy from temp host buffer to device with only one submit.
 | |
|             event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
 | |
|                                              buf.get_size(), host_to_device,
 | |
|                                              host_events));
 | |
|             break;
 | |
|         }
 | |
|         case device_to_host:
 | |
|         {
 | |
|             host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
 | |
|                             event_list);
 | |
|             // Copy from host temp buffer to host target with reshaping.
 | |
|             event_list = dpct_memcpy(
 | |
|                 q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
 | |
|                 sycl::id<3>(0, 0, 0), size, host_to_host,
 | |
|                 // Copy from device to temp host buffer with only one submit.
 | |
|                 std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
 | |
|                                                      buf.get_size(),
 | |
|                                                      device_to_host, dep_events)});
 | |
|             break;
 | |
|         }
 | |
|         case device_to_device:
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|         {
 | |
|             auto &mm = mem_mgr::instance();
 | |
|             auto to_alloc = mm.translate_ptr(to_surface);
 | |
|             auto from_alloc = mm.translate_ptr(from_surface);
 | |
|             size_t to_offset = (byte_t *)to_surface - to_alloc.alloc_ptr;
 | |
|             size_t from_offset = (byte_t *)from_surface - from_alloc.alloc_ptr;
 | |
|             event_list.push_back(q.submit([&](sycl::handler &cgh)
 | |
|                                           {
 | |
|         cgh.depends_on(dep_events);
 | |
|         auto to_o = sycl::id<1>(to_offset);
 | |
|         auto from_o = sycl::id<1>(from_offset);
 | |
|         sycl::accessor<byte_t, 1, sycl::access_mode::write,
 | |
|                             sycl::access::target::device>
 | |
|             to_acc(to_alloc.buffer, cgh,
 | |
|                     get_copy_range(size, to_slice, to_range.get(0)), to_o);
 | |
|         sycl::accessor<byte_t, 1, sycl::access_mode::read,
 | |
|                             sycl::access::target::device>
 | |
|             from_acc(from_alloc.buffer, cgh,
 | |
|                     get_copy_range(size, from_slice, from_range.get(0)), from_o);
 | |
|         cgh.parallel_for<class dpct_memcpy_3d_detail_usmnone>(
 | |
|             size,
 | |
|             [=](sycl::id<3> id) {
 | |
|                 to_acc[get_offset(id, to_slice, to_range.get(0))] =
 | |
|                     from_acc[get_offset(id, from_slice, from_range.get(0))];
 | |
|             }); }));
 | |
|         }
 | |
| #else
 | |
|             event_list.push_back(q.submit([&](sycl::handler &cgh)
 | |
|                                           {
 | |
|         cgh.depends_on(dep_events);
 | |
|         cgh.parallel_for<class dpct_memcpy_3d_detail>(
 | |
|             size,
 | |
|             [=](sycl::id<3> id) {
 | |
|                 to_surface[get_offset(id, to_slice, to_range.get(0))] =
 | |
|                     from_surface[get_offset(id, from_slice, from_range.get(0))];
 | |
|             }); }));
 | |
| #endif
 | |
|         break;
 | |
|         default:
 | |
|             throw std::runtime_error("dpct_memcpy: invalid direction value");
 | |
|         }
 | |
|         return event_list;
 | |
|     }
 | |
| 
 | |
|     /// memcpy 2D/3D matrix specified by pitched_data.
 | |
|     static inline std::vector<sycl::event>
 | |
|     dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
 | |
|                 pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
 | |
|                 memcpy_direction direction = automatic)
 | |
|     {
 | |
|         return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
 | |
|                            sycl::range<3>(to.get_pitch(), to.get_y(), 1),
 | |
|                            sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
 | |
|                            size, direction);
 | |
|     }
 | |
| 
 | |
|     /// memcpy 2D matrix with pitch.
 | |
|     static inline std::vector<sycl::event>
 | |
|     dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
 | |
|                 size_t to_pitch, size_t from_pitch, size_t x, size_t y,
 | |
|                 memcpy_direction direction = automatic)
 | |
|     {
 | |
|         return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
 | |
|                            sycl::range<3>(from_pitch, y, 1),
 | |
|                            sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
 | |
|                            sycl::range<3>(x, y, 1), direction);
 | |
|     }
 | |
| 
 | |
|     inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | |
|                      oneapi::mkl::transpose b_trans, int m, int n, int k,
 | |
|                      const void *alpha, const void *a, library_data_t a_type,
 | |
|                      int lda, const void *b, library_data_t b_type, int ldb,
 | |
|                      const void *beta, void *c, library_data_t c_type, int ldc,
 | |
|                      library_data_t scaling_type)
 | |
|     {
 | |
|         if (scaling_type == library_data_t::real_float &&
 | |
|             c_type == library_data_t::complex_float)
 | |
|         {
 | |
|             scaling_type = library_data_t::complex_float;
 | |
|         }
 | |
|         else if (scaling_type == library_data_t::real_double &&
 | |
|                  c_type == library_data_t::complex_double)
 | |
|         {
 | |
|             scaling_type = library_data_t::complex_double;
 | |
|         }
 | |
| 
 | |
|         std::uint64_t key =
 | |
|             detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
 | |
|         switch (key)
 | |
|         {
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_float, library_data_t::real_float,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_impl<float, float, float, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_double, library_data_t::real_double,
 | |
|             library_data_t::real_double, library_data_t::real_double):
 | |
|         {
 | |
|             detail::gemm_impl<double, double, double, double>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::complex_float, library_data_t::complex_float,
 | |
|             library_data_t::complex_float, library_data_t::complex_float):
 | |
|         {
 | |
|             detail::gemm_impl<std::complex<float>, std::complex<float>,
 | |
|                               std::complex<float>, std::complex<float>>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::complex_double, library_data_t::complex_double,
 | |
|             library_data_t::complex_double, library_data_t::complex_double):
 | |
|         {
 | |
|             detail::gemm_impl<std::complex<double>, std::complex<double>,
 | |
|                               std::complex<double>, std::complex<double>>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_half, library_data_t::real_half,
 | |
|             library_data_t::real_half, library_data_t::real_half):
 | |
|         {
 | |
|             detail::gemm_impl<sycl::half, sycl::half, sycl::half,
 | |
|                               sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a,
 | |
|                                           lda, b, ldb, beta, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
 | |
|                               float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b,
 | |
|                                      ldb, beta, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_half, library_data_t::real_half,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_impl<sycl::half, sycl::half, float, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_half, library_data_t::real_half,
 | |
|             library_data_t::real_half, library_data_t::real_float):
 | |
|         {
 | |
|             float alpha_value =
 | |
|                 dpct::get_value(reinterpret_cast<const float *>(alpha), q);
 | |
|             float beta_value =
 | |
|                 dpct::get_value(reinterpret_cast<const float *>(beta), q);
 | |
|             sycl::half alpha_half(alpha_value);
 | |
|             sycl::half beta_half(beta_value);
 | |
|             detail::gemm_impl<sycl::half, sycl::half, sycl::half,
 | |
|                               sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half,
 | |
|                                           a, lda, b, ldb, &beta_half, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_int8, library_data_t::real_int8,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_impl<std::int8_t, std::int8_t, float, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | |
|             library_data_t::real_bfloat16, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
 | |
|                               oneapi::mkl::bfloat16, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_int8, library_data_t::real_int8,
 | |
|             library_data_t::real_int32, library_data_t::real_int32):
 | |
|         {
 | |
|             float alpha_float =
 | |
|                 dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
 | |
|             float beta_float =
 | |
|                 dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
 | |
|             detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc);
 | |
|             break;
 | |
|         }
 | |
|         default:
 | |
|             throw std::runtime_error("the combination of data type is unsupported");
 | |
|         }
 | |
|     } // gemm()
 | |
| 
 | |
|     /// Computes a batch of matrix-matrix product with general matrices.
 | |
|     /// \param [in] q The queue where the routine should be executed.
 | |
|     /// \param [in] a_trans Specifies the operation applied to A.
 | |
|     /// \param [in] b_trans Specifies the operation applied to B.
 | |
|     /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
 | |
|     /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
 | |
|     /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
 | |
|     /// \param [in] alpha Scaling factor for the matrix-matrix product.
 | |
|     /// \param [in] a Input matrix A.
 | |
|     /// \param [in] a_type Data type of the matrix A.
 | |
|     /// \param [in] lda Leading dimension of A.
 | |
|     /// \param [in] b Input matrix B.
 | |
|     /// \param [in] b_type Data type of the matrix B.
 | |
|     /// \param [in] ldb Leading dimension of B.
 | |
|     /// \param [in] beta Scaling factor for matrix C.
 | |
|     /// \param [in, out] c Input/Output matrix C.
 | |
|     /// \param [in] c_type Data type of the matrix C.
 | |
|     /// \param [in] ldc Leading dimension of C.
 | |
|     /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
 | |
|     /// \param [in] scaling_type Data type of the scaling factors.
 | |
|     inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | |
|                            oneapi::mkl::transpose b_trans, int m, int n, int k,
 | |
|                            const void *alpha, const void *a[],
 | |
|                            library_data_t a_type, int lda, const void *b[],
 | |
|                            library_data_t b_type, int ldb, const void *beta,
 | |
|                            void *c[], library_data_t c_type, int ldc,
 | |
|                            int batch_size, library_data_t scaling_type)
 | |
|     {
 | |
| #ifdef DPCT_USM_LEVEL_NONE
 | |
|         throw std::runtime_error("this API is unsupported when USM level is none");
 | |
| #else
 | |
|         if (scaling_type == library_data_t::real_float &&
 | |
|             c_type == library_data_t::complex_float)
 | |
|         {
 | |
|             scaling_type = library_data_t::complex_float;
 | |
|         }
 | |
|         else if (scaling_type == library_data_t::real_double &&
 | |
|                  c_type == library_data_t::complex_double)
 | |
|         {
 | |
|             scaling_type = library_data_t::complex_double;
 | |
|         }
 | |
| 
 | |
|         std::uint64_t key =
 | |
|             detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
 | |
|         switch (key)
 | |
|         {
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_float, library_data_t::real_float,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<float, float, float, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | |
|                 batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_double, library_data_t::real_double,
 | |
|             library_data_t::real_double, library_data_t::real_double):
 | |
|         {
 | |
|             detail::gemm_batch_impl<double, double, double, double>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | |
|                 batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::complex_float, library_data_t::complex_float,
 | |
|             library_data_t::complex_float, library_data_t::complex_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
 | |
|                                     std::complex<float>, std::complex<float>>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | |
|                 batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::complex_double, library_data_t::complex_double,
 | |
|             library_data_t::complex_double, library_data_t::complex_double):
 | |
|         {
 | |
|             detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
 | |
|                                     std::complex<double>, std::complex<double>>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | |
|                 batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_half, library_data_t::real_half,
 | |
|             library_data_t::real_half, library_data_t::real_half):
 | |
|         {
 | |
|             detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
 | |
|                                     sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
 | |
|                                                 a, lda, b, ldb, beta, c, ldc,
 | |
|                                                 batch_size);
 | |
|             break;
 | |
|         }
 | |
| #ifdef __INTEL_MKL__
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | |
|             library_data_t::real_bfloat16, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
 | |
|                                     oneapi::mkl::bfloat16, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | |
|                 batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
 | |
|                                     float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
 | |
|                                            b, ldb, beta, c, ldc, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_int8, library_data_t::real_int8,
 | |
|             library_data_t::real_int32, library_data_t::real_int32):
 | |
|         {
 | |
|             float alpha_float =
 | |
|                 dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
 | |
|             float beta_float =
 | |
|                 dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
 | |
|             detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
 | |
|                                     float>(q, a_trans, b_trans, m, n, k, &alpha_float,
 | |
|                                            a, lda, b, ldb, &beta_float, c, ldc,
 | |
|                                            batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_int8, library_data_t::real_int8,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | |
|                 batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_half, library_data_t::real_half,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
 | |
|                 batch_size);
 | |
|             break;
 | |
|         }
 | |
| #endif
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_half, library_data_t::real_half,
 | |
|             library_data_t::real_half, library_data_t::real_float):
 | |
|         {
 | |
|             float alpha_value =
 | |
|                 dpct::get_value(reinterpret_cast<const float *>(alpha), q);
 | |
|             float beta_value =
 | |
|                 dpct::get_value(reinterpret_cast<const float *>(beta), q);
 | |
|             sycl::half alpha_half(alpha_value);
 | |
|             sycl::half beta_half(beta_value);
 | |
|             detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
 | |
|                 q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc,
 | |
|                 batch_size);
 | |
|             break;
 | |
|         }
 | |
|         default:
 | |
|             throw std::runtime_error("the combination of data type is unsupported");
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     /// Computes a batch of matrix-matrix product with general matrices.
 | |
|     /// \param [in] q The queue where the routine should be executed.
 | |
|     /// \param [in] a_trans Specifies the operation applied to A.
 | |
|     /// \param [in] b_trans Specifies the operation applied to B.
 | |
|     /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
 | |
|     /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
 | |
|     /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
 | |
|     /// \param [in] alpha Scaling factor for the matrix-matrix product.
 | |
|     /// \param [in] a Input matrix A.
 | |
|     /// \param [in] a_type Data type of the matrix A.
 | |
|     /// \param [in] lda Leading dimension of A.
 | |
|     /// \param [in] stride_a Stride between the different A matrices.
 | |
|     /// \param [in] b Input matrix B.
 | |
|     /// \param [in] b_type Data type of the matrix B.
 | |
|     /// \param [in] ldb Leading dimension of B.
 | |
|     /// \param [in] stride_b Stride between the different B matrices.
 | |
|     /// \param [in] beta Scaling factor for matrix C.
 | |
|     /// \param [in, out] c Input/Output matrix C.
 | |
|     /// \param [in] c_type Data type of the matrix C.
 | |
|     /// \param [in] ldc Leading dimension of C.
 | |
|     /// \param [in] stride_c Stride between the different C matrices.
 | |
|     /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
 | |
|     /// \param [in] scaling_type Data type of the scaling factors.
 | |
|     inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
 | |
|                            oneapi::mkl::transpose b_trans, int m, int n, int k,
 | |
|                            const void *alpha, const void *a, library_data_t a_type,
 | |
|                            int lda, long long int stride_a, const void *b,
 | |
|                            library_data_t b_type, int ldb, long long int stride_b,
 | |
|                            const void *beta, void *c, library_data_t c_type,
 | |
|                            int ldc, long long int stride_c, int batch_size,
 | |
|                            library_data_t scaling_type)
 | |
|     {
 | |
|         if (scaling_type == library_data_t::real_float &&
 | |
|             c_type == library_data_t::complex_float)
 | |
|         {
 | |
|             scaling_type = library_data_t::complex_float;
 | |
|         }
 | |
|         else if (scaling_type == library_data_t::real_double &&
 | |
|                  c_type == library_data_t::complex_double)
 | |
|         {
 | |
|             scaling_type = library_data_t::complex_double;
 | |
|         }
 | |
| 
 | |
|         std::uint64_t key =
 | |
|             detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
 | |
|         switch (key)
 | |
|         {
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_float, library_data_t::real_float,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<float, float, float, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | |
|                 beta, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_double, library_data_t::real_double,
 | |
|             library_data_t::real_double, library_data_t::real_double):
 | |
|         {
 | |
|             detail::gemm_batch_impl<double, double, double, double>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | |
|                 beta, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::complex_float, library_data_t::complex_float,
 | |
|             library_data_t::complex_float, library_data_t::complex_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
 | |
|                                     std::complex<float>, std::complex<float>>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | |
|                 beta, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::complex_double, library_data_t::complex_double,
 | |
|             library_data_t::complex_double, library_data_t::complex_double):
 | |
|         {
 | |
|             detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
 | |
|                                     std::complex<double>, std::complex<double>>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | |
|                 beta, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_half, library_data_t::real_half,
 | |
|             library_data_t::real_half, library_data_t::real_half):
 | |
|         {
 | |
|             detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
 | |
|                                     sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
 | |
|                                                 a, lda, stride_a, b, ldb, stride_b,
 | |
|                                                 beta, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
| #ifdef __INTEL_MKL__
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | |
|             library_data_t::real_bfloat16, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
 | |
|                                     oneapi::mkl::bfloat16, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | |
|                 beta, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_bfloat16, library_data_t::real_bfloat16,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
 | |
|                                     float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
 | |
|                                            stride_a, b, ldb, stride_b, beta, c, ldc,
 | |
|                                            stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_int8, library_data_t::real_int8,
 | |
|             library_data_t::real_int32, library_data_t::real_int32):
 | |
|         {
 | |
|             detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
 | |
|                                     std::int32_t>(q, a_trans, b_trans, m, n, k, alpha,
 | |
|                                                   a, lda, stride_a, b, ldb, stride_b,
 | |
|                                                   beta, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_int8, library_data_t::real_int8,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | |
|                 beta, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_half, library_data_t::real_half,
 | |
|             library_data_t::real_float, library_data_t::real_float):
 | |
|         {
 | |
|             detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
 | |
|                 q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
 | |
|                 beta, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
| #endif
 | |
|         case detail::get_type_combination_id(
 | |
|             library_data_t::real_half, library_data_t::real_half,
 | |
|             library_data_t::real_half, library_data_t::real_float):
 | |
|         {
 | |
|             float alpha_value =
 | |
|                 dpct::get_value(reinterpret_cast<const float *>(alpha), q);
 | |
|             float beta_value =
 | |
|                 dpct::get_value(reinterpret_cast<const float *>(beta), q);
 | |
|             sycl::half alpha_half(alpha_value);
 | |
|             sycl::half beta_half(beta_value);
 | |
|             detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
 | |
|                 q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b,
 | |
|                 &beta_half, c, ldc, stride_c, batch_size);
 | |
|             break;
 | |
|         }
 | |
|         default:
 | |
|             throw std::runtime_error("the combination of data type is unsupported");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     static inline void
 | |
|     async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr,
 | |
|                       size_t from_pitch, size_t x, size_t y,
 | |
|                       memcpy_direction direction = automatic,
 | |
|                       sycl::queue &q = get_default_queue())
 | |
|     {
 | |
|         detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y,
 | |
|                             direction);
 | |
|     }
 | |
| 
 | |
|     using err0 = detail::generic_error_type<struct err0_tag, int>;
 | |
|     using err1 = detail::generic_error_type<struct err1_tag, int>;
 | |
| 
 | |
| } // COPY from DPCT head files
 | |
| 
 | |
| 
 | |
| static int g_ggml_sycl_debug=0;
 | |
| #define GGML_SYCL_DEBUG(...) do{if(g_ggml_sycl_debug) printf(__VA_ARGS__);}while(0)
 | |
| 
 | |
| #define CHECK_TRY_ERROR(expr)                                                  \
 | |
|   [&]() {                                                                      \
 | |
|     try {                                                                      \
 | |
|       expr;                                                                    \
 | |
|       return dpct::success;                                                    \
 | |
|     } catch (std::exception const &e) {                                        \
 | |
|       std::cerr << e.what()<< "\nException caught at file:" << __FILE__        \
 | |
|         << ", line:" << __LINE__ <<", func:"<<__func__<< std::endl;            \
 | |
|       return dpct::default_error;                                              \
 | |
|     }                                                                          \
 | |
|   }()
 | |
| 
 | |
| // #define DEBUG_SYCL_MALLOC
 | |
| 
 | |
| static int g_work_group_size = 0;
 | |
| // typedef sycl::half ggml_fp16_t;
 | |
| 
 | |
| #define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
 | |
| #define VER_4VEC   610          //todo for hardward optimize.
 | |
| #define VER_GEN9      700       //todo for hardward optimize.
 | |
| #define VER_GEN12 1000000       //todo for hardward optimize.
 | |
| #define VER_GEN13      (VER_GEN12 + 1030)   //todo for hardward optimize.
 | |
| 
 | |
| #define GGML_SYCL_MAX_NODES 8192 //TODO: adapt to hardwares
 | |
| 
 | |
| 
 | |
| //define for XMX in Intel GPU
 | |
| //TODO: currently, it's not used for XMX really.
 | |
| #define SYCL_USE_XMX
 | |
| 
 | |
| // max batch size to use MMQ kernels when tensor cores are available
 | |
| #define XMX_MAX_BATCH_SIZE 32
 | |
| 
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 | |
| 
 | |
| static void crash(){
 | |
|     int *ptr = NULL;
 | |
|     *ptr = 0;
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_error(const char * stmt, const char * func, const char * file, const int line, const char * msg) {
 | |
|     fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
 | |
|     fprintf(stderr, "  in function %s at %s:%d\n", func, file, line);
 | |
|     GGML_ASSERT(!"SYCL error");
 | |
| }
 | |
| 
 | |
| #define SYCL_CHECK(err) do {                                                   \
 | |
|     auto err_ = (err); if (err_ != 0) ggml_sycl_error(                         \
 | |
|         #err, __func__, __FILE__, __LINE__,                                    \
 | |
|         "Meet error in this line code!");   \
 | |
| } while (0)
 | |
| 
 | |
| #if DPCT_COMPAT_RT_VERSION >= 11100
 | |
| #define GGML_SYCL_ASSUME(x) __builtin_assume(x)
 | |
| #else
 | |
| #define GGML_SYCL_ASSUME(x)
 | |
| #endif // DPCT_COMPAT_RT_VERSION >= 11100
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
| typedef sycl::half dfloat; // dequantize float
 | |
| typedef sycl::half2 dfloat2;
 | |
| #else
 | |
| typedef float dfloat; // dequantize float
 | |
| typedef sycl::float2 dfloat2;
 | |
| #endif //GGML_SYCL_F16
 | |
| 
 | |
| bool   ggml_sycl_loaded(void);
 | |
| void * ggml_sycl_host_malloc(size_t size);
 | |
| void   ggml_sycl_host_free(void * ptr);
 | |
| bool   ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
 | |
| void   ggml_sycl_set_tensor_split(const float * tensor_split);
 | |
| void   ggml_sycl_transform_tensor(void * data, struct ggml_tensor * tensor);
 | |
| void   ggml_sycl_free_data(struct ggml_tensor * tensor);
 | |
| void   ggml_sycl_assign_buffers(struct ggml_tensor * tensor);
 | |
| void   ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor);
 | |
| void   ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor);
 | |
| void   ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor);
 | |
| void   ggml_sycl_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
 | |
| void   ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
 | |
| void   ggml_sycl_set_main_device(int main_device);
 | |
| void   ggml_sycl_set_mul_mat_q(bool mul_mat_q);
 | |
| void   ggml_sycl_set_scratch_size(size_t scratch_size);
 | |
| void   ggml_sycl_free_scratch(void);
 | |
| void   ggml_sycl_get_device_description(int device, char * description, size_t description_size);
 | |
| bool   ggml_backend_is_sycl(ggml_backend_t backend);
 | |
| int    ggml_backend_sycl_get_device(ggml_backend_t backend);
 | |
| int    get_main_device();
 | |
| void   print_ggml_tensor(const char*name, struct ggml_tensor *src);
 | |
| void   log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt);
 | |
| 
 | |
| static __dpct_inline__ int get_int_from_int8(const int8_t *x8, const int &i32) {
 | |
|     const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
 | |
| 
 | |
|     int x32 = 0;
 | |
|     x32 |= x16[0] <<  0;
 | |
|     x32 |= x16[1] << 16;
 | |
| 
 | |
|     return x32;
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ int get_int_from_uint8(const uint8_t *x8,
 | |
|                                               const int &i32) {
 | |
|     const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
 | |
| 
 | |
|     int x32 = 0;
 | |
|     x32 |= x16[0] <<  0;
 | |
|     x32 |= x16[1] << 16;
 | |
| 
 | |
|     return x32;
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ int get_int_from_int8_aligned(const int8_t *x8,
 | |
|                                                      const int &i32) {
 | |
|     return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ int get_int_from_uint8_aligned(const uint8_t *x8,
 | |
|                                                       const int &i32) {
 | |
|     return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
 | |
|                              int k, dpct::queue_ptr stream);
 | |
| typedef to_t_sycl_t<float> to_fp32_sycl_t;
 | |
| typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;
 | |
| 
 | |
| typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
 | |
| typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
 | |
| typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
 | |
| typedef void (*ggml_sycl_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
 | |
| typedef void (*ggml_sycl_op_mul_mat_t)(
 | |
|     const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
 | |
|     const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
 | |
|     float *dst_dd_i, const int64_t row_low, const int64_t row_high,
 | |
|     const int64_t src1_ncols, const int64_t src1_padded_row_size,
 | |
|     const dpct::queue_ptr &stream);
 | |
| typedef void (*ggml_sycl_op_flatten_t)(const ggml_tensor *src0,
 | |
|                                        const ggml_tensor *src1,
 | |
|                                        ggml_tensor *dst, const float *src0_dd,
 | |
|                                        const float *src1_dd, float *dst_dd,
 | |
|                                        const dpct::queue_ptr &main_stream);
 | |
| 
 | |
| // QK = number of values after dequantization
 | |
| // QR = QK / number of values before dequantization
 | |
| // QI = number of 32 bit integers before dequantization
 | |
| 
 | |
| #define QK4_0 32
 | |
| #define QR4_0 2
 | |
| #define QI4_0 (QK4_0 / (4 * QR4_0))
 | |
| typedef struct dpct_type_471834 {
 | |
|     sycl::half d;           // delta
 | |
|     uint8_t qs[QK4_0 / 2];  // nibbles / quants
 | |
| } block_q4_0;
 | |
| static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
 | |
| 
 | |
| #define QK4_1 32
 | |
| #define QR4_1 2
 | |
| #define QI4_1 (QK4_1 / (4 * QR4_1))
 | |
| typedef struct dpct_type_143705 {
 | |
|     sycl::half2 dm;         // dm.x = delta, dm.y = min
 | |
|     uint8_t qs[QK4_1 / 2];  // nibbles / quants
 | |
| } block_q4_1;
 | |
| static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
 | |
| 
 | |
| #define QK5_0 32
 | |
| #define QR5_0 2
 | |
| #define QI5_0 (QK5_0 / (4 * QR5_0))
 | |
| typedef struct dpct_type_673649 {
 | |
|     sycl::half d;           // delta
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_0 / 2];  // nibbles / quants
 | |
| } block_q5_0;
 | |
| static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
 | |
| 
 | |
| #define QK5_1 32
 | |
| #define QR5_1 2
 | |
| #define QI5_1 (QK5_1 / (4 * QR5_1))
 | |
| typedef struct dpct_type_135589 {
 | |
|     sycl::half2 dm;         // dm.x = delta, dm.y = min
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_1 / 2];  // nibbles / quants
 | |
| } block_q5_1;
 | |
| static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
 | |
| 
 | |
| #define QK8_0 32
 | |
| #define QR8_0 1
 | |
| #define QI8_0 (QK8_0 / (4 * QR8_0))
 | |
| typedef struct dpct_type_122878 {
 | |
|     sycl::half d;           // delta
 | |
|     int8_t  qs[QK8_0];      // quants
 | |
| } block_q8_0;
 | |
| static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
 | |
| 
 | |
| #define QK8_1 32
 | |
| #define QR8_1 1
 | |
| #define QI8_1 (QK8_1 / (4 * QR8_1))
 | |
| typedef struct dpct_type_143721 {
 | |
|     sycl::half2 ds;         // ds.x = delta, ds.y = sum
 | |
|     int8_t  qs[QK8_0];      // quants
 | |
| } block_q8_1;
 | |
| static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
 | |
| 
 | |
| typedef float (*vec_dot_q_sycl_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
 | |
| typedef void (*allocate_tiles_sycl_t)(int **x_ql, sycl::half2 **x_dm,
 | |
|                                       int **x_qh, int **x_sc);
 | |
| typedef void (*load_tiles_sycl_t)(const void *__restrict__ vx,
 | |
|                                   int *__restrict__ x_ql,
 | |
|                                   sycl::half2 *__restrict__ x_dm,
 | |
|                                   int *__restrict__ x_qh,
 | |
|                                   int *__restrict__ x_sc, const int &i_offset,
 | |
|                                   const int &i_max, const int &k,
 | |
|                                   const int &blocks_per_row);
 | |
| typedef float (*vec_dot_q_mul_mat_sycl_t)(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ms,
 | |
|     const int &i, const int &j, const int &k);
 | |
| 
 | |
| //================================= k-quants
 | |
| 
 | |
| #ifdef GGML_QKK_64
 | |
| #define QK_K 64
 | |
| #define K_SCALE_SIZE 4
 | |
| #else
 | |
| #define QK_K 256
 | |
| #define K_SCALE_SIZE 12
 | |
| #endif
 | |
| 
 | |
| #define QR2_K 4
 | |
| #define QI2_K (QK_K / (4*QR2_K))
 | |
| typedef struct dpct_type_619598 {
 | |
|     uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
 | |
|     uint8_t qs[QK_K/4];      // quants
 | |
|     sycl::half2 dm;          // super-block scale for quantized scales/mins
 | |
| } block_q2_K;
 | |
| static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
 | |
| 
 | |
| #define QR3_K 4
 | |
| #define QI3_K (QK_K / (4*QR3_K))
 | |
| typedef struct dpct_type_138576 {
 | |
|     uint8_t hmask[QK_K/8];     // quants - high bit
 | |
|     uint8_t qs[QK_K/4];        // quants - low 2 bits
 | |
| #ifdef GGML_QKK_64
 | |
|     uint8_t scales[2]; // scales, quantized with 8 bits
 | |
| #else
 | |
|     uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
 | |
| #endif
 | |
|     sycl::half d; // super-block scale
 | |
| } block_q3_K;
 | |
| //static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
 | |
| 
 | |
| #define QR4_K 2
 | |
| #define QI4_K (QK_K / (4*QR4_K))
 | |
| #ifdef GGML_QKK_64
 | |
| typedef struct {
 | |
|     half    dm[2];             // super-block scales/mins
 | |
|     uint8_t scales[2];         // 4-bit block scales/mins
 | |
|     uint8_t qs[QK_K/2];        // 4--bit quants
 | |
| } block_q4_K;
 | |
| static_assert(sizeof(block_q4_K) == sizeof(half2) + QK_K/2 + 2, "wrong q4_K block size/padding");
 | |
| #else
 | |
| typedef struct dpct_type_154943 {
 | |
|     sycl::half2 dm;            // super-block scale for quantized scales/mins
 | |
|     uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
 | |
|     uint8_t qs[QK_K/2];        // 4--bit quants
 | |
| } block_q4_K;
 | |
| static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
 | |
| #endif
 | |
| 
 | |
| #define QR5_K 2
 | |
| #define QI5_K (QK_K / (4*QR5_K))
 | |
| #ifdef GGML_QKK_64
 | |
| typedef struct {
 | |
|     half d;                  // super-block scale
 | |
|     int8_t scales[QK_K/16];  // block scales
 | |
|     uint8_t qh[QK_K/8];      // quants, high bit
 | |
|     uint8_t qs[QK_K/2];      // quants, low 4 bits
 | |
| } block_q5_K;
 | |
| static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
 | |
| #else
 | |
| typedef struct dpct_type_866817 {
 | |
|     sycl::half2 dm;               // super-block scale for quantized scales/mins
 | |
|     uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
 | |
|     uint8_t qh[QK_K/8];           // quants, high bit
 | |
|     uint8_t qs[QK_K/2];           // quants, low 4 bits
 | |
| } block_q5_K;
 | |
| static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
 | |
| #endif
 | |
| 
 | |
| #define QR6_K 2
 | |
| #define QI6_K (QK_K / (4*QR6_K))
 | |
| typedef struct dpct_type_107281 {
 | |
|     uint8_t ql[QK_K/2];   // quants, lower 4 bits
 | |
|     uint8_t qh[QK_K/4];   // quants, upper 2 bits
 | |
|     int8_t  scales[QK_K/16]; // scales
 | |
|     sycl::half d;            // delta
 | |
| } block_q6_K;
 | |
| static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
 | |
| 
 | |
| #define WARP_SIZE 32
 | |
| #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
 | |
| 
 | |
| #define SYCL_GELU_BLOCK_SIZE 256
 | |
| #define SYCL_SILU_BLOCK_SIZE 256
 | |
| #define SYCL_TANH_BLOCK_SIZE 256
 | |
| #define SYCL_RELU_BLOCK_SIZE 256
 | |
| #define SYCL_SQR_BLOCK_SIZE 256
 | |
| #define SYCL_CPY_BLOCK_SIZE 32
 | |
| #define SYCL_SCALE_BLOCK_SIZE 256
 | |
| #define SYCL_CLAMP_BLOCK_SIZE 256
 | |
| #define SYCL_ROPE_BLOCK_SIZE 256
 | |
| #define SYCL_SOFT_MAX_BLOCK_SIZE 1024
 | |
| #define SYCL_ALIBI_BLOCK_SIZE 32
 | |
| #define SYCL_DIAG_MASK_INF_BLOCK_SIZE 32
 | |
| #define SYCL_QUANTIZE_BLOCK_SIZE 256
 | |
| #define SYCL_DEQUANTIZE_BLOCK_SIZE 256
 | |
| #define SYCL_GET_ROWS_BLOCK_SIZE 256
 | |
| #define SYCL_UPSCALE_BLOCK_SIZE 256
 | |
| #define SYCL_CONCAT_BLOCK_SIZE 256
 | |
| #define SYCL_PAD_BLOCK_SIZE 256
 | |
| #define SYCL_ACC_BLOCK_SIZE 256
 | |
| #define SYCL_IM2COL_BLOCK_SIZE 256
 | |
| 
 | |
| // dmmv = dequantize_mul_mat_vec
 | |
| #ifndef GGML_SYCL_DMMV_X
 | |
| #define GGML_SYCL_DMMV_X 32
 | |
| #endif
 | |
| #ifndef GGML_SYCL_MMV_Y
 | |
| #define GGML_SYCL_MMV_Y 1
 | |
| #endif
 | |
| 
 | |
| #ifndef K_QUANTS_PER_ITERATION
 | |
| #define K_QUANTS_PER_ITERATION 2
 | |
| #else
 | |
| static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
 | |
| #endif
 | |
| 
 | |
| #ifndef GGML_SYCL_PEER_MAX_BATCH_SIZE
 | |
| #define GGML_SYCL_PEER_MAX_BATCH_SIZE 128
 | |
| #endif // GGML_SYCL_PEER_MAX_BATCH_SIZE
 | |
| 
 | |
| #define MUL_MAT_SRC1_COL_STRIDE 128
 | |
| 
 | |
| #define MAX_STREAMS 8
 | |
| static dpct::queue_ptr g_syclStreams[GGML_SYCL_MAX_DEVICES][MAX_STREAMS] = {
 | |
|     {0}};
 | |
| 
 | |
| struct ggml_tensor_extra_gpu {
 | |
|     void * data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split tensors
 | |
|     dpct::event_ptr
 | |
|         events[GGML_SYCL_MAX_DEVICES]
 | |
|               [MAX_STREAMS]; // events for synchronizing multiple GPUs
 | |
| };
 | |
| 
 | |
| inline dpct::err0 ggml_sycl_set_device(const int device) try {
 | |
|     int current_device;
 | |
| 
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|         current_device = dpct::dev_mgr::instance().current_device_id()));
 | |
| 
 | |
|     // GGML_SYCL_DEBUG("ggml_sycl_set_device device=%d, current_device=%d\n", device, current_device);
 | |
|     if (device == current_device) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return CHECK_TRY_ERROR(dpct::select_device(device));
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   crash();
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static int g_device_count = -1;
 | |
| static int g_all_sycl_device_count = -1;
 | |
| static int g_main_device = -1;
 | |
| static int g_main_device_index = -1;
 | |
| 
 | |
| static float g_tensor_split[GGML_SYCL_MAX_DEVICES] = {0};
 | |
| 
 | |
| struct sycl_device_capabilities {
 | |
|     int     cc;                 // compute capability
 | |
|     bool    vmm;                // virtual memory support
 | |
|     size_t  vmm_granularity;    // granularity of virtual memory
 | |
|     int device_id;
 | |
| };
 | |
| 
 | |
| static sycl_device_capabilities g_device_caps[GGML_SYCL_MAX_DEVICES] = { {0, false, 0, -1} };
 | |
| 
 | |
| struct sycl_device_id2index {
 | |
|     int index;
 | |
| };
 | |
| 
 | |
| static sycl_device_id2index g_sycl_device_id2index[GGML_SYCL_MAX_DEVICES] = { {-1} };
 | |
| 
 | |
| static void * g_scratch_buffer = nullptr;
 | |
| static size_t g_scratch_size = 0; // disabled by default
 | |
| static size_t g_scratch_offset = 0;
 | |
| 
 | |
| static dpct::queue_ptr g_sycl_handles[GGML_SYCL_MAX_DEVICES] = {nullptr};
 | |
| 
 | |
| int get_main_device(){
 | |
|     return g_main_device;
 | |
| }
 | |
| 
 | |
| [[noreturn]]
 | |
| static void bad_arch(const sycl::stream &stream_ct1) {
 | |
|     stream_ct1 << "ERROR: ggml-sycl was compiled without support for the "
 | |
|                   "current GPU architecture.\n";
 | |
|     // __trap();
 | |
|     std::exit(1);
 | |
| 
 | |
|     (void) bad_arch; // suppress unused function warning
 | |
| }
 | |
| 
 | |
| void log_ggml_var_device(const char*name, float *src, size_t total_elements, bool src_on_device){
 | |
|     if(!g_ggml_sycl_debug) return;
 | |
|     if(!src){
 | |
|         printf("GGML Tensor:%s skip to save for NULL pointer\n", name);
 | |
|         return;
 | |
|     }
 | |
|     char filename[1024];
 | |
|     sprintf(filename, "%s.txt", name);
 | |
|     printf("GGML Tensor:%s save to %s\n", name, filename);
 | |
| 
 | |
|     size_t total_size = total_elements*sizeof(float);
 | |
|     float *local_buf = NULL;
 | |
|     // printf("total_size %d2, src_on_device %d\n", total_size, src_on_device);
 | |
|     if(src_on_device) {
 | |
|         local_buf = (float *) ggml_sycl_host_malloc(total_size);
 | |
|         // printf("local buf %p size %d bytes\n", local_buf, total_size);
 | |
|         ggml_sycl_set_device(g_main_device);
 | |
|         dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
 | |
|         main_stream->memcpy(local_buf, src, total_size);
 | |
|     }
 | |
|     else {
 | |
|         local_buf = (float *)src;
 | |
|         // printf("local buf from src-> data %p\n", local_buf);
 | |
|     }
 | |
| 
 | |
|     std::ofstream logfile;
 | |
|     logfile.open(filename);
 | |
|     // printf("local buf element %d\n", total_elements);
 | |
|     for(size_t i=0; i<total_elements; i++){
 | |
|         if((i+1)%20 ==0) logfile <<std::endl;
 | |
|         else logfile << local_buf[i] <<" ";
 | |
|     }
 | |
|     logfile <<std::endl;
 | |
|     logfile.close();
 | |
| 
 | |
|     if(src_on_device) ggml_sycl_host_free(local_buf);
 | |
| }
 | |
| 
 | |
| //todo: debug for crash in some case
 | |
| void print_ggml_tensor(const char*name, struct ggml_tensor *src){
 | |
|     if(!g_ggml_sycl_debug) return;
 | |
|     if(!src){
 | |
|         printf("GGML Tensor:%s skip to save for NULL pointer\n", name);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     size_t total_elements = ggml_nelements(src);
 | |
| 
 | |
|     const bool src_on_device = src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT;
 | |
|     float *src_data =NULL;
 | |
|     if(src_on_device) {
 | |
|         ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *)  src->extra;
 | |
|         src_data = (float*)src_extra->data_device[g_main_device_index];
 | |
|     }
 | |
|     else {
 | |
|         src_data = (float *)src->data;
 | |
|     }
 | |
| 
 | |
|     log_ggml_var_device(name, src_data, total_elements, src_on_device);
 | |
| }
 | |
| 
 | |
| static int log_file_name_idx=0;
 | |
| void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt) {
 | |
|     stop_cnt = 4;
 | |
|     if(log_file_name_idx>=stop_cnt) return;
 | |
|     char filename[1280];
 | |
|     sprintf(filename, "%s_%07d", name, log_file_name_idx);
 | |
|     log_file_name_idx++;
 | |
|     print_ggml_tensor(filename, src);
 | |
|     // print_ggml_tensor("ggml_sycl_rms_norm_src0", (ggml_tensor *)src0);
 | |
|     // print_ggml_tensor("ggml_sycl_rms_norm_src1", (ggml_tensor *)src1);
 | |
|     // int *ptr = NULL;
 | |
|     // *ptr = 0;
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float warp_reduce_sum(float x,
 | |
|                                              const sycl::nd_item<3> &item_ct1) {
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         /*
 | |
|         DPCT1096:98: The right-most dimension of the work-group used in the SYCL
 | |
|         kernel that calls this function may be less than "32". The function
 | |
|         "dpct::permute_sub_group_by_xor" may return an unexpected result on the
 | |
|         CPU device. Modify the size of the work-group to ensure that the value
 | |
|         of the right-most dimension is a multiple of "32".
 | |
|         */
 | |
|         x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ sycl::float2
 | |
| warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
 | |
|                                                 mask);
 | |
|         a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
 | |
|                                                 mask);
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float warp_reduce_max(float x,
 | |
|                                              const sycl::nd_item<3> &item_ct1) {
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         /*
 | |
|         DPCT1096:97: The right-most dimension of the work-group used in the SYCL
 | |
|         kernel that calls this function may be less than "32". The function
 | |
|         "dpct::permute_sub_group_by_xor" may return an unexpected result on the
 | |
|         CPU device. Modify the size of the work-group to ensure that the value
 | |
|         of the right-most dimension is a multiple of "32".
 | |
|         */
 | |
|         x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
 | |
|                               item_ct1.get_sub_group(), x, mask));
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float op_repeat(const float a, const float b) {
 | |
|     return b;
 | |
|     GGML_UNUSED(a);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float op_add(const float a, const float b) {
 | |
|     return a + b;
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float op_mul(const float a, const float b) {
 | |
|     return a * b;
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float op_div(const float a, const float b) {
 | |
|     return a / b;
 | |
| }
 | |
| 
 | |
| template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
 | |
| static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
 | |
|         int ne0, int ne1, int ne2, int ne3,
 | |
|         int ne10, int ne11, int ne12, int ne13,
 | |
|         /*int s0, */ int s1,  int s2,  int s3,
 | |
|         /*int s10,*/ int s11, int s12, int s13,
 | |
|         const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                     item_ct1.get_local_id(2);
 | |
|     const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                     item_ct1.get_local_id(1));
 | |
|     const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
 | |
|                     item_ct1.get_local_id(0)) /
 | |
|                    ne3;
 | |
|     const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
 | |
|                     item_ct1.get_local_id(0)) %
 | |
|                    ne3;
 | |
| 
 | |
|     if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i11 = i1 % ne11;
 | |
|     const int i12 = i2 % ne12;
 | |
|     const int i13 = i3 % ne13;
 | |
| 
 | |
|     const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
 | |
|     const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
 | |
|     const size_t i_dst  = i_src0;
 | |
| 
 | |
|     const src0_t * src0_row = src0 + i_src0;
 | |
|     const src1_t * src1_row = src1 + i_src1;
 | |
|     dst_t * dst_row = dst + i_dst;
 | |
| 
 | |
|     for (int i0 = i0s; i0 < ne0;
 | |
|          i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
 | |
|         const int i10 = i0 % ne10;
 | |
|         dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
 | |
| static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
 | |
|         int ne0, int ne1, int ne2, int ne3,
 | |
|         int ne10, int ne11, int ne12, int ne13,
 | |
|         /*int s0, */ int s1,  int s2,  int s3,
 | |
|         /*int s10,*/ int s11, int s12, int s13,
 | |
|         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
| 
 | |
|     const int i3 = i/(ne2*ne1*ne0);
 | |
|     const int i2 = (i/(ne1*ne0)) % ne2;
 | |
|     const int i1 = (i/ne0) % ne1;
 | |
|     const int i0 = i % ne0;
 | |
| 
 | |
|     if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i11 = i1 % ne11;
 | |
|     const int i12 = i2 % ne12;
 | |
|     const int i13 = i3 % ne13;
 | |
| 
 | |
|     const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
 | |
|     const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
 | |
|     const size_t i_dst  = i_src0;
 | |
| 
 | |
|     const src0_t * src0_row = src0 + i_src0;
 | |
|     const src1_t * src1_row = src1 + i_src1;
 | |
|     dst_t * dst_row = dst + i_dst;
 | |
| 
 | |
|     const int i10 = i0 % ne10;
 | |
|     dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
 | |
| }
 | |
| 
 | |
| static void acc_f32(const float * x, const float * y, float * dst, const int ne,
 | |
|     const int ne10, const int ne11, const int ne12,
 | |
|     const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
|     if (i >= ne) {
 | |
|         return;
 | |
|     }
 | |
|     int src1_idx = i - offset;
 | |
|     int oz = src1_idx / nb2;
 | |
|     int oy = (src1_idx - (oz * nb2)) / nb1;
 | |
|     int ox = src1_idx % nb1;
 | |
|     if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
 | |
|         dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
 | |
|     } else {
 | |
|         dst[i] = x[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gelu_f32(const float * x, float * dst, const int k,
 | |
|                      const sycl::nd_item<3> &item_ct1) {
 | |
|     const float GELU_COEF_A    = 0.044715f;
 | |
|     const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     float xi = x[i];
 | |
|     dst[i] = 0.5f * xi *
 | |
|              (1.0f +
 | |
|               sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
 | |
| }
 | |
| 
 | |
| static void silu_f32(const float * x, float * dst, const int k,
 | |
|                      const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
 | |
| }
 | |
| 
 | |
| static void gelu_quick_f32(const float *x, float *dst, int k,
 | |
|                            const sycl::nd_item<3> &item_ct1) {
 | |
|     const float GELU_QUICK_COEF = -1.702f;
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
 | |
| }
 | |
| 
 | |
| static void tanh_f32(const float *x, float *dst, int k,
 | |
|                      const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = sycl::tanh((float)(x[i]));
 | |
| }
 | |
| 
 | |
| static void relu_f32(const float * x, float * dst, const int k,
 | |
|                      const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = sycl::fmax((float)(x[i]), (float)0);
 | |
| }
 | |
| 
 | |
| static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
 | |
|                            const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = sycl::fmax((float)(x[i]), (float)0) +
 | |
|              sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
 | |
| }
 | |
| 
 | |
| static void sqr_f32(const float * x, float * dst, const int k,
 | |
|                     const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
|     dst[i] = x[i] * x[i];
 | |
| }
 | |
| 
 | |
| static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
 | |
|                      const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     const int tid = item_ct1.get_local_id(2);
 | |
| 
 | |
|     sycl::float2 mean_var = sycl::float2(0.f, 0.f);
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const float xi = x[row*ncols + col];
 | |
|         mean_var.x() += xi;
 | |
|         mean_var.y() += xi * xi;
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums
 | |
|     mean_var = warp_reduce_sum(mean_var, item_ct1);
 | |
|     if (block_size > WARP_SIZE) {
 | |
| 
 | |
|         int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | |
|         int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | |
|         if (lane_id == 0) {
 | |
|             s_sum[warp_id] = mean_var;
 | |
|         }
 | |
|         /*
 | |
|         DPCT1118:0: SYCL group functions and algorithms must be encountered in
 | |
|         converged control flow. You may need to adjust the code.
 | |
|         */
 | |
|         item_ct1.barrier(sycl::access::fence_space::local_space);
 | |
|         mean_var = s_sum[lane_id];
 | |
|         mean_var = warp_reduce_sum(mean_var, item_ct1);
 | |
|     }
 | |
| 
 | |
|     const float mean = mean_var.x() / ncols;
 | |
|     const float var = mean_var.y() / ncols - mean * mean;
 | |
|     const float inv_std = sycl::rsqrt(var + eps);
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void concat_f32(const float  *x,const float  *y, float *dst, const int ne0, const int ne02,
 | |
|                        const sycl::nd_item<3> &item_ct1) {
 | |
|     int nidx = item_ct1.get_local_id(2) +
 | |
|                item_ct1.get_group(2) * item_ct1.get_local_range(2);
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
|     // operation
 | |
|     int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
 | |
|                      item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
 | |
|     if (item_ct1.get_group(0) < ne02) { // src0
 | |
|         int offset_src =
 | |
|             nidx + item_ct1.get_group(1) * ne0 +
 | |
|             item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
 | |
|             dst[offset_dst] = x[offset_src];
 | |
|     } else {
 | |
|         int offset_src =
 | |
|             nidx + item_ct1.get_group(1) * ne0 +
 | |
|             (item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
 | |
|             dst[offset_dst] = y[offset_src];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void upscale_f32(const float  *x, float *dst, const int ne00, const int nb02, const int scale_factor,
 | |
|                         const sycl::nd_item<3> &item_ct1) {
 | |
|     int ne0 = ne00 * scale_factor;
 | |
|     int nidx = item_ct1.get_local_id(2) +
 | |
|                item_ct1.get_group(2) * item_ct1.get_local_range(2);
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
|     // operation
 | |
|     int i00 = nidx / scale_factor;
 | |
|     int i01 = item_ct1.get_group(1) / scale_factor;
 | |
|     int offset_src = i00 + i01 * ne00 + item_ct1.get_group(0) * nb02;
 | |
|     int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
 | |
|                      item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
 | |
|     dst[offset_dst] = x[offset_src];
 | |
| }
 | |
| 
 | |
| static void pad_f32(const float  *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
 | |
|                     const sycl::nd_item<3> &item_ct1) {
 | |
|     int nidx = item_ct1.get_local_id(2) +
 | |
|                item_ct1.get_group(2) * item_ct1.get_local_range(2);
 | |
|     if (nidx >= ne0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // operation
 | |
|     int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
 | |
|                      item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
 | |
|     if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
 | |
|         item_ct1.get_group(0) < ne02) {
 | |
|         int offset_src = nidx + item_ct1.get_group(1) * ne00 +
 | |
|                          item_ct1.get_group(0) * ne00 * ne01;
 | |
|             dst[offset_dst] = x[offset_src];
 | |
|     } else {
 | |
|         dst[offset_dst] = 0.0f;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
 | |
|                            const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
 | |
|     int start = item_ct1.get_group(2) * group_size;
 | |
|     int end = start + group_size;
 | |
| 
 | |
|     start += item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (end >= ne_elements) {
 | |
|         end = ne_elements;
 | |
|     }
 | |
| 
 | |
|     float tmp = 0.0f; // partial sum for thread in warp
 | |
| 
 | |
|     for (int j = start; j < end; j += block_size) {
 | |
|         tmp += x[j];
 | |
|     }
 | |
| 
 | |
|     tmp = warp_reduce_sum(tmp, item_ct1);
 | |
|     if (block_size > WARP_SIZE) {
 | |
| 
 | |
|         int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | |
|         int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | |
|         if (lane_id == 0) {
 | |
|             s_sum[warp_id] = tmp;
 | |
|         }
 | |
|         /*
 | |
|         DPCT1118:1: SYCL group functions and algorithms must be encountered in
 | |
|         converged control flow. You may need to adjust the code.
 | |
|         */
 | |
|         /*
 | |
|         DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
 | |
|         sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | |
|         better performance if there is no access to global memory.
 | |
|         */
 | |
|         item_ct1.barrier();
 | |
|         tmp = s_sum[lane_id];
 | |
|         tmp = warp_reduce_sum(tmp, item_ct1);
 | |
|     }
 | |
| 
 | |
|     float mean = tmp / group_size;
 | |
|     tmp = 0.0f;
 | |
| 
 | |
|     for (int j = start; j < end; j += block_size) {
 | |
|         float xi = x[j] - mean;
 | |
|         dst[j] = xi;
 | |
|         tmp += xi * xi;
 | |
|     }
 | |
| 
 | |
|     tmp = warp_reduce_sum(tmp, item_ct1);
 | |
|     if (block_size > WARP_SIZE) {
 | |
| 
 | |
|         int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | |
|         int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | |
|         if (lane_id == 0) {
 | |
|             s_sum[warp_id] = tmp;
 | |
|         }
 | |
|         /*
 | |
|         DPCT1118:2: SYCL group functions and algorithms must be encountered in
 | |
|         converged control flow. You may need to adjust the code.
 | |
|         */
 | |
|         /*
 | |
|         DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
 | |
|         sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | |
|         better performance if there is no access to global memory.
 | |
|         */
 | |
|         item_ct1.barrier();
 | |
|         tmp = s_sum[lane_id];
 | |
|         tmp = warp_reduce_sum(tmp, item_ct1);
 | |
|     }
 | |
| 
 | |
|     float variance = tmp / group_size;
 | |
|     float scale = sycl::rsqrt(variance + eps);
 | |
|     for (int j = start; j < end; j += block_size) {
 | |
|         dst[j] *= scale;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
 | |
|                          const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     const int tid = item_ct1.get_local_id(2);
 | |
| 
 | |
|     float tmp = 0.0f; // partial sum for thread in warp
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const float xi = x[row*ncols + col];
 | |
|         tmp += xi * xi;
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums
 | |
|     tmp = warp_reduce_sum(tmp, item_ct1);
 | |
|     if (block_size > WARP_SIZE) {
 | |
| 
 | |
|         int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | |
|         int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | |
|         if (lane_id == 0) {
 | |
|             s_sum[warp_id] = tmp;
 | |
|         }
 | |
|         /*
 | |
|         DPCT1118:3: SYCL group functions and algorithms must be encountered in
 | |
|         converged control flow. You may need to adjust the code.
 | |
|         */
 | |
|         item_ct1.barrier(sycl::access::fence_space::local_space);
 | |
|         tmp = s_sum[lane_id];
 | |
|         tmp = warp_reduce_sum(tmp, item_ct1);
 | |
|     }
 | |
| 
 | |
|     const float mean = tmp / ncols;
 | |
|     const float scale = sycl::rsqrt(mean + eps);
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         dst[row*ncols + col] = scale * x[row*ncols + col];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
 | |
|                                             const int iqs, dfloat2 &v) {
 | |
|     const block_q4_0 * x = (const block_q4_0 *) vx;
 | |
| 
 | |
|     const dfloat d = x[ib].d;
 | |
| 
 | |
|     const int vui = x[ib].qs[iqs];
 | |
| 
 | |
|     v.x() = vui & 0xF;
 | |
|     v.y() = vui >> 4;
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
|     // v = v - {8.0f, 8.0f};
 | |
|     // v = v * {d, d};
 | |
|     v.s0() = (v.s0() - 8.0f) * d;
 | |
|     v.s1() = (v.s1() - 8.0f) * d;
 | |
| 
 | |
| #else
 | |
|     v.x() = (v.x() - 8.0f) * d;
 | |
|     v.y() = (v.y() - 8.0f) * d;
 | |
| #endif // GGML_SYCL_F16
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
 | |
|                                             const int iqs, dfloat2 &v) {
 | |
|     const block_q4_1 * x = (const block_q4_1 *) vx;
 | |
| 
 | |
|     const dfloat d = x[ib].dm[0];
 | |
|     const dfloat m = x[ib].dm[1];
 | |
| 
 | |
|     const int vui = x[ib].qs[iqs];
 | |
| 
 | |
|     v.x() = vui & 0xF;
 | |
|     v.y() = vui >> 4;
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
|     // v = v * {d, d};
 | |
|     // v = v + {m, m};
 | |
|     v.s0() = (v.s0() * d) + m;
 | |
|     v.s1() = (v.s1() * d) + m;
 | |
| 
 | |
| #else
 | |
|     v.x() = (v.x() * d) + m;
 | |
|     v.y() = (v.y() * d) + m;
 | |
| #endif // GGML_SYCL_F16
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
 | |
|                                             const int iqs, dfloat2 &v) {
 | |
|     const block_q5_0 * x = (const block_q5_0 *) vx;
 | |
| 
 | |
|     const dfloat d = x[ib].d;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[ib].qh, sizeof(qh));
 | |
| 
 | |
|     const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
 | |
|     const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
 | |
| 
 | |
|     v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
 | |
|     v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
|     // v = v - {16.0f, 16.0f};
 | |
|     // v = v * {d, d};
 | |
|     v.s0() = (v.s0() - 16.0f) * d;
 | |
|     v.s1() = (v.s1() - 16.0f) * d;
 | |
| 
 | |
| #else
 | |
|     v.x() = (v.x() - 16.0f) * d;
 | |
|     v.y() = (v.y() - 16.0f) * d;
 | |
| #endif // GGML_SYCL_F16
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
 | |
|                                             const int iqs, dfloat2 &v) {
 | |
|     const block_q5_1 * x = (const block_q5_1 *) vx;
 | |
| 
 | |
|     const dfloat d = x[ib].dm[0];
 | |
|     const dfloat m = x[ib].dm[1];
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[ib].qh, sizeof(qh));
 | |
| 
 | |
|     const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
 | |
|     const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
 | |
| 
 | |
|     v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
 | |
|     v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
|     // v = v * {d, d};
 | |
|     // v = v + {m, m};
 | |
|     v.s0() = (v.s0() * d) + m;
 | |
|     v.s1() = (v.s1() * d) + m;
 | |
| #else
 | |
|     v.x() = (v.x() * d) + m;
 | |
|     v.y() = (v.y() * d) + m;
 | |
| #endif // GGML_SYCL_F16
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
 | |
|                                             const int iqs, dfloat2 &v) {
 | |
|     const block_q8_0 * x = (const block_q8_0 *) vx;
 | |
| 
 | |
|     const dfloat d = x[ib].d;
 | |
| 
 | |
|     v.x() = x[ib].qs[iqs + 0];
 | |
|     v.y() = x[ib].qs[iqs + 1];
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
|     // v = v * {d, d};
 | |
|     v.s0() *= d;
 | |
|     v.s1() *= d;
 | |
| #else
 | |
|     v.x() *= d;
 | |
|     v.y() *= d;
 | |
| #endif // GGML_SYCL_F16
 | |
| }
 | |
| 
 | |
| //================================== k-quants
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
 | |
|                                   const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const int i = item_ct1.get_group(2);
 | |
|     const block_q2_K * x = (const block_q2_K *) vx;
 | |
| 
 | |
|     const int tid = item_ct1.get_local_id(2);
 | |
| #if QK_K == 256
 | |
|     const int n   = tid/32;
 | |
|     const int l   = tid - 32*n;
 | |
|     const int is  = 8*n + l/16;
 | |
| 
 | |
|     const uint8_t q = x[i].qs[32*n + l];
 | |
|     dst_t * y = yy + i*QK_K + 128*n;
 | |
| 
 | |
|     float dall = x[i].dm[0];
 | |
|     float dmin = x[i].dm[1];
 | |
|     y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
 | |
|     y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
 | |
|     y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
 | |
|     y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
 | |
| #else
 | |
|     const int is = tid/16;  // 0 or 1
 | |
|     const int il = tid%16;  // 0...15
 | |
|     const uint8_t q = x[i].qs[il] >> (2*is);
 | |
|     dst_t * y = yy + i*QK_K + 16*is + il;
 | |
|     float dall = __low2half(x[i].dm);
 | |
|     float dmin = __high2half(x[i].dm);
 | |
|     y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
 | |
|     y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
 | |
|                                   const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const int i = item_ct1.get_group(2);
 | |
|     const block_q3_K * x = (const block_q3_K *) vx;
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const int r = item_ct1.get_local_id(2) / 4;
 | |
|     const int tid = r/2;
 | |
|     const int is0 = r%2;
 | |
|     const int l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
 | |
|     const int n = tid / 4;
 | |
|     const int j = tid - 4*n;
 | |
| 
 | |
|     uint8_t m = 1 << (4*n + j);
 | |
|     int is = 8*n + 2*j + is0;
 | |
|     int shift = 2*j;
 | |
| 
 | |
|     int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
 | |
|                 is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
 | |
|                 is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
 | |
|                           (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
 | |
|     float d_all = x[i].d;
 | |
|     float dl = d_all * (us - 32);
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 128*n + 32*j;
 | |
|     const uint8_t * q = x[i].qs + 32*n;
 | |
|     const uint8_t * hm = x[i].hmask;
 | |
| 
 | |
|     for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
 | |
| #else
 | |
|     const int tid = threadIdx.x;
 | |
|     const int is  = tid/16;  // 0 or 1
 | |
|     const int il  = tid%16;  // 0...15
 | |
|     const int im  = il/8;    // 0...1
 | |
|     const int in  = il%8;    // 0...7
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 16*is + il;
 | |
| 
 | |
|     const uint8_t q = x[i].qs[il] >> (2*is);
 | |
|     const uint8_t h = x[i].hmask[in] >> (2*is + im);
 | |
|     const float   d = (float)x[i].d;
 | |
| 
 | |
|     if (is == 0) {
 | |
|         y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
 | |
|         y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
 | |
|     } else {
 | |
|         y[ 0] = d * ((x[i].scales[0] >>  4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
 | |
|         y[32] = d * ((x[i].scales[1] >>  4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| #if QK_K == 256
 | |
| static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
 | |
|     if (j < 4) {
 | |
|         d = q[j] & 63; m = q[j + 4] & 63;
 | |
|     } else {
 | |
|         d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
 | |
|         m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
 | |
|                                   const sycl::nd_item<3> &item_ct1) {
 | |
|     const block_q4_K * x = (const block_q4_K *) vx;
 | |
| 
 | |
|     const int i = item_ct1.get_group(2);
 | |
| 
 | |
| #if QK_K == 256
 | |
|     // assume 32 threads
 | |
|     const int tid = item_ct1.get_local_id(2);
 | |
|     const int il  = tid/8;
 | |
|     const int ir  = tid%8;
 | |
|     const int is  = 2*il;
 | |
|     const int n   = 4;
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 64*il + n*ir;
 | |
| 
 | |
|     const float dall = x[i].dm[0];
 | |
|     const float dmin = x[i].dm[1];
 | |
| 
 | |
|     const uint8_t * q = x[i].qs + 32*il + n*ir;
 | |
| 
 | |
|     uint8_t sc, m;
 | |
|     get_scale_min_k4(is + 0, x[i].scales, sc, m);
 | |
|     const float d1 = dall * sc; const float m1 = dmin * m;
 | |
|     get_scale_min_k4(is + 1, x[i].scales, sc, m);
 | |
|     const float d2 = dall * sc; const float m2 = dmin * m;
 | |
|     for (int l = 0; l < n; ++l) {
 | |
|         y[l + 0] = d1 * (q[l] & 0xF) - m1;
 | |
|         y[l +32] = d2 * (q[l] >>  4) - m2;
 | |
|     }
 | |
| #else
 | |
|     const int tid = threadIdx.x;
 | |
|     const uint8_t * q = x[i].qs;
 | |
|     dst_t * y = yy + i*QK_K;
 | |
|     const float d = (float)x[i].dm[0];
 | |
|     const float m = (float)x[i].dm[1];
 | |
|     y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
 | |
|     y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >>  4) - m * (x[i].scales[1] >> 4);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
 | |
|                                   const sycl::nd_item<3> &item_ct1) {
 | |
|     const block_q5_K * x = (const block_q5_K *) vx;
 | |
| 
 | |
|     const int i = item_ct1.get_group(2);
 | |
| 
 | |
| #if QK_K == 256
 | |
|     // assume 64 threads - this is very slightly better than the one below
 | |
|     const int tid = item_ct1.get_local_id(2);
 | |
|     const int il  = tid/16;   // il is in 0...3
 | |
|     const int ir  = tid%16;   // ir is in 0...15
 | |
|     const int is  = 2*il;     // is is in 0...6
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 64*il + 2*ir;
 | |
| 
 | |
|     const float dall = x[i].dm[0];
 | |
|     const float dmin = x[i].dm[1];
 | |
| 
 | |
|     const uint8_t * ql = x[i].qs + 32*il + 2*ir;
 | |
|     const uint8_t * qh = x[i].qh + 2*ir;
 | |
| 
 | |
|     uint8_t sc, m;
 | |
|     get_scale_min_k4(is + 0, x[i].scales, sc, m);
 | |
|     const float d1 = dall * sc; const float m1 = dmin * m;
 | |
|     get_scale_min_k4(is + 1, x[i].scales, sc, m);
 | |
|     const float d2 = dall * sc; const float m2 = dmin * m;
 | |
| 
 | |
|     uint8_t   hm  = 1 << (2*il);
 | |
|     y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
 | |
|     y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
 | |
|     hm <<= 1;
 | |
|     y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
 | |
|     y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
 | |
| #else
 | |
|     const int tid = threadIdx.x;
 | |
|     const uint8_t q = x[i].qs[tid];
 | |
|     const int im = tid/8;  // 0...3
 | |
|     const int in = tid%8;  // 0...7
 | |
|     const int is = tid/16; // 0 or 1
 | |
|     const uint8_t h = x[i].qh[in] >> im;
 | |
|     const float d = x[i].d;
 | |
|     dst_t * y = yy + i*QK_K + tid;
 | |
|     y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
 | |
|     y[32] = d * x[i].scales[is+2] * ((q >>  4) - ((h >> 4) & 1 ? 0 : 16));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<typename dst_t>
 | |
| static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
 | |
|                                   const sycl::nd_item<3> &item_ct1) {
 | |
|     const block_q6_K * x = (const block_q6_K *) vx;
 | |
| 
 | |
|     const int i = item_ct1.get_group(2);
 | |
| #if QK_K == 256
 | |
| 
 | |
|     // assume 64 threads - this is very slightly better than the one below
 | |
|     const int tid = item_ct1.get_local_id(2);
 | |
|     const int ip  = tid/32;   // ip is 0 or 1
 | |
|     const int il  = tid - 32*ip; // 0...32
 | |
|     const int is  = 8*ip + il/16;
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 128*ip + il;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t * ql = x[i].ql + 64*ip + il;
 | |
|     const uint8_t   qh = x[i].qh[32*ip + il];
 | |
|     const int8_t  * sc = x[i].scales + is;
 | |
| 
 | |
|     y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
 | |
|     y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
 | |
|     y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
 | |
|     y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
 | |
| #else
 | |
| 
 | |
|     // assume 32 threads
 | |
|     const int tid = threadIdx.x;
 | |
|     const int ip  = tid/16;         // 0 or 1
 | |
|     const int il  = tid - 16*ip;    // 0...15
 | |
| 
 | |
|     dst_t * y = yy + i*QK_K + 16*ip + il;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t   ql = x[i].ql[16*ip + il];
 | |
|     const uint8_t   qh = x[i].qh[il] >> (2*ip);
 | |
|     const int8_t  * sc = x[i].scales;
 | |
| 
 | |
|     y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
 | |
|     y[32] = d * sc[ip+2] * ((int8_t)((ql  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| DPCT1110:4: The total declared local variable size in device function
 | |
| dequantize_mul_mat_vec_q2_k exceeds 128 bytes and may cause high register
 | |
| pressure. Consult with your hardware vendor to find the total register size
 | |
| available and adjust the code, or use smaller sub-group size to avoid high
 | |
| register pressure.
 | |
| */
 | |
| static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
 | |
|                                         const float *__restrict__ yy,
 | |
|                                         float *__restrict__ dst,
 | |
|                                         const int ncols, int nrows,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
 | |
| 
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     if (row > nrows) return;
 | |
| 
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q2_K * x = (const block_q2_K *)vx + ib0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const int tid =
 | |
|         item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
 | |
|     const int ix =
 | |
|         item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
 | |
| 
 | |
|     const int step = 16/K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | |
|     const int in = tid - step*im;                        // 0...15 or 0...7
 | |
| 
 | |
|     const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
 | |
|     const int q_offset = 32*im + l0;
 | |
|     const int s_offset = 8*im;
 | |
|     const int y_offset = 128*im + l0;
 | |
| 
 | |
|     uint32_t aux[4];
 | |
|     const uint8_t * d = (const uint8_t *)aux;
 | |
|     const uint8_t * m = (const uint8_t *)(aux + 2);
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y = yy + i * QK_K + y_offset;
 | |
|         const uint8_t * q = x[i].qs + q_offset;
 | |
| 
 | |
|         const float dall = x[i].dm[0];
 | |
|         const float dmin = x[i].dm[1];
 | |
| 
 | |
|         const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
 | |
|         aux[0] = a[0] & 0x0f0f0f0f;
 | |
|         aux[1] = a[1] & 0x0f0f0f0f;
 | |
|         aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
 | |
|         aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         float sum1 = 0, sum2 = 0;
 | |
|         for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | |
|             sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
 | |
|                   + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
 | |
|                   + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
 | |
|                   + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
 | |
|                   + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
 | |
|                   + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
 | |
|                   + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
 | |
|                   +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
 | |
|             sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
 | |
|                   + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
 | |
| 
 | |
|         }
 | |
|         tmp += dall * sum1 - dmin * sum2;
 | |
| 
 | |
|     }
 | |
| #else
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
 | |
|     const int offset = tid * K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     uint32_t uaux[2];
 | |
|     const uint8_t * d = (const uint8_t *)uaux;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y = yy + i * QK_K + offset;
 | |
|         const uint8_t * q = x[i].qs + offset;
 | |
|         const uint32_t * s = (const uint32_t *)x[i].scales;
 | |
| 
 | |
|         uaux[0] = s[0] & 0x0f0f0f0f;
 | |
|         uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
 | |
| 
 | |
|         const float2 dall = __half22float2(x[i].dm);
 | |
| 
 | |
|         float sum1 = 0, sum2 = 0;
 | |
|         for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | |
|             const uint8_t ql = q[l];
 | |
|             sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
 | |
|                   + y[l+16] * d[1] * ((ql >> 2) & 3)
 | |
|                   + y[l+32] * d[2] * ((ql >> 4) & 3)
 | |
|                   + y[l+48] * d[3] * ((ql >> 6) & 3);
 | |
|             sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
 | |
|         }
 | |
|         tmp += dall.x * sum1 - dall.y * sum2;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (item_ct1.get_local_id(2) == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
| DPCT1110:5: The total declared local variable size in device function
 | |
| dequantize_mul_mat_vec_q3_k exceeds 128 bytes and may cause high register
 | |
| pressure. Consult with your hardware vendor to find the total register size
 | |
| available and adjust the code, or use smaller sub-group size to avoid high
 | |
| register pressure.
 | |
| */
 | |
| static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
 | |
|                                         const float *__restrict__ yy,
 | |
|                                         float *__restrict__ dst,
 | |
|                                         const int ncols, int nrows,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     if (row > nrows) return;
 | |
| 
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q3_K * x = (const block_q3_K *)vx + ib0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|     const uint16_t kmask1 = 0x0303;
 | |
|     const uint16_t kmask2 = 0x0f0f;
 | |
| 
 | |
|     const int tid =
 | |
|         item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
 | |
|     const int ix =
 | |
|         item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
 | |
| 
 | |
|     const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
 | |
|     const int step = 16/K_QUANTS_PER_ITERATION;
 | |
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | |
|     const int in = tid - step*im;                        // 0....15 or 0...7
 | |
| 
 | |
|     const uint8_t m = 1 << (4*im);
 | |
| 
 | |
|     const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
 | |
|     const int q_offset =  32*im + l0;
 | |
|     const int y_offset = 128*im + l0;
 | |
| 
 | |
|     uint16_t utmp[4];
 | |
|     const int8_t * s = (const int8_t *)utmp;
 | |
| 
 | |
|     const uint16_t s_shift = 4*im;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y  = yy + i * QK_K + y_offset;
 | |
|         const uint8_t * q = x[i].qs + q_offset;
 | |
|         const uint8_t * h = x[i].hmask + l0;
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
 | |
|         utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
 | |
|         utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
 | |
|         utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
 | |
| 
 | |
|         const float d = x[i].d;
 | |
| 
 | |
|         float sum = 0;
 | |
|         for (int l = 0; l < n; ++l) {
 | |
|             sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
 | |
|                  + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
 | |
|                  + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
 | |
|                  + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
 | |
|             sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
 | |
|                  + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
 | |
|                  + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
 | |
|                 + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
 | |
|         }
 | |
|         tmp += d * sum;
 | |
| 
 | |
|     }
 | |
| #else
 | |
| 
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
 | |
|     const int offset = tid * K_QUANTS_PER_ITERATION;         // 0...15 or 0...14
 | |
|     const int in = offset/8;                                 // 0 or 1
 | |
|     const int im = offset%8;                                 // 0...7
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y = yy + i * QK_K + offset;
 | |
|         const uint8_t * q = x[i].qs + offset;
 | |
|         const uint8_t * s = x[i].scales;
 | |
| 
 | |
|         const float dall = (float)x[i].d;
 | |
| 
 | |
|         float sum = 0;
 | |
|         for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
 | |
|             const uint8_t hl = x[i].hmask[im+l] >> in;
 | |
|             const uint8_t ql = q[l];
 | |
|             sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
 | |
|                  + y[l+16] * dall * ((s[0] >>  4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
 | |
|                  + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
 | |
|                  + y[l+48] * dall * ((s[1] >>  4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
 | |
|         }
 | |
|         tmp += sum;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (item_ct1.get_local_id(2) == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
| DPCT1110:6: The total declared local variable size in device function
 | |
| dequantize_mul_mat_vec_q4_k exceeds 128 bytes and may cause high register
 | |
| pressure. Consult with your hardware vendor to find the total register size
 | |
| available and adjust the code, or use smaller sub-group size to avoid high
 | |
| register pressure.
 | |
| */
 | |
| static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
 | |
|                                         const float *__restrict__ yy,
 | |
|                                         float *__restrict__ dst,
 | |
|                                         const int ncols, int nrows,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     if (row > nrows) return;
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q4_K * x = (const block_q4_K *)vx + ib0;
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const uint16_t kmask1 = 0x3f3f;
 | |
|     const uint16_t kmask2 = 0x0f0f;
 | |
|     const uint16_t kmask3 = 0xc0c0;
 | |
| 
 | |
|     const int tid =
 | |
|         item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
 | |
|     const int ix =
 | |
|         item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
 | |
| 
 | |
|     const int step = 8/K_QUANTS_PER_ITERATION;           // 8 or 4
 | |
| 
 | |
|     const int il  = tid/step;                            // 0...3
 | |
|     const int ir  = tid - step*il;                       // 0...7 or 0...3
 | |
|     const int n   = 2 * K_QUANTS_PER_ITERATION;          // 2 or 4
 | |
| 
 | |
|     const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
 | |
|     const int in = il%2;
 | |
| 
 | |
|     const int l0 = n*(2*ir + in);
 | |
|     const int q_offset = 32*im + l0;
 | |
|     const int y_offset = 64*im + l0;
 | |
| 
 | |
|     uint16_t aux[4];
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 2
 | |
|     uint32_t q32[4];
 | |
|     const uint8_t * q4 = (const uint8_t *)q32;
 | |
| #else
 | |
|     uint16_t q16[4];
 | |
|     const uint8_t * q4 = (const uint8_t *)q16;
 | |
| #endif
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y1 = yy + i*QK_K + y_offset;
 | |
|         const float   * y2 = y1 + 128;
 | |
| 
 | |
|         const float dall = x[i].dm[0];
 | |
|         const float dmin = x[i].dm[1];
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux[0] = a[im+0] & kmask1;
 | |
|         aux[1] = a[im+2] & kmask1;
 | |
|         aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
 | |
|         aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 2
 | |
|         const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
 | |
|         const uint32_t * q2 = q1 + 16;
 | |
| 
 | |
|         q32[0] = q1[0] & 0x0f0f0f0f;
 | |
|         q32[1] = q1[0] & 0xf0f0f0f0;
 | |
|         q32[2] = q2[0] & 0x0f0f0f0f;
 | |
|         q32[3] = q2[0] & 0xf0f0f0f0;
 | |
| 
 | |
|         sycl::float4 s = {0.f, 0.f, 0.f, 0.f};
 | |
|         float smin = 0;
 | |
|         for (int l = 0; l < 4; ++l) {
 | |
|             s.x() += y1[l] * q4[l + 0]; s.y() += y1[l + 32] * q4[l + 4];
 | |
|             s.z() += y2[l] * q4[l + 8]; s.w() += y2[l + 32] * q4[l + 12];
 | |
|             smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
 | |
|         }
 | |
|         tmp += dall * (s.x() * sc[0] + s.y() * sc[1] * 1.f / 16.f +
 | |
|                        s.z() * sc[4] + s.w() * sc[5] * 1.f / 16.f) -
 | |
|                dmin * smin;
 | |
| #else
 | |
|         const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
 | |
|         const uint16_t * q2 = q1 + 32;
 | |
| 
 | |
|         q16[0] = q1[0] & 0x0f0f;
 | |
|         q16[1] = q1[0] & 0xf0f0;
 | |
|         q16[2] = q2[0] & 0x0f0f;
 | |
|         q16[3] = q2[0] & 0xf0f0;
 | |
| 
 | |
|         float4 s = {0.f, 0.f, 0.f, 0.f};
 | |
|         float smin = 0;
 | |
|         for (int l = 0; l < 2; ++l) {
 | |
|             s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
 | |
|             s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
 | |
|             smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
 | |
|         }
 | |
|         tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
 | |
| #endif
 | |
| 
 | |
|     }
 | |
| #else
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
 | |
| 
 | |
|     const int step = tid * K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const uint8_t * s = (const uint8_t *)aux16;
 | |
| 
 | |
|     float tmp = 0;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
|         const uint8_t * q = x[i].qs + step;
 | |
|         const float   * y = yy + i*QK_K + step;
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux16[0] = a[0] & 0x0f0f;
 | |
|         aux16[1] = (a[0] >> 4) & 0x0f0f;
 | |
|         const float d = (float)x[i].dm[0];
 | |
|         const float m = (float)x[i].dm[1];
 | |
|         float sum = 0.f;
 | |
|         for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
 | |
|             sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
 | |
|                  + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
 | |
|                  + y[j+32] * (d * s[1] * (q[j+ 0] >>  4) - m * s[3])
 | |
|                  + y[j+48] * (d * s[1] * (q[j+16] >>  4) - m * s[3]);
 | |
|         }
 | |
|         tmp += sum;
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
| DPCT1110:7: The total declared local variable size in device function
 | |
| dequantize_mul_mat_vec_q5_k exceeds 128 bytes and may cause high register
 | |
| pressure. Consult with your hardware vendor to find the total register size
 | |
| available and adjust the code, or use smaller sub-group size to avoid high
 | |
| register pressure.
 | |
| */
 | |
| static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
 | |
|                                         const float *__restrict__ yy,
 | |
|                                         float *__restrict__ dst,
 | |
|                                         const int ncols,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const int row = item_ct1.get_group(2);
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q5_K * x = (const block_q5_K *)vx + ib0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
| #if QK_K == 256
 | |
|     const uint16_t kmask1 = 0x3f3f;
 | |
|     const uint16_t kmask2 = 0x0f0f;
 | |
|     const uint16_t kmask3 = 0xc0c0;
 | |
| 
 | |
|     const int tid = item_ct1.get_local_id(2) / 2; // 0...15
 | |
|     const int ix = item_ct1.get_local_id(2) % 2;
 | |
| 
 | |
|     const int il  = tid/4;     // 0...3
 | |
|     const int ir  = tid - 4*il;// 0...3
 | |
|     const int n   = 2;
 | |
| 
 | |
|     const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
 | |
|     const int in = il%2;
 | |
| 
 | |
|     const int l0 = n*(2*ir + in);
 | |
|     const int q_offset = 32*im + l0;
 | |
|     const int y_offset = 64*im + l0;
 | |
| 
 | |
|     const uint8_t hm1  = 1 << (2*im);
 | |
|     const uint8_t hm2  = hm1 << 4;
 | |
| 
 | |
|     uint16_t aux[4];
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
| 
 | |
|     uint16_t q16[8];
 | |
|     const uint8_t * q4 = (const uint8_t *)q16;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2) {
 | |
| 
 | |
|         const uint8_t * ql1 = x[i].qs + q_offset;
 | |
|         const uint8_t * qh  = x[i].qh + l0;
 | |
|         const float   * y1  = yy + i*QK_K + y_offset;
 | |
|         const float   * y2  = y1 + 128;
 | |
| 
 | |
|         const float dall = x[i].dm[0];
 | |
|         const float dmin = x[i].dm[1];
 | |
| 
 | |
|         const uint16_t * a = (const uint16_t *)x[i].scales;
 | |
|         aux[0] = a[im+0] & kmask1;
 | |
|         aux[1] = a[im+2] & kmask1;
 | |
|         aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
 | |
|         aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
 | |
| 
 | |
|         sycl::float4 sum = {0.f, 0.f, 0.f, 0.f};
 | |
|         float smin = 0;
 | |
|         const uint16_t * q1 = (const uint16_t *)ql1;
 | |
|         const uint16_t * q2 = q1 + 32;
 | |
|         q16[0] = q1[0] & 0x0f0f;
 | |
|         q16[1] = q1[8] & 0x0f0f;
 | |
|         q16[2] = (q1[0] >> 4) & 0x0f0f;
 | |
|         q16[3] = (q1[8] >> 4) & 0x0f0f;
 | |
|         q16[4] = q2[0] & 0x0f0f;
 | |
|         q16[5] = q2[8] & 0x0f0f;
 | |
|         q16[6] = (q2[0] >> 4) & 0x0f0f;
 | |
|         q16[7] = (q2[8] >> 4) & 0x0f0f;
 | |
|         for (int l = 0; l < n; ++l) {
 | |
|             sum.x() +=
 | |
|                 y1[l + 0] * (q4[l + 0] + (qh[l + 0] & (hm1 << 0) ? 16 : 0)) +
 | |
|                 y1[l + 16] * (q4[l + 2] + (qh[l + 16] & (hm1 << 0) ? 16 : 0));
 | |
|             sum.y() +=
 | |
|                 y1[l + 32] * (q4[l + 4] + (qh[l + 0] & (hm1 << 1) ? 16 : 0)) +
 | |
|                 y1[l + 48] * (q4[l + 6] + (qh[l + 16] & (hm1 << 1) ? 16 : 0));
 | |
|             sum.z() +=
 | |
|                 y2[l + 0] * (q4[l + 8] + (qh[l + 0] & (hm2 << 0) ? 16 : 0)) +
 | |
|                 y2[l + 16] * (q4[l + 10] + (qh[l + 16] & (hm2 << 0) ? 16 : 0));
 | |
|             sum.w() +=
 | |
|                 y2[l + 32] * (q4[l + 12] + (qh[l + 0] & (hm2 << 1) ? 16 : 0)) +
 | |
|                 y2[l + 48] * (q4[l + 14] + (qh[l + 16] & (hm2 << 1) ? 16 : 0));
 | |
|             smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
 | |
|                   + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
 | |
|         }
 | |
|         tmp += dall * (sum.x() * sc[0] + sum.y() * sc[1] + sum.z() * sc[4] +
 | |
|                        sum.w() * sc[5]) -
 | |
|                dmin * smin;
 | |
|     }
 | |
| 
 | |
| #else
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
 | |
|     const int step = tid * K_QUANTS_PER_ITERATION;
 | |
|     const int im = step/8;
 | |
|     const int in = step%8;
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
|         const uint8_t * q = x[i].qs + step;
 | |
|         const int8_t  * s = x[i].scales;
 | |
|         const float   * y = yy + i*QK_K + step;
 | |
|         const float     d = x[i].d;
 | |
|         float sum = 0.f;
 | |
|         for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
 | |
|             const uint8_t h = x[i].qh[in+j] >> im;
 | |
|             sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
 | |
|                  + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
 | |
|                  + y[j+32] * d * s[2] * ((q[j+ 0] >>  4) - ((h >> 4) & 1 ? 0 : 16))
 | |
|                  + y[j+48] * d * s[3] * ((q[j+16] >>  4) - ((h >> 6) & 1 ? 0 : 16));
 | |
|         }
 | |
|         tmp += sum;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (item_ct1.get_local_id(2) == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows,
 | |
|                                         const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
 | |
| 
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     if (row > nrows) return;
 | |
| 
 | |
|     const int num_blocks_per_row = ncols / QK_K;
 | |
|     const int ib0 = row*num_blocks_per_row;
 | |
| 
 | |
|     const block_q6_K * x = (const block_q6_K *)vx + ib0;
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|     const int tid =
 | |
|         item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
 | |
|     const int ix =
 | |
|         item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0, 1
 | |
| 
 | |
|     const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8
 | |
| 
 | |
|     const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
 | |
|     const int in = tid - step*im;                        // 0...15 or 0...7
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 1
 | |
|     const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
 | |
|     const int is = 0;
 | |
| #else
 | |
|     const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
 | |
|     const int is = in / 4;
 | |
| #endif
 | |
|     const int ql_offset = 64*im + l0;
 | |
|     const int qh_offset = 32*im + l0;
 | |
|     const int s_offset  =  8*im + is;
 | |
|     const int y_offset = 128*im + l0;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y  = yy + i * QK_K + y_offset;
 | |
|         const uint8_t * ql = x[i].ql + ql_offset;
 | |
|         const uint8_t * qh = x[i].qh + qh_offset;
 | |
|         const int8_t  * s  = x[i].scales + s_offset;
 | |
| 
 | |
|         const float d = x[i].d;
 | |
| 
 | |
| #if K_QUANTS_PER_ITERATION == 1
 | |
|         float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
 | |
|                   + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
 | |
|                   + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
 | |
|                   + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
 | |
|                   + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
 | |
|                   + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
 | |
|                   + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
 | |
|                   +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
 | |
|         tmp += sum;
 | |
| #else
 | |
|         float sum = 0;
 | |
|         for (int l = 0; l < 4; ++l) {
 | |
|             sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
 | |
|                  + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
 | |
|                  + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
 | |
|                  + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
 | |
|         }
 | |
|         tmp += sum;
 | |
| #endif
 | |
| 
 | |
|     }
 | |
| 
 | |
| #else
 | |
| 
 | |
|     const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...7
 | |
|     const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0...3
 | |
| 
 | |
|     const int step = tid * K_QUANTS_PER_ITERATION;
 | |
| 
 | |
|     float tmp = 0; // partial sum for thread in warp
 | |
| 
 | |
|     for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
 | |
| 
 | |
|         const float   * y  = yy + i * QK_K + step;
 | |
|         const uint8_t * ql = x[i].ql + step;
 | |
|         const uint8_t * qh = x[i].qh + step;
 | |
|         const int8_t  * s  = x[i].scales;
 | |
| 
 | |
|         const float d = x[i+0].d;
 | |
| 
 | |
|         float sum = 0;
 | |
|         for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
 | |
|             sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
 | |
|                  + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
 | |
|                  + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >>  4) | ((qh[j] & 0x30) >> 0)) - 32)
 | |
|                  + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >>  4) | ((qh[j] & 0xc0) >> 2)) - 32);
 | |
|         }
 | |
|         tmp += sum;
 | |
| 
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const sycl::half *x = (const sycl::half *)vx;
 | |
| 
 | |
|     // automatic half -> float type cast if dfloat == float
 | |
|     v.x() = x[ib + iqs + 0];
 | |
|     v.y() = x[ib + iqs + 1];
 | |
| }
 | |
| 
 | |
| static void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
 | |
|     const float * x = (const float *) vx;
 | |
| 
 | |
|     // automatic half -> float type cast if dfloat == float
 | |
|     v.x() = x[ib + iqs + 0];
 | |
|     v.y() = x[ib + iqs + 1];
 | |
| }
 | |
| 
 | |
| static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
 | |
|                           const sycl::nd_item<3> &item_ct1) {
 | |
|     const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                    item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (ix >= kx_padded) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                    item_ct1.get_local_id(1);
 | |
| 
 | |
|     const int i_padded = iy*kx_padded + ix;
 | |
| 
 | |
|     block_q8_1 * y = (block_q8_1 *) vy;
 | |
| 
 | |
|     const int ib = i_padded / QK8_1; // block index
 | |
|     const int iqs = i_padded % QK8_1; // quant index
 | |
| 
 | |
|     const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
 | |
|     float amax = sycl::fabs((float)xi);
 | |
|     float sum = xi;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
 | |
|                                     item_ct1.get_sub_group(), amax, mask));
 | |
|         sum +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
 | |
|     }
 | |
| 
 | |
|     const float d = amax / 127;
 | |
|     const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
 | |
| 
 | |
|     y[ib].qs[iqs] = q;
 | |
| 
 | |
|     if (iqs > 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
 | |
|     reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
 | |
| }
 | |
| 
 | |
| template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
 | |
| static void k_get_rows(
 | |
|             const void * src0, const int32_t * src1, dst_t * dst,
 | |
|             int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
 | |
|             /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
 | |
|             /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
 | |
|             /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
 | |
|             size_t s10, size_t s11, size_t s12,
 | |
|             const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
 | |
| 
 | |
|     const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
 | |
|                      item_ct1.get_local_id(2)) *
 | |
|                     2;
 | |
|     const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
 | |
|                      item_ct1.get_local_id(0)) /
 | |
|                     ne12;
 | |
|     const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
 | |
|                      item_ct1.get_local_id(0)) %
 | |
|                     ne12;
 | |
| 
 | |
|     if (i00 >= ne00) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
 | |
| 
 | |
|     dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
 | |
|     const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
 | |
| 
 | |
|     const int ib = i00/qk; // block index
 | |
|     const int iqs = (i00%qk)/qr; // quant index
 | |
|     const int iybs = i00 - i00%qk; // dst block start index
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
|     // dequantize
 | |
|     dfloat2 v;
 | |
|     dequantize_kernel(src0_row, ib, iqs, v);
 | |
| 
 | |
|     dst_row[iybs + iqs + 0] = v.x();
 | |
|     dst_row[iybs + iqs + y_offset] = v.y();
 | |
| }
 | |
| 
 | |
| template<typename src0_t, typename dst_t>
 | |
| static void k_get_rows_float(
 | |
|             const src0_t * src0, const int32_t * src1, dst_t * dst,
 | |
|             int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
 | |
|             /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
 | |
|             /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
 | |
|             /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
 | |
|             size_t s10, size_t s11, size_t s12,
 | |
|             const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
 | |
| 
 | |
|     const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
 | |
|                     item_ct1.get_local_id(2);
 | |
|     const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
 | |
|                      item_ct1.get_local_id(0)) /
 | |
|                     ne12;
 | |
|     const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
 | |
|                      item_ct1.get_local_id(0)) %
 | |
|                     ne12;
 | |
| 
 | |
|     if (i00 >= ne00) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
 | |
| 
 | |
|     dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
 | |
|     const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
 | |
| 
 | |
|     dst_row[i00] = src0_row[i00];
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
 | |
| static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
 | |
|                              const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   2 * item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ib = i/qk; // block index
 | |
|     const int iqs = (i%qk)/qr; // quant index
 | |
|     const int iybs = i - i%qk; // y block start index
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
|     // dequantize
 | |
|     dfloat2 v;
 | |
|     dequantize_kernel(vx, ib, iqs, v);
 | |
| 
 | |
|     y[iybs + iqs + 0] = v.x();
 | |
|     y[iybs + iqs + y_offset] = v.y();
 | |
| }
 | |
| 
 | |
| // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
 | |
| // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
 | |
| 
 | |
| #define VDR_Q4_0_Q8_1_MMVQ 2
 | |
| #define VDR_Q4_0_Q8_1_MMQ  4
 | |
| 
 | |
| template <int vdr>
 | |
| static __dpct_inline__ float vec_dot_q4_0_q8_1_impl(const int *v, const int *u,
 | |
|                                                     const float &d4,
 | |
|                                                     const sycl::half2 &ds8) {
 | |
|     int sumi = 0;
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
 | |
|         const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
 | |
| 
 | |
|         // SIMD dot product of quantized values
 | |
|         sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
 | |
|         sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
 | |
|     }
 | |
| 
 | |
|     const sycl::float2 ds8f =
 | |
|         ds8.convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|     // second part effectively subtracts 8 from each quant value
 | |
|     return d4 * (sumi * ds8f.x() - (8 * vdr / QI4_0) * ds8f.y());
 | |
| }
 | |
| 
 | |
| #define VDR_Q4_1_Q8_1_MMVQ 2
 | |
| #define VDR_Q4_1_Q8_1_MMQ  4
 | |
| 
 | |
| template <int vdr>
 | |
| static __dpct_inline__ float vec_dot_q4_1_q8_1_impl(const int *v, const int *u,
 | |
|                                                     const sycl::half2 &dm4,
 | |
|                                                     const sycl::half2 &ds8) {
 | |
| 
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
 | |
|         const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
 | |
| 
 | |
|         // SIMD dot product of quantized values
 | |
|         sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
 | |
|         sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
|     const sycl::float2 tmp =
 | |
|         (dm4 * ds8).convert<float, sycl::rounding_mode::automatic>();
 | |
|     const float d4d8 = tmp.x();
 | |
|     const float m4s8 = tmp.y();
 | |
| #else
 | |
|     const sycl::float2 dm4f =
 | |
|         dm4.convert<float, sycl::rounding_mode::automatic>();
 | |
|     const sycl::float2 ds8f =
 | |
|         ds8.convert<float, sycl::rounding_mode::automatic>();
 | |
|     const float d4d8 = dm4f.x() * ds8f.x();
 | |
|     const float m4s8 = dm4f.y() * ds8f.y();
 | |
| #endif // GGML_SYCL_F16
 | |
| 
 | |
|     // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
 | |
|     return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
 | |
| }
 | |
| 
 | |
| #define VDR_Q5_0_Q8_1_MMVQ 2
 | |
| #define VDR_Q5_0_Q8_1_MMQ  4
 | |
| 
 | |
| template <int vdr>
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q5_0_q8_1_impl(const int *vl, const int *vh, const int *u,
 | |
|                        const float &d5, const sycl::half2 &ds8) {
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
 | |
|         vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
 | |
|         vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
 | |
|         vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
 | |
|         vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
 | |
|         sumi = dpct::dp4a(vi0, u[2 * i + 0],
 | |
|                           sumi); // SIMD dot product of quantized values
 | |
| 
 | |
|         int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
 | |
|         vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
 | |
|         vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
 | |
|         vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
 | |
|         vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
 | |
|         sumi = dpct::dp4a(vi1, u[2 * i + 1],
 | |
|                           sumi); // SIMD dot product of quantized values
 | |
|     }
 | |
| 
 | |
|     const sycl::float2 ds8f =
 | |
|         ds8.convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|     // second part effectively subtracts 16 from each quant value
 | |
|     return d5 * (sumi * ds8f.x() - (16 * vdr / QI5_0) * ds8f.y());
 | |
| }
 | |
| 
 | |
| #define VDR_Q5_1_Q8_1_MMVQ 2
 | |
| #define VDR_Q5_1_Q8_1_MMQ  4
 | |
| 
 | |
| template <int vdr>
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q5_1_q8_1_impl(const int *vl, const int *vh, const int *u,
 | |
|                        const sycl::half2 &dm5, const sycl::half2 &ds8) {
 | |
| 
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
 | |
|         vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
 | |
|         vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
 | |
|         vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
 | |
|         vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
 | |
|         sumi = dpct::dp4a(vi0, u[2 * i + 0],
 | |
|                           sumi); // SIMD dot product of quantized values
 | |
| 
 | |
|         int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
 | |
|         vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
 | |
|         vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
 | |
|         vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
 | |
|         vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
 | |
|         sumi = dpct::dp4a(vi1, u[2 * i + 1],
 | |
|                           sumi); // SIMD dot product of quantized values
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
|      const sycl::float2 tmp =
 | |
|         (dm5 * ds8).convert<float, sycl::rounding_mode::automatic>();
 | |
|     const float d5d8 = tmp.x();
 | |
|     const float m5s8 = tmp.y();
 | |
| 
 | |
| 
 | |
| #else
 | |
|     const sycl::float2 dm5f =
 | |
|         dm5.convert<float, sycl::rounding_mode::automatic>();
 | |
|     const sycl::float2 ds8f =
 | |
|         ds8.convert<float, sycl::rounding_mode::automatic>();
 | |
|     const float d5d8 = dm5f.x() * ds8f.x();
 | |
|     const float m5s8 = dm5f.y() * ds8f.y();
 | |
| #endif // GGML_SYCL_F16
 | |
| 
 | |
|     // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
 | |
|     return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
 | |
| }
 | |
| 
 | |
| #define VDR_Q8_0_Q8_1_MMVQ 2
 | |
| #define VDR_Q8_0_Q8_1_MMQ 8
 | |
| 
 | |
| template <int vdr>
 | |
| static __dpct_inline__ float vec_dot_q8_0_q8_1_impl(const int *v, const int *u,
 | |
|                                                     const float &d8_0,
 | |
|                                                     const float &d8_1) {
 | |
| 
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         // SIMD dot product of quantized values
 | |
|         sumi = dpct::dp4a(v[i], u[i], sumi);
 | |
|     }
 | |
| 
 | |
|     return d8_0*d8_1 * sumi;
 | |
| }
 | |
| 
 | |
| template <int vdr>
 | |
| static __dpct_inline__ float vec_dot_q8_1_q8_1_impl(const int *v, const int *u,
 | |
|                                                     const sycl::half2 &dm8,
 | |
|                                                     const sycl::half2 &ds8) {
 | |
| 
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < vdr; ++i) {
 | |
|         // SIMD dot product of quantized values
 | |
|         sumi = dpct::dp4a(v[i], u[i], sumi);
 | |
|     }
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
|     const sycl::float2 tmp =
 | |
|         (dm8 * ds8).convert<float, sycl::rounding_mode::automatic>();
 | |
|     const float d8d8 = tmp.x();
 | |
|     const float m8s8 = tmp.y();
 | |
| #else
 | |
|     const sycl::float2 dm8f =
 | |
|         dm8.convert<float, sycl::rounding_mode::automatic>();
 | |
|     const sycl::float2 ds8f =
 | |
|         ds8.convert<float, sycl::rounding_mode::automatic>();
 | |
|     const float d8d8 = dm8f.x() * ds8f.x();
 | |
|     const float m8s8 = dm8f.y() * ds8f.y();
 | |
| #endif // GGML_SYCL_F16
 | |
| 
 | |
|     // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
 | |
|     return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
 | |
| }
 | |
| 
 | |
| #define VDR_Q2_K_Q8_1_MMVQ 1
 | |
| #define VDR_Q2_K_Q8_1_MMQ  2
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __dpct_inline__ float vec_dot_q2_K_q8_1_impl_mmvq(
 | |
|     const int &v, const int *__restrict__ u, const uint8_t *__restrict__ scales,
 | |
|     const sycl::half2 &dm2, const float *__restrict__ d8) {
 | |
| 
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR2_K; ++i) {
 | |
|         const int sc = scales[2*i];
 | |
| 
 | |
|         const int vi = (v >> (2*i)) & 0x03030303;
 | |
| 
 | |
|         sumf_d +=
 | |
|             d8[i] * (dpct::dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
 | |
| 
 | |
|         // fill int with 4x m
 | |
|         int m = sc >> 4;
 | |
|         m |= m <<  8;
 | |
|         m |= m << 16;
 | |
|         sumf_m += d8[i] *
 | |
|                   dpct::dp4a(
 | |
|                       m, u[i],
 | |
|                       0); // multiply constant q2_K part with sum of q8_1 values
 | |
|     }
 | |
| 
 | |
|     const sycl::float2 dm2f =
 | |
|         dm2.convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|     return dm2f.x() * sumf_d - dm2f.y() * sumf_m;
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q2_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
 | |
|                            const uint8_t *__restrict__ scales,
 | |
|                            const sycl::half2 &dm2, const float &d8) {
 | |
| 
 | |
|     int sumi_d = 0;
 | |
|     int sumi_m = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
 | |
|         int sumi_d_sc = 0;
 | |
| 
 | |
|         const int sc = scales[i0 / (QI8_1/2)];
 | |
| 
 | |
|         // fill int with 4x m
 | |
|         int m = sc >> 4;
 | |
|         m |= m <<  8;
 | |
|         m |= m << 16;
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int i = i0; i < i0 + QI8_1/2; ++i) {
 | |
|             sumi_d_sc = dpct::dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
 | |
|             sumi_m = dpct::dp4a(m, u[i],
 | |
|                                 sumi_m); // multiply sum of q8_1 values with m
 | |
|         }
 | |
| 
 | |
|         sumi_d += sumi_d_sc * (sc & 0xF);
 | |
|     }
 | |
| 
 | |
|     const sycl::float2 dm2f =
 | |
|         dm2.convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|     return d8 * (dm2f.x() * sumi_d - dm2f.y() * sumi_m);
 | |
| }
 | |
| 
 | |
| #define VDR_Q3_K_Q8_1_MMVQ 1
 | |
| #define VDR_Q3_K_Q8_1_MMQ  2
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __dpct_inline__ float vec_dot_q3_K_q8_1_impl_mmvq(
 | |
|     const int &vl, const int &vh, const int *__restrict__ u,
 | |
|     const uint8_t *__restrict__ scales, const int &scale_offset,
 | |
|     const float &d3, const float *__restrict__ d8) {
 | |
| 
 | |
|     float sumf = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR3_K; ++i) {
 | |
|         const int isc = scale_offset + 2*i;
 | |
| 
 | |
|         const int isc_low = isc % (QK_K/32);
 | |
|         const int sc_shift_low = 4 * (isc / (QK_K/32));
 | |
|         const int sc_low  = (scales[isc_low] >> sc_shift_low) & 0xF;
 | |
| 
 | |
|         const int isc_high = isc % (QK_K/64);
 | |
|         const int sc_shift_high = 2 * (isc / (QK_K/64));
 | |
|         const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
 | |
| 
 | |
|         const int sc = (sc_low | sc_high) - 32;
 | |
| 
 | |
|         const int vil = (vl >> (2*i)) & 0x03030303;
 | |
| 
 | |
|         const int vih = ((vh >> i) << 2) & 0x04040404;
 | |
| 
 | |
|         const int vi =
 | |
|             dpct::vectorized_binary<sycl::char4>(vil, vih, dpct::sub_sat());
 | |
| 
 | |
|         sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
 | |
|     }
 | |
| 
 | |
|     return d3 * sumf;
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q3_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
 | |
|                            const int8_t *__restrict__ scales, const float &d3,
 | |
|                            const float &d8) {
 | |
| 
 | |
|     int sumi = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
 | |
|         int sumi_sc = 0;
 | |
| 
 | |
|         for (int i = i0; i < i0 + QI8_1/2; ++i) {
 | |
|             sumi_sc = dpct::dp4a(v[i], u[i], sumi_sc); // SIMD dot product
 | |
|         }
 | |
| 
 | |
|         sumi += sumi_sc * scales[i0 / (QI8_1/2)];
 | |
|     }
 | |
| 
 | |
|     return d3*d8 * sumi;
 | |
| }
 | |
| 
 | |
| #define VDR_Q4_K_Q8_1_MMVQ 2
 | |
| #define VDR_Q4_K_Q8_1_MMQ  8
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_vmmq(
 | |
|     const int *__restrict__ v, const int *__restrict__ u,
 | |
|     const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
 | |
|     const sycl::half2 &dm4, const float *__restrict__ d8) {
 | |
| 
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR4_K; ++i) {
 | |
|         const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
 | |
|         const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int dot1 =
 | |
|             dpct::dp4a(v1i, u[2 * i + 1],
 | |
|                        dpct::dp4a(v0i, u[2 * i + 0], 0)); // SIMD dot product
 | |
|         const int dot2 =
 | |
|             dpct::dp4a(0x01010101, u[2 * i + 1],
 | |
|                        dpct::dp4a(0x01010101, u[2 * i + 0], 0)); // sum of u
 | |
| 
 | |
|         sumf_d += d8[i] * (dot1 * sc[i]);
 | |
|         sumf_m += d8[i] * (dot2 * m[i]);  // multiply constant part of q4_K with sum of q8_1 values
 | |
|     }
 | |
| 
 | |
|     const sycl::float2 dm4f =
 | |
|         dm4.convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|     return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_mmq(
 | |
|     const int *__restrict__ v, const int *__restrict__ u,
 | |
|     const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
 | |
|     const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
 | |
| 
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
 | |
|         int sumi_d = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int j = 0; j < QI8_1; ++j) {
 | |
|             sumi_d = dpct::dp4a((v[j] >> (4 * i)) & 0x0F0F0F0F,
 | |
|                                 u[i * QI8_1 + j], sumi_d); // SIMD dot product
 | |
|         }
 | |
| 
 | |
|         const sycl::float2 ds8f =
 | |
|             ds8[i].convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|         sumf_d += ds8f.x() * (sc[i] * sumi_d);
 | |
|         sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
 | |
|     }
 | |
| 
 | |
|     const sycl::float2 dm4f =
 | |
|         dm4.convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|     return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
 | |
| }
 | |
| 
 | |
| #define VDR_Q5_K_Q8_1_MMVQ 2
 | |
| #define VDR_Q5_K_Q8_1_MMQ  8
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_vmmq(
 | |
|     const int *__restrict__ vl, const int *__restrict__ vh,
 | |
|     const int *__restrict__ u, const uint8_t *__restrict__ sc,
 | |
|     const uint8_t *__restrict__ m, const sycl::half2 &dm5,
 | |
|     const float *__restrict__ d8) {
 | |
| 
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR5_K; ++i) {
 | |
|         const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
 | |
|         const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
 | |
|         const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
 | |
| 
 | |
|         const int v0i = vl0i | vh0i;
 | |
|         const int v1i = vl1i | vh1i;
 | |
| 
 | |
|         const int dot1 =
 | |
|             dpct::dp4a(v0i, u[2 * i + 0],
 | |
|                        dpct::dp4a(v1i, u[2 * i + 1], 0)); // SIMD dot product
 | |
|         const int dot2 =
 | |
|             dpct::dp4a(0x01010101, u[2 * i + 0],
 | |
|                        dpct::dp4a(0x01010101, u[2 * i + 1], 0)); // sum of u
 | |
| 
 | |
|         sumf_d += d8[i] * (dot1 * sc[i]);
 | |
|         sumf_m += d8[i] * (dot2 * m[i]);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     const sycl::float2 dm5f =
 | |
|         dm5.convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|     return dm5f.x() * sumf_d - dm5f.y() * sumf_m;
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_mmq(
 | |
|     const int *__restrict__ v, const int *__restrict__ u,
 | |
|     const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
 | |
|     const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
 | |
| 
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
 | |
|         int sumi_d = 0;
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int j = 0; j < QI8_1; ++j) {
 | |
|             sumi_d = dpct::dp4a(v[i * QI8_1 + j], u[i * QI8_1 + j],
 | |
|                                 sumi_d); // SIMD dot product
 | |
|         }
 | |
| 
 | |
|         const sycl::float2 ds8f =
 | |
|             ds8[i].convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|         sumf_d += ds8f.x() * (sc[i] * sumi_d);
 | |
|         sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
 | |
|     }
 | |
| 
 | |
|     const sycl::float2 dm4f =
 | |
|         dm4.convert<float, sycl::rounding_mode::automatic>();
 | |
| 
 | |
|     return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
 | |
| }
 | |
| 
 | |
| #define VDR_Q6_K_Q8_1_MMVQ 1
 | |
| #define VDR_Q6_K_Q8_1_MMQ  8
 | |
| 
 | |
| // contiguous v/x values
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q6_K_q8_1_impl_mmvq(const int &vl, const int &vh,
 | |
|                             const int *__restrict__ u,
 | |
|                             const int8_t *__restrict__ scales, const float &d,
 | |
|                             const float *__restrict__ d8) {
 | |
| 
 | |
|     float sumf = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR6_K; ++i) {
 | |
|         const int sc = scales[4*i];
 | |
| 
 | |
|         const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
 | |
| 
 | |
|         const int vi = dpct::vectorized_binary<sycl::char4>(
 | |
|             (vil | vih), 0x20202020, dpct::sub_sat()); // vi = (vil | vih) - 32
 | |
| 
 | |
|         sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
 | |
|     }
 | |
| 
 | |
|     return d*sumf;
 | |
| }
 | |
| 
 | |
| // contiguous u/y values
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q6_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
 | |
|                            const int8_t *__restrict__ sc, const float &d6,
 | |
|                            const float *__restrict__ d8) {
 | |
| 
 | |
|     float sumf_d = 0.0f;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
 | |
|         sycl::int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int i = i0; i < i0 + 2; ++i) {
 | |
|             sumi_d.x() = dpct::dp4a(v[2 * i + 0], u[2 * i + 0],
 | |
|                                     sumi_d.x()); // SIMD dot product
 | |
|             sumi_d.x() = dpct::dp4a(v[2 * i + 1], u[2 * i + 1],
 | |
|                                     sumi_d.x()); // SIMD dot product
 | |
| 
 | |
|             sumi_d.y() = dpct::dp4a(v[2 * i + 4], u[2 * i + 4],
 | |
|                                     sumi_d.y()); // SIMD dot product
 | |
|             sumi_d.y() = dpct::dp4a(v[2 * i + 5], u[2 * i + 5],
 | |
|                                     sumi_d.y()); // SIMD dot product
 | |
|         }
 | |
| 
 | |
|         sumf_d += d8[i0 / 4] *
 | |
|                   (sc[i0 / 2 + 0] * sumi_d.x() + sc[i0 / 2 + 1] * sumi_d.y());
 | |
|     }
 | |
| 
 | |
|     return d6 * sumf_d;
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q4_0_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
|     const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
 | |
| 
 | |
|     int v[VDR_Q4_0_Q8_1_MMVQ];
 | |
|     int u[2*VDR_Q4_0_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
 | |
|         v[i]     = get_int_from_uint8(bq4_0->qs, iqs + i);
 | |
|         u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|         u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q4_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_qs_q4_0, float *tile_x_d_q4_0) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     *x_ql = tile_x_qs_q4_0;
 | |
|     *x_dm = (sycl::half2 *)tile_x_d_q4_0;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q4_0(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset <  nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI4_0;
 | |
|     const int kqsx = k % QI4_0;
 | |
| 
 | |
|     const block_q4_0 * bx0 = (const block_q4_0 *) vx;
 | |
| 
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
 | |
|         // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
 | |
|         int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q4_0_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
| 
 | |
|     int u[2*VDR_Q4_0_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
 | |
|         u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
 | |
|         u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
 | |
|         (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
 | |
|          y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q4_1_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
|     const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
 | |
| 
 | |
|     int v[VDR_Q4_1_Q8_1_MMVQ];
 | |
|     int u[2*VDR_Q4_1_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
 | |
|         v[i]    = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
 | |
|         u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|         u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q4_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_qs_q4_1, sycl::half2 *tile_x_dm_q4_1) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     *x_ql = tile_x_qs_q4_1;
 | |
|     *x_dm = tile_x_dm_q4_1;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q4_1(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset <  nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI4_1;
 | |
|     const int kqsx = k % QI4_1;
 | |
| 
 | |
|     const block_q4_1 * bx0 = (const block_q4_1 *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
 | |
|         int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q4_1_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
 | |
| 
 | |
|     int u[2*VDR_Q4_1_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
 | |
|         u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
 | |
|         u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
 | |
|         (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
 | |
|          y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q5_0_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
|     const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
 | |
| 
 | |
|     int vl[VDR_Q5_0_Q8_1_MMVQ];
 | |
|     int vh[VDR_Q5_0_Q8_1_MMVQ];
 | |
|     int  u[2*VDR_Q5_0_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
 | |
|         vl[i]    = get_int_from_uint8(bq5_0->qs, iqs + i);
 | |
|         vh[i]    = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
 | |
|         u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|         u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q5_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_ql_q5_0, float *tile_x_d_q5_0) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     *x_ql = tile_x_ql_q5_0;
 | |
|     *x_dm = (sycl::half2 *)tile_x_d_q5_0;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q5_0(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset <  nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI5_0;
 | |
|     const int kqsx = k % QI5_0;
 | |
| 
 | |
|     const block_q5_0 * bx0 = (const block_q5_0 *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         const int ql = get_int_from_uint8(bxi->qs, kqsx);
 | |
|         const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
 | |
| 
 | |
|         int qs0 = (ql >>  0)   & 0x0F0F0F0F;
 | |
|         qs0    |= (qh <<  4)   & 0x00000010;  // 0 ->  4
 | |
|         qs0    |= (qh << 11)   & 0x00001000;  // 1 -> 12
 | |
|         qs0    |= (qh << 18)   & 0x00100000;  // 2 -> 20
 | |
|         qs0    |= (qh << 25)   & 0x10000000;  // 3 -> 28
 | |
|         qs0 = dpct::vectorized_binary<sycl::char4>(
 | |
|             qs0, 0x10101010, dpct::sub_sat()); // subtract 16
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
 | |
| 
 | |
|         int qs1 = (ql >>  4)   & 0x0F0F0F0F;
 | |
|         qs1    |= (qh >> 12)   & 0x00000010;  // 16 ->  4
 | |
|         qs1    |= (qh >>  5)   & 0x00001000;  // 17 -> 12
 | |
|         qs1    |= (qh <<  2)   & 0x00100000;  // 18 -> 20
 | |
|         qs1    |= (qh <<  9)   & 0x10000000;  // 19 -> 28
 | |
|         qs1 = dpct::vectorized_binary<sycl::char4>(
 | |
|             qs1, 0x10101010, dpct::sub_sat()); // subtract 16
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
 | |
|         int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q5_0_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
 | |
|     const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
|     const float * y_df  = (const float *) y_ds;
 | |
| 
 | |
|     int u[2*VDR_Q5_0_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
 | |
|         u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
 | |
|         u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
 | |
|         (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q5_1_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
|     const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
 | |
| 
 | |
|     int vl[VDR_Q5_1_Q8_1_MMVQ];
 | |
|     int vh[VDR_Q5_1_Q8_1_MMVQ];
 | |
|     int  u[2*VDR_Q5_1_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
 | |
|         vl[i]   = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
 | |
|         vh[i]   = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
 | |
|         u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|         u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q5_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_ql_q5_1, sycl::half2 *tile_x_dm_q5_1) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     *x_ql = tile_x_ql_q5_1;
 | |
|     *x_dm = tile_x_dm_q5_1;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q5_1(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset < nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI5_1;
 | |
|     const int kqsx = k % QI5_1;
 | |
| 
 | |
|     const block_q5_1 * bx0 = (const block_q5_1 *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|         const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
 | |
| 
 | |
|         int qs0 = (ql >>  0) & 0x0F0F0F0F;
 | |
|         qs0    |= (qh <<  4) & 0x00000010; // 0 ->  4
 | |
|         qs0    |= (qh << 11) & 0x00001000; // 1 -> 12
 | |
|         qs0    |= (qh << 18) & 0x00100000; // 2 -> 20
 | |
|         qs0    |= (qh << 25) & 0x10000000; // 3 -> 28
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
 | |
| 
 | |
|         int qs1 = (ql >>  4) & 0x0F0F0F0F;
 | |
|         qs1    |= (qh >> 12) & 0x00000010; // 16 ->  4
 | |
|         qs1    |= (qh >>  5) & 0x00001000; // 17 -> 12
 | |
|         qs1    |= (qh <<  2) & 0x00100000; // 18 -> 20
 | |
|         qs1    |= (qh <<  9) & 0x10000000; // 19 -> 28
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
 | |
|         int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q5_1_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
 | |
|     const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
 | |
| 
 | |
|     int u[2*VDR_Q5_1_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
 | |
|         u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
 | |
|         u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
 | |
|         (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q8_0_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
|     const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
 | |
| 
 | |
|     int v[VDR_Q8_0_Q8_1_MMVQ];
 | |
|     int u[VDR_Q8_0_Q8_1_MMVQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
 | |
|         v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
 | |
|         u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d,
 | |
|                                                       bq8_1->ds[0]);
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q8_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_qs_q8_0, float *tile_x_d_q8_0) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     *x_ql = tile_x_qs_q8_0;
 | |
|     *x_dm = (sycl::half2 *)tile_x_d_q8_0;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q8_0(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset <  nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI8_0;
 | |
|     const int kqsx = k % QI8_0;
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
|     const block_q8_0 * bx0 = (const block_q8_0 *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
 | |
|         int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q8_0_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
|     (void)x_qh; (void)x_sc;
 | |
| 
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
|     const float * y_df  = (const float *) y_ds;
 | |
| 
 | |
|     return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
 | |
|         (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
 | |
|          y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q2_K_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
|     const block_q2_K * bq2_K = (const block_q2_K *) vbq;
 | |
| 
 | |
|     const int bq8_offset = QR2_K * (iqs / QI8_1);
 | |
|     const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
 | |
| 
 | |
|     const uint8_t * scales = bq2_K->scales + scale_offset;
 | |
| 
 | |
|     const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
 | |
|     int    u[QR2_K];
 | |
|     float d8[QR2_K];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR2_K; ++ i) {
 | |
|         u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
 | |
|         d8[i] = bq8_1[bq8_offset + i].ds[0];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q2_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_ql_q2_K, sycl::half2 *tile_x_dm_q2_K,
 | |
|                     int *tile_x_sc_q2_K) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     *x_ql = tile_x_ql_q2_K;
 | |
|     *x_dm = tile_x_dm_q2_K;
 | |
|     *x_sc = tile_x_sc_q2_K;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q2_K(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset <  nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI2_K;
 | |
|     const int kqsx = k % QI2_K;
 | |
| 
 | |
|     const block_q2_K * bx0 = (const block_q2_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
 | |
|         int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
 | |
|         int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q2_K_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     const int kbx = k / QI2_K;
 | |
|     const int ky  = (k % QI2_K) * QR2_K;
 | |
|     const float * y_df = (const float *) y_ds;
 | |
| 
 | |
|     int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
 | |
| 
 | |
|     const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
 | |
|     const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
 | |
|         v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
 | |
|     }
 | |
| 
 | |
|     const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
 | |
| 
 | |
|     const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
 | |
|     return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q3_K_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
|     const block_q3_K * bq3_K = (const block_q3_K *) vbq;
 | |
| 
 | |
|     const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
 | |
|     const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
 | |
| 
 | |
|     const float d = bq3_K->d;
 | |
| 
 | |
|     const int vl = get_int_from_uint8(bq3_K->qs, iqs);
 | |
| 
 | |
|     // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
 | |
|     const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
 | |
| 
 | |
|     int    u[QR3_K];
 | |
|     float d8[QR3_K];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR3_K; ++i) {
 | |
|         u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
 | |
|         d8[i] = bq8_1[bq8_offset + i].ds[0];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q3_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_ql_q3_K, sycl::half2 *tile_x_dm_q3_K,
 | |
|                     int *tile_x_qh_q3_K, int *tile_x_sc_q3_K) {
 | |
| 
 | |
|     *x_ql = tile_x_ql_q3_K;
 | |
|     *x_dm = tile_x_dm_q3_K;
 | |
|     *x_qh = tile_x_qh_q3_K;
 | |
|     *x_sc = tile_x_sc_q3_K;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q3_K(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
| 
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset <  nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI3_K;
 | |
|     const int kqsx = k % QI3_K;
 | |
| 
 | |
|     const block_q3_K * bx0 = (const block_q3_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
 | |
|     const int kbxd = k % blocks_per_tile_x_row;
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
 | |
|         int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
 | |
|         int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
 | |
| 
 | |
|         // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
 | |
|         x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
 | |
|         int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
 | |
| 
 | |
|         const int ksc = k % (QI3_K/4);
 | |
| 
 | |
|         const int ksc_low = ksc % (QI3_K/8);
 | |
|         const int shift_low = 4 * (ksc / (QI3_K/8));
 | |
|         const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int ksc_high = QI3_K/8;
 | |
|         const int shift_high = 2 * ksc;
 | |
|         const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
 | |
| 
 | |
|         const int sc = dpct::vectorized_binary<sycl::char4>(
 | |
|             sc_low | sc_high, 0x20202020, dpct::sub_sat());
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q3_K_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
| 
 | |
|     const int kbx  = k / QI3_K;
 | |
|     const int ky  = (k % QI3_K) * QR3_K;
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
|     const float * y_df  = (const float *) y_ds;
 | |
| 
 | |
|     const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
 | |
| 
 | |
|     int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
 | |
|         const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
 | |
|         const int shift = 2 * ((ky % 32) / 8);
 | |
|         const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
 | |
| 
 | |
|         const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
 | |
|         const int vlh = (vh << 2) & 0x04040404;
 | |
| 
 | |
|         v[l] = dpct::vectorized_binary<sycl::char4>(vll, vlh, dpct::sub_sat());
 | |
|     }
 | |
| 
 | |
|     const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
 | |
|     return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
| #ifndef GGML_QKK_64
 | |
|     const block_q4_K * bq4_K = (const block_q4_K *) vbq;
 | |
| 
 | |
|     int    v[2];
 | |
|     int    u[2*QR4_K];
 | |
|     float d8[QR4_K];
 | |
| 
 | |
|     // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
 | |
|     const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
 | |
| 
 | |
|     // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
 | |
|     // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
 | |
|     // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
 | |
|     // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
 | |
| 
 | |
|     const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
 | |
|     v[0] = q4[0];
 | |
|     v[1] = q4[4];
 | |
| 
 | |
|     const uint16_t * scales = (const uint16_t *)bq4_K->scales;
 | |
|     uint16_t aux[2];
 | |
|     const int j = bq8_offset/2;
 | |
|     if (j < 2) {
 | |
|         aux[0] = scales[j+0] & 0x3f3f;
 | |
|         aux[1] = scales[j+2] & 0x3f3f;
 | |
|     } else {
 | |
|         aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
 | |
|         aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
 | |
|     }
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
|     const uint8_t * m  = sc + 2;
 | |
| 
 | |
|     for (int i = 0; i < QR4_K; ++i) {
 | |
|         const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
 | |
|         d8[i] = bq8i->ds[0];
 | |
| 
 | |
|         const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
 | |
|         u[2*i+0] = q8[0];
 | |
|         u[2*i+1] = q8[4];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
 | |
| 
 | |
| #else
 | |
| 
 | |
| #if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
 | |
|     const block_q4_K * bq4_K = (const block_q4_K *) vbq;
 | |
| 
 | |
|     float sumf_d = 0.0f;
 | |
|     float sumf_m = 0.0f;
 | |
| 
 | |
|     uint16_t aux16[2];
 | |
|     const uint8_t * s = (const uint8_t *)aux16;
 | |
| 
 | |
|     const uint16_t * a = (const uint16_t *)bq4_K->scales;
 | |
|     aux16[0] = a[0] & 0x0f0f;
 | |
|     aux16[1] = (a[0] >> 4) & 0x0f0f;
 | |
| 
 | |
|     const float dall = bq4_K->dm[0];
 | |
|     const float dmin = bq4_K->dm[1];
 | |
| 
 | |
|     const float d8_1 = __low2float(bq8_1[0].ds);
 | |
|     const float d8_2 = __low2float(bq8_1[1].ds);
 | |
| 
 | |
|     const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
 | |
|     const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
 | |
|     const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
 | |
|     const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
 | |
| 
 | |
|     const int * q4 = (const int *)bq4_K->qs + (iqs/2);
 | |
|     const int v1 = q4[0];
 | |
|     const int v2 = q4[4];
 | |
| 
 | |
|     const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
 | |
|     const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
 | |
|     const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
 | |
|     const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
 | |
| 
 | |
|     sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
 | |
|     sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
 | |
| 
 | |
|     return dall * sumf_d - dmin * sumf_m;
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __SYCL_ARCH__ >= VER_4VEC
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q4_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_ql_q4_K, sycl::half2 *tile_x_dm_q4_K,
 | |
|                     int *tile_x_sc_q4_K) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     *x_ql = tile_x_ql_q4_K;
 | |
|     *x_dm = tile_x_dm_q4_K;
 | |
|     *x_sc = tile_x_sc_q4_K;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset <  nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI4_K; // == 0 if QK_K == 256
 | |
|     const int kqsx = k % QI4_K; // == k if QK_K == 256
 | |
| 
 | |
|     const block_q4_K * bx0 = (const block_q4_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
| 
 | |
|         x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
 | |
|     const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
 | |
|         int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
| #if QK_K == 256
 | |
|         x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
 | |
| #else
 | |
|         x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
 | |
|         int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
 | |
| 
 | |
|         const int * scales = (const int *) bxi->scales;
 | |
| 
 | |
|         const int ksc = k % (WARP_SIZE/8);
 | |
| 
 | |
|         // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
 | |
|         int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
 | |
|         scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q4_K_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
 | |
| 
 | |
|     const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
 | |
|     return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
 | |
|                                       x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
| #ifndef GGML_QKK_64
 | |
|     const block_q5_K * bq5_K = (const block_q5_K *) vbq;
 | |
| 
 | |
|     int   vl[2];
 | |
|     int   vh[2];
 | |
|     int    u[2*QR5_K];
 | |
|     float d8[QR5_K];
 | |
| 
 | |
|     const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
 | |
|     const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
 | |
|     const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
 | |
| 
 | |
|     vl[0] = ql[0];
 | |
|     vl[1] = ql[4];
 | |
| 
 | |
|     vh[0] = qh[0] >> bq8_offset;
 | |
|     vh[1] = qh[4] >> bq8_offset;
 | |
| 
 | |
|     const uint16_t * scales = (const uint16_t *)bq5_K->scales;
 | |
|     uint16_t aux[2];
 | |
|     const int j = bq8_offset/2;
 | |
|     if (j < 2) {
 | |
|         aux[0] = scales[j+0] & 0x3f3f;
 | |
|         aux[1] = scales[j+2] & 0x3f3f;
 | |
|     } else {
 | |
|         aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
 | |
|         aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
 | |
|     }
 | |
|     const uint8_t * sc = (const uint8_t *)aux;
 | |
|     const uint8_t * m  = sc + 2;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR5_K; ++i) {
 | |
|         const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
 | |
|         d8[i] = bq8i->ds[0];
 | |
| 
 | |
|         const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
 | |
|         u[2*i+0] = q8[0];
 | |
|         u[2*i+1] = q8[4];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
 | |
| 
 | |
| #else
 | |
| 
 | |
| #if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
 | |
|     const block_q5_K * bq5_K = (const block_q5_K *) vbq;
 | |
| 
 | |
|     const int8_t * s = bq5_K->scales;
 | |
| 
 | |
|     const float d = bq5_K->d;
 | |
| 
 | |
|     const float d8_1 = __low2half(bq8_1[0].ds);
 | |
|     const float d8_2 = __low2half(bq8_1[1].ds);
 | |
| 
 | |
|     const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
 | |
|     const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
 | |
|     const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
 | |
|     const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
 | |
| 
 | |
|     const int * ql = (const int *)bq5_K->qs + (iqs/2);
 | |
|     const int vl1 = ql[0];
 | |
|     const int vl2 = ql[4];
 | |
| 
 | |
|     const int step = 4 * (iqs/2); // 0, 4, 8, 12
 | |
|     const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
 | |
|     const int in = step%8; // 0, 4, 0, 4
 | |
|     const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
 | |
| 
 | |
|     const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
 | |
|     const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
 | |
|     const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
 | |
|     const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
 | |
| 
 | |
|     const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
 | |
|                        + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
 | |
| 
 | |
|     return d * sumf_d;
 | |
| 
 | |
| #else
 | |
|     bad_arch();
 | |
| #endif // __SYCL_ARCH__ >= VER_4VEC
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q5_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_ql_q5_K, sycl::half2 *tile_x_dm_q5_K,
 | |
|                     int *tile_x_sc_q5_K) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     *x_ql = tile_x_ql_q5_K;
 | |
|     *x_dm = tile_x_dm_q5_K;
 | |
|     *x_sc = tile_x_sc_q5_K;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset <  nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI5_K; // == 0 if QK_K == 256
 | |
|     const int kqsx = k % QI5_K; // == k if QK_K == 256
 | |
| 
 | |
|     const block_q5_K * bx0 = (const block_q5_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
|         const int ky = QR5_K*kqsx;
 | |
| 
 | |
|         const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
 | |
|         const int ql0 = (ql >> 0) & 0x0F0F0F0F;
 | |
|         const int ql1 = (ql >> 4) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
 | |
|         const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
 | |
|         const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
 | |
| 
 | |
|         const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
 | |
|         const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
 | |
| 
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
 | |
|         x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
 | |
|     const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
 | |
|         int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
| #if QK_K == 256
 | |
|         x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
 | |
|         int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
 | |
| 
 | |
|         const int * scales = (const int *) bxi->scales;
 | |
| 
 | |
|         const int ksc = k % (WARP_SIZE/8);
 | |
| 
 | |
|         // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
 | |
|         int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
 | |
|         scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q5_K_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
 | |
| 
 | |
|     const int index_x = i * (QR5_K*WARP_SIZE + 1) +  QR5_K*k;
 | |
|     const int index_y = j * WARP_SIZE             + (QR5_K*k) % WARP_SIZE;
 | |
|     return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
 | |
|                                       x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float
 | |
| vec_dot_q6_K_q8_1(const void *__restrict__ vbq,
 | |
|                   const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
 | |
| 
 | |
|     const block_q6_K * bq6_K = (const block_q6_K *) vbq;
 | |
| 
 | |
|     const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
 | |
|     const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
 | |
|     const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
 | |
| 
 | |
|     const int vl = get_int_from_uint8(bq6_K->ql, iqs);
 | |
|     const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
 | |
| 
 | |
|     const int8_t * scales = bq6_K->scales + scale_offset;
 | |
| 
 | |
|     int    u[QR6_K];
 | |
|     float d8[QR6_K];
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i = 0; i < QR6_K; ++i) {
 | |
|         u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
 | |
|         d8[i] = bq8_1[bq8_offset + 2 * i].ds[0];
 | |
|     }
 | |
| 
 | |
|     return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
 | |
| }
 | |
| 
 | |
| template <int mmq_y>
 | |
| static __dpct_inline__ void
 | |
| allocate_tiles_q6_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
 | |
|                     int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_sc) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     *x_ql = tile_x_ql;
 | |
|     *x_dm = tile_x_dm;
 | |
|     *x_sc = tile_x_sc;
 | |
| }
 | |
| 
 | |
| template <int mmq_y, int nwarps, bool need_check>
 | |
| static __dpct_inline__ void
 | |
| load_tiles_q6_K(const void *__restrict__ vx, int *__restrict__ x_ql,
 | |
|                 sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
 | |
|                 int *__restrict__ x_sc, const int &i_offset, const int &i_max,
 | |
|                 const int &k, const int &blocks_per_row) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     GGML_SYCL_ASSUME(i_offset >= 0);
 | |
|     GGML_SYCL_ASSUME(i_offset <  nwarps);
 | |
|     GGML_SYCL_ASSUME(k >= 0);
 | |
|     GGML_SYCL_ASSUME(k <  WARP_SIZE);
 | |
| 
 | |
|     const int kbx  = k / QI6_K; // == 0 if QK_K == 256
 | |
|     const int kqsx = k % QI6_K; // == k if QK_K == 256
 | |
| 
 | |
|     const block_q6_K * bx0 = (const block_q6_K *) vx;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
 | |
|         int i = i0 + i_offset;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
 | |
|         const int ky = QR6_K*kqsx;
 | |
| 
 | |
|         const int ql = get_int_from_uint8(bxi->ql, kqsx);
 | |
|         const int ql0 = (ql >> 0) & 0x0F0F0F0F;
 | |
|         const int ql1 = (ql >> 4) & 0x0F0F0F0F;
 | |
| 
 | |
|         const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
 | |
|         const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
 | |
|         const int qh1 =  (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4))))       & 0x30303030;
 | |
| 
 | |
|         const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
 | |
|         const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
 | |
| 
 | |
|         x_ql[i * (2 * WARP_SIZE + 1) + kq0] =
 | |
|             dpct::vectorized_binary<sycl::char4>(ql0 | qh0, 0x20202020,
 | |
|                                                  dpct::sub_sat());
 | |
|         x_ql[i * (2 * WARP_SIZE + 1) + kq1] =
 | |
|             dpct::vectorized_binary<sycl::char4>(ql1 | qh1, 0x20202020,
 | |
|                                                  dpct::sub_sat());
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
 | |
|     const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
 | |
|     float * x_dmf = (float *) x_dm;
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
 | |
|         int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
 | |
| 
 | |
|         x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
 | |
|         int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
 | |
| 
 | |
|         if (need_check) {
 | |
|             i = sycl::min(i, i_max);
 | |
|         }
 | |
| 
 | |
|         const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
 | |
| 
 | |
|         x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __dpct_inline__ float vec_dot_q6_K_q8_1_mul_mat(
 | |
|     const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
 | |
|     const int *__restrict__ x_qh, const int *__restrict__ x_sc,
 | |
|     const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
 | |
|     const int &i, const int &j, const int &k) {
 | |
|     (void)x_qh;
 | |
| 
 | |
|     const float * x_dmf = (const float *) x_dm;
 | |
|     const float * y_df  = (const float *) y_ds;
 | |
| 
 | |
|     const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
 | |
| 
 | |
|     const int index_x = i * (QR6_K*WARP_SIZE + 1) +  QR6_K*k;
 | |
|     const int index_y = j * WARP_SIZE             + (QR6_K*k) % WARP_SIZE;
 | |
|     return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
 | |
|           int mmq_y, int nwarps, load_tiles_sycl_t load_tiles, int vdr,
 | |
|           vec_dot_q_mul_mat_sycl_t vec_dot>
 | |
| /*
 | |
| DPCT1110:8: The total declared local variable size in device function mul_mat_q
 | |
| exceeds 128 bytes and may cause high register pressure. Consult with your
 | |
| hardware vendor to find the total register size available and adjust the code,
 | |
| or use smaller sub-group size to avoid high register pressure.
 | |
| */
 | |
| static __dpct_inline__ void
 | |
| mul_mat_q(const void *__restrict__ vx, const void *__restrict__ vy,
 | |
|           float *__restrict__ dst, const int ncols_x, const int nrows_x,
 | |
|           const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|           int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_qh,
 | |
|           int *tile_x_sc, const sycl::nd_item<3> &item_ct1, int *tile_y_qs,
 | |
|           sycl::half2 *tile_y_ds) {
 | |
| 
 | |
|     const block_q_t  * x = (const block_q_t  *) vx;
 | |
|     const block_q8_1 * y = (const block_q8_1 *) vy;
 | |
| 
 | |
|     const int blocks_per_row_x = ncols_x / qk;
 | |
|     const int blocks_per_col_y = nrows_y / QK8_1;
 | |
|     const int blocks_per_warp = WARP_SIZE / qi;
 | |
| 
 | |
|     const int & ncols_dst = ncols_y;
 | |
| 
 | |
|     const int row_dst_0 = item_ct1.get_group(2) * mmq_y;
 | |
|     const int & row_x_0 = row_dst_0;
 | |
| 
 | |
|     const int col_dst_0 = item_ct1.get_group(1) * mmq_x;
 | |
|     const int & col_y_0 = col_dst_0;
 | |
| 
 | |
|     float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
 | |
| 
 | |
|     for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
 | |
| 
 | |
|         load_tiles(x + row_x_0 * blocks_per_row_x + ib0, tile_x_ql, tile_x_dm,
 | |
|                    tile_x_qh, tile_x_sc, item_ct1.get_local_id(1),
 | |
|                    nrows_x - row_x_0 - 1, item_ct1.get_local_id(2),
 | |
|                    blocks_per_row_x);
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int ir = 0; ir < qr; ++ir) {
 | |
|             const int kqs = ir * WARP_SIZE + item_ct1.get_local_id(2);
 | |
|             const int kbxd = kqs / QI8_1;
 | |
| 
 | |
| #pragma unroll
 | |
|             for (int i = 0; i < mmq_x; i += nwarps) {
 | |
|                 const int col_y_eff = dpct::min(
 | |
|                     (unsigned int)(col_y_0 + item_ct1.get_local_id(1) + i),
 | |
|                     ncols_y - 1); // to prevent out-of-bounds memory accesses
 | |
| 
 | |
|                 const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
 | |
| 
 | |
|                 const int index_y = (item_ct1.get_local_id(1) + i) * WARP_SIZE +
 | |
|                                     kqs % WARP_SIZE;
 | |
|                 tile_y_qs[index_y] = get_int_from_int8_aligned(
 | |
|                     by0->qs, item_ct1.get_local_id(2) % QI8_1);
 | |
|             }
 | |
| 
 | |
| #pragma unroll
 | |
|             for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
 | |
|                 const int ids =
 | |
|                     (ids0 + item_ct1.get_local_id(1) * QI8_1 +
 | |
|                      item_ct1.get_local_id(2) / (WARP_SIZE / QI8_1)) %
 | |
|                     mmq_x;
 | |
|                 const int kby = item_ct1.get_local_id(2) % (WARP_SIZE / QI8_1);
 | |
|                 const int col_y_eff = sycl::min(col_y_0 + ids, ncols_y - 1);
 | |
| 
 | |
|                 // if the sum is not needed it's faster to transform the scale to f32 ahead of time
 | |
|                 const sycl::half2 *dsi_src =
 | |
|                     &y[col_y_eff * blocks_per_col_y + ib0 * (qk / QK8_1) +
 | |
|                        ir * (WARP_SIZE / QI8_1) + kby]
 | |
|                          .ds;
 | |
|                 sycl::half2 *dsi_dst =
 | |
|                     &tile_y_ds[ids * (WARP_SIZE / QI8_1) + kby];
 | |
|                 if (need_sum) {
 | |
|                     *dsi_dst = *dsi_src;
 | |
|                 } else {
 | |
|                     float * dfi_dst = (float *) dsi_dst;
 | |
|                     *dfi_dst = (*dsi_src)[0];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|             DPCT1118:9: SYCL group functions and algorithms must be encountered
 | |
|             in converged control flow. You may need to adjust the code.
 | |
|             */
 | |
|             /*
 | |
|             DPCT1065:56: Consider replacing sycl::nd_item::barrier() with
 | |
|             sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | |
|             better performance if there is no access to global memory.
 | |
|             */
 | |
|             item_ct1.barrier();
 | |
| 
 | |
| // #pragma unroll // unrolling this loop causes too much register pressure
 | |
|             for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
 | |
| #pragma unroll
 | |
|                 for (int j = 0; j < mmq_x; j += nwarps) {
 | |
| #pragma unroll
 | |
|                     for (int i = 0; i < mmq_y; i += WARP_SIZE) {
 | |
|                         sum[i / WARP_SIZE][j / nwarps] += vec_dot(
 | |
|                             tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
 | |
|                             tile_y_qs, tile_y_ds, item_ct1.get_local_id(2) + i,
 | |
|                             item_ct1.get_local_id(1) + j, k);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|             DPCT1118:10: SYCL group functions and algorithms must be encountered
 | |
|             in converged control flow. You may need to adjust the code.
 | |
|             */
 | |
|             /*
 | |
|             DPCT1065:57: Consider replacing sycl::nd_item::barrier() with
 | |
|             sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | |
|             better performance if there is no access to global memory.
 | |
|             */
 | |
|             item_ct1.barrier();
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #pragma unroll
 | |
|     for (int j = 0; j < mmq_x; j += nwarps) {
 | |
|         const int col_dst = col_dst_0 + j + item_ct1.get_local_id(1);
 | |
| 
 | |
|         if (col_dst >= ncols_dst) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
| #pragma unroll
 | |
|         for (int i = 0; i < mmq_y; i += WARP_SIZE) {
 | |
|             const int row_dst = row_dst_0 + item_ct1.get_local_id(2) + i;
 | |
| 
 | |
|             if (row_dst >= nrows_dst) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q4_0_RDNA2  64
 | |
| #define  MMQ_Y_Q4_0_RDNA2  128
 | |
| #define NWARPS_Q4_0_RDNA2  8
 | |
| #define  MMQ_X_Q4_0_RDNA1  64
 | |
| #define  MMQ_Y_Q4_0_RDNA1  64
 | |
| #define NWARPS_Q4_0_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q4_0_AMPERE 4
 | |
| #define  MMQ_Y_Q4_0_AMPERE 32
 | |
| #define NWARPS_Q4_0_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q4_0_AMPERE 64
 | |
| #define  MMQ_Y_Q4_0_AMPERE 128
 | |
| #define NWARPS_Q4_0_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q4_0_PASCAL 64
 | |
| #define  MMQ_Y_Q4_0_PASCAL 64
 | |
| #define NWARPS_Q4_0_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
|     mul_mat_q4_0(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_0, float *tile_x_d_q4_0,
 | |
|     int *tile_y_qs, sycl::half2 *tile_y_ds) {
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
| 
 | |
|     const int mmq_x  =  MMQ_X_Q4_0_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_0_AMPERE;
 | |
|     const int nwarps = NWARPS_Q4_0_AMPERE;
 | |
|     allocate_tiles_q4_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_qs_q4_0, tile_x_d_q4_0);
 | |
|     mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ,
 | |
|               vec_dot_q4_0_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q4_1_RDNA2  64
 | |
| #define  MMQ_Y_Q4_1_RDNA2  128
 | |
| #define NWARPS_Q4_1_RDNA2  8
 | |
| #define  MMQ_X_Q4_1_RDNA1  64
 | |
| #define  MMQ_Y_Q4_1_RDNA1  64
 | |
| #define NWARPS_Q4_1_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q4_1_AMPERE 4
 | |
| #define  MMQ_Y_Q4_1_AMPERE 32
 | |
| #define NWARPS_Q4_1_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q4_1_AMPERE 64
 | |
| #define  MMQ_Y_Q4_1_AMPERE 128
 | |
| #define NWARPS_Q4_1_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q4_1_PASCAL 64
 | |
| #define  MMQ_Y_Q4_1_PASCAL 64
 | |
| #define NWARPS_Q4_1_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
|     mul_mat_q4_1(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_1,
 | |
|     sycl::half2 *tile_x_dm_q4_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
|     const int mmq_x  =  MMQ_X_Q4_1_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_1_AMPERE;
 | |
|     const int nwarps = NWARPS_Q4_1_AMPERE;
 | |
|     allocate_tiles_q4_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_qs_q4_1, tile_x_dm_q4_1);
 | |
|     mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ,
 | |
|               vec_dot_q4_1_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q5_0_RDNA2  64
 | |
| #define  MMQ_Y_Q5_0_RDNA2  128
 | |
| #define NWARPS_Q5_0_RDNA2  8
 | |
| #define  MMQ_X_Q5_0_RDNA1  64
 | |
| #define  MMQ_Y_Q5_0_RDNA1  64
 | |
| #define NWARPS_Q5_0_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q5_0_AMPERE 4
 | |
| #define  MMQ_Y_Q5_0_AMPERE 32
 | |
| #define NWARPS_Q5_0_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q5_0_AMPERE 128
 | |
| #define  MMQ_Y_Q5_0_AMPERE 64
 | |
| #define NWARPS_Q5_0_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q5_0_PASCAL 64
 | |
| #define  MMQ_Y_Q5_0_PASCAL 64
 | |
| #define NWARPS_Q5_0_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
|     mul_mat_q5_0(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_0, float *tile_x_d_q5_0,
 | |
|     int *tile_y_qs, sycl::half2 *tile_y_ds) {
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
|     const int mmq_x  =  MMQ_X_Q5_0_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_0_AMPERE;
 | |
|     const int nwarps = NWARPS_Q5_0_AMPERE;
 | |
|     allocate_tiles_q5_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_ql_q5_0, tile_x_d_q5_0);
 | |
|     mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ,
 | |
|               vec_dot_q5_0_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q5_1_RDNA2  64
 | |
| #define  MMQ_Y_Q5_1_RDNA2  128
 | |
| #define NWARPS_Q5_1_RDNA2  8
 | |
| #define  MMQ_X_Q5_1_RDNA1  64
 | |
| #define  MMQ_Y_Q5_1_RDNA1  64
 | |
| #define NWARPS_Q5_1_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q5_1_AMPERE 4
 | |
| #define  MMQ_Y_Q5_1_AMPERE 32
 | |
| #define NWARPS_Q5_1_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q5_1_AMPERE 128
 | |
| #define  MMQ_Y_Q5_1_AMPERE 64
 | |
| #define NWARPS_Q5_1_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q5_1_PASCAL 64
 | |
| #define  MMQ_Y_Q5_1_PASCAL 64
 | |
| #define NWARPS_Q5_1_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
| mul_mat_q5_1(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_1,
 | |
|     sycl::half2 *tile_x_dm_q5_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
|     const int mmq_x  =  MMQ_X_Q5_1_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_1_AMPERE;
 | |
|     const int nwarps = NWARPS_Q5_1_AMPERE;
 | |
|     allocate_tiles_q5_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_ql_q5_1, tile_x_dm_q5_1);
 | |
|     mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ,
 | |
|               vec_dot_q5_1_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q8_0_RDNA2  64
 | |
| #define  MMQ_Y_Q8_0_RDNA2  128
 | |
| #define NWARPS_Q8_0_RDNA2  8
 | |
| #define  MMQ_X_Q8_0_RDNA1  64
 | |
| #define  MMQ_Y_Q8_0_RDNA1  64
 | |
| #define NWARPS_Q8_0_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q8_0_AMPERE 4
 | |
| #define  MMQ_Y_Q8_0_AMPERE 32
 | |
| #define NWARPS_Q8_0_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q8_0_AMPERE 128
 | |
| #define  MMQ_Y_Q8_0_AMPERE 64
 | |
| #define NWARPS_Q8_0_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q8_0_PASCAL 64
 | |
| #define  MMQ_Y_Q8_0_PASCAL 64
 | |
| #define NWARPS_Q8_0_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
|     mul_mat_q8_0(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q8_0, float *tile_x_d_q8_0,
 | |
|     int *tile_y_qs, sycl::half2 *tile_y_ds) {
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
|     const int mmq_x  =  MMQ_X_Q8_0_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q8_0_AMPERE;
 | |
|     const int nwarps = NWARPS_Q8_0_AMPERE;
 | |
|     allocate_tiles_q8_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_qs_q8_0, tile_x_d_q8_0);
 | |
|     mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ,
 | |
|               vec_dot_q8_0_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q2_K_RDNA2  64
 | |
| #define  MMQ_Y_Q2_K_RDNA2  128
 | |
| #define NWARPS_Q2_K_RDNA2  8
 | |
| #define  MMQ_X_Q2_K_RDNA1  128
 | |
| #define  MMQ_Y_Q2_K_RDNA1  32
 | |
| #define NWARPS_Q2_K_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q2_K_AMPERE 4
 | |
| #define  MMQ_Y_Q2_K_AMPERE 32
 | |
| #define NWARPS_Q2_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q2_K_AMPERE 64
 | |
| #define  MMQ_Y_Q2_K_AMPERE 128
 | |
| #define NWARPS_Q2_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q2_K_PASCAL 64
 | |
| #define  MMQ_Y_Q2_K_PASCAL 64
 | |
| #define NWARPS_Q2_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
| mul_mat_q2_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q2_K,
 | |
|     sycl::half2 *tile_x_dm_q2_K, int *tile_x_sc_q2_K, int *tile_y_qs,
 | |
|     sycl::half2 *tile_y_ds) {
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
|     const int mmq_x  =  MMQ_X_Q2_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q2_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q2_K_AMPERE;
 | |
|     allocate_tiles_q2_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_ql_q2_K, tile_x_dm_q2_K, tile_x_sc_q2_K);
 | |
|     mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ,
 | |
|               vec_dot_q2_K_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q3_K_RDNA2  128
 | |
| #define  MMQ_Y_Q3_K_RDNA2  64
 | |
| #define NWARPS_Q3_K_RDNA2  8
 | |
| #define  MMQ_X_Q3_K_RDNA1  32
 | |
| #define  MMQ_Y_Q3_K_RDNA1  128
 | |
| #define NWARPS_Q3_K_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q3_K_AMPERE 4
 | |
| #define  MMQ_Y_Q3_K_AMPERE 32
 | |
| #define NWARPS_Q3_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q3_K_AMPERE 128
 | |
| #define  MMQ_Y_Q3_K_AMPERE 128
 | |
| #define NWARPS_Q3_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q3_K_PASCAL 64
 | |
| #define  MMQ_Y_Q3_K_PASCAL 64
 | |
| #define NWARPS_Q3_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
| mul_mat_q3_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q3_K,
 | |
|     sycl::half2 *tile_x_dm_q3_K, int *tile_x_qh_q3_K, int *tile_x_sc_q3_K,
 | |
|     int *tile_y_qs, sycl::half2 *tile_y_ds) {
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
|     const int mmq_x  =  MMQ_X_Q3_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q3_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q3_K_AMPERE;
 | |
|     allocate_tiles_q3_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_ql_q3_K, tile_x_dm_q3_K, tile_x_qh_q3_K,
 | |
|                                tile_x_sc_q3_K);
 | |
|     mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ,
 | |
|               vec_dot_q3_K_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q4_K_RDNA2  64
 | |
| #define  MMQ_Y_Q4_K_RDNA2  128
 | |
| #define NWARPS_Q4_K_RDNA2  8
 | |
| #define  MMQ_X_Q4_K_RDNA1  32
 | |
| #define  MMQ_Y_Q4_K_RDNA1  64
 | |
| #define NWARPS_Q4_K_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q4_K_AMPERE 4
 | |
| #define  MMQ_Y_Q4_K_AMPERE 32
 | |
| #define NWARPS_Q4_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q4_K_AMPERE 64
 | |
| #define  MMQ_Y_Q4_K_AMPERE 128
 | |
| #define NWARPS_Q4_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q4_K_PASCAL 64
 | |
| #define  MMQ_Y_Q4_K_PASCAL 64
 | |
| #define NWARPS_Q4_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
|     mul_mat_q4_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q4_K,
 | |
|     sycl::half2 *tile_x_dm_q4_K, int *tile_x_sc_q4_K, int *tile_y_qs,
 | |
|     sycl::half2 *tile_y_ds) {
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
|     const int mmq_x  =  MMQ_X_Q4_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q4_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q4_K_AMPERE;
 | |
|     allocate_tiles_q4_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_ql_q4_K, tile_x_dm_q4_K, tile_x_sc_q4_K);
 | |
|     mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ,
 | |
|               vec_dot_q4_K_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q5_K_RDNA2  64
 | |
| #define  MMQ_Y_Q5_K_RDNA2  128
 | |
| #define NWARPS_Q5_K_RDNA2  8
 | |
| #define  MMQ_X_Q5_K_RDNA1  32
 | |
| #define  MMQ_Y_Q5_K_RDNA1  64
 | |
| #define NWARPS_Q5_K_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q5_K_AMPERE 4
 | |
| #define  MMQ_Y_Q5_K_AMPERE 32
 | |
| #define NWARPS_Q5_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q5_K_AMPERE 64
 | |
| #define  MMQ_Y_Q5_K_AMPERE 128
 | |
| #define NWARPS_Q5_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q5_K_PASCAL 64
 | |
| #define  MMQ_Y_Q5_K_PASCAL 64
 | |
| #define NWARPS_Q5_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
| mul_mat_q5_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_K,
 | |
|     sycl::half2 *tile_x_dm_q5_K, int *tile_x_sc_q5_K, int *tile_y_qs,
 | |
|     sycl::half2 *tile_y_ds) {
 | |
|     int   * tile_x_ql = nullptr;
 | |
|     sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
|     const int mmq_x  =  MMQ_X_Q5_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q5_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q5_K_AMPERE;
 | |
|     allocate_tiles_q5_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_ql_q5_K, tile_x_dm_q5_K, tile_x_sc_q5_K);
 | |
|     mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ,
 | |
|               vec_dot_q5_K_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| #define  MMQ_X_Q6_K_RDNA2  64
 | |
| #define  MMQ_Y_Q6_K_RDNA2  128
 | |
| #define NWARPS_Q6_K_RDNA2  8
 | |
| #define  MMQ_X_Q6_K_RDNA1  32
 | |
| #define  MMQ_Y_Q6_K_RDNA1  64
 | |
| #define NWARPS_Q6_K_RDNA1  8
 | |
| #if defined(SYCL_USE_XMX)
 | |
| #define  MMQ_X_Q6_K_AMPERE 4
 | |
| #define  MMQ_Y_Q6_K_AMPERE 32
 | |
| #define NWARPS_Q6_K_AMPERE 4
 | |
| #else
 | |
| #define  MMQ_X_Q6_K_AMPERE 64
 | |
| #define  MMQ_Y_Q6_K_AMPERE 64
 | |
| #define NWARPS_Q6_K_AMPERE 4
 | |
| #endif
 | |
| #define  MMQ_X_Q6_K_PASCAL 64
 | |
| #define  MMQ_Y_Q6_K_PASCAL 64
 | |
| #define NWARPS_Q6_K_PASCAL 8
 | |
| 
 | |
| template <bool need_check> static void
 | |
|     mul_mat_q6_K(
 | |
|     const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
 | |
|     const sycl::nd_item<3> &item_ct1, int *tile_x_ql, sycl::half2 *tile_x_dm,
 | |
|     int *tile_x_sc, int *tile_y_qs, sycl::half2 *tile_y_ds) {
 | |
|     // int   * tile_x_ql = nullptr;
 | |
|     // sycl::half2 *tile_x_dm = nullptr;
 | |
|     int   * tile_x_qh = nullptr;
 | |
|     // int   * tile_x_sc = nullptr;
 | |
| 
 | |
| //sycl_todo: change according to hardware
 | |
|     const int mmq_x  =  MMQ_X_Q6_K_AMPERE;
 | |
|     const int mmq_y  =  MMQ_Y_Q6_K_AMPERE;
 | |
|     const int nwarps = NWARPS_Q6_K_AMPERE;
 | |
|     allocate_tiles_q6_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
 | |
|                                tile_x_ql, tile_x_dm, tile_x_sc);
 | |
|     mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps,
 | |
|               load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ,
 | |
|               vec_dot_q6_K_q8_1_mul_mat>(
 | |
|         vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
 | |
|         tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
 | |
| }
 | |
| 
 | |
| template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_sycl_t vec_dot_q_sycl>
 | |
| static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows,
 | |
|                           const sycl::nd_item<3> &item_ct1) {
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
| 
 | |
|     if (row >= nrows) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int blocks_per_row = ncols / qk;
 | |
|     const int blocks_per_warp = vdr * WARP_SIZE / qi;
 | |
| 
 | |
| // partial sum for each thread
 | |
|     float tmp = 0.0f;
 | |
| 
 | |
|     const block_q_t  * x = (const block_q_t  *) vx;
 | |
|     const block_q8_1 * y = (const block_q8_1 *) vy;
 | |
| 
 | |
|     for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
 | |
|         const int ibx = row * blocks_per_row + i +
 | |
|                         item_ct1.get_local_id(2) / (qi / vdr); // x block index
 | |
| 
 | |
|         const int iby = (i + item_ct1.get_local_id(2) / (qi / vdr)) *
 | |
|                         (qk / QK8_1); // y block index that aligns with ibx
 | |
| 
 | |
|         const int iqs =
 | |
|             vdr *
 | |
|             (item_ct1.get_local_id(2) %
 | |
|              (qi / vdr)); // x block quant index when casting the quants to int
 | |
| 
 | |
|         tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs);
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (item_ct1.get_local_id(2) == 0) {
 | |
|         dst[row] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
 | |
| static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows,
 | |
|                                    const sycl::nd_item<3> &item_ct1) {
 | |
|     // qk = quantized weights per x block
 | |
|     // qr = number of quantized weights per data value in x block
 | |
|     const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
| 
 | |
|     if (row >= nrows) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int tid = item_ct1.get_local_id(2);
 | |
| 
 | |
|     const int iter_stride = 2*GGML_SYCL_DMMV_X;
 | |
|     const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
 | |
|     const int y_offset = qr == 1 ? 1 : qk/2;
 | |
| 
 | |
| // partial sum for each thread
 | |
| #ifdef GGML_SYCL_F16
 | |
|     sycl::half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
 | |
| #else
 | |
|     float tmp = 0.0f;
 | |
| #endif // GGML_SYCL_F16
 | |
| 
 | |
|     for (int i = 0; i < ncols; i += iter_stride) {
 | |
|         const int col = i + vals_per_iter*tid;
 | |
|         const int ib = (row*ncols + col)/qk; // x block index
 | |
|         const int iqs = (col%qk)/qr; // x quant index
 | |
|         const int iybs = col - col%qk; // y block start index
 | |
| 
 | |
| // processing >2 values per i iter is faster for fast GPUs
 | |
| #pragma unroll
 | |
|         for (int j = 0; j < vals_per_iter; j += 2) {
 | |
|             // process 2 vals per j iter
 | |
| 
 | |
|             // dequantize
 | |
|             // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
 | |
|             dfloat2 v;
 | |
|             dequantize_kernel(vx, ib, iqs + j/qr, v);
 | |
| 
 | |
|             // matrix multiplication
 | |
|             // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
 | |
| #ifdef GGML_SYCL_F16
 | |
|             dfloat2 t1{y[iybs + iqs + j / qr + 0],
 | |
|                         y[iybs + iqs + j / qr + y_offset]};
 | |
| 
 | |
|             tmp += v * t1;
 | |
| #else
 | |
|             tmp += v.x() * y[iybs + iqs + j / qr + 0];
 | |
|             tmp += v.y() * y[iybs + iqs + j / qr + y_offset];
 | |
| #endif // GGML_SYCL_F16
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (tid == 0) {
 | |
| #ifdef GGML_SYCL_F16
 | |
|         dst[row] = tmp.x() + tmp.y();
 | |
| #else
 | |
|         dst[row] = tmp;
 | |
| #endif // GGML_SYCL_F16
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void mul_mat_p021_f16_f32(
 | |
|     const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
 | |
|     const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
 | |
|     const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const sycl::half *x = (const sycl::half *)vx;
 | |
| 
 | |
|     const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                       item_ct1.get_local_id(1);
 | |
|     const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
 | |
|                         item_ct1.get_local_id(0);
 | |
|     const int channel_x = channel / (nchannels_y / nchannels_x);
 | |
| 
 | |
|     const int nrows_y = ncols_x;
 | |
|     const int nrows_dst = nrows_x;
 | |
|     const int row_dst = row_x;
 | |
| 
 | |
|     float tmp = 0.0f;
 | |
| 
 | |
|     for (int col_x0 = 0; col_x0 < ncols_x;
 | |
|          col_x0 += item_ct1.get_local_range(2)) {
 | |
|         const int col_x = col_x0 + item_ct1.get_local_id(2);
 | |
| 
 | |
|         if (col_x >= ncols_x) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         // x is transposed and permuted
 | |
|         const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
 | |
|         const float xi =
 | |
|             sycl::vec<sycl::half, 1>(x[ix])
 | |
|                 .convert<float, sycl::rounding_mode::automatic>()[0];
 | |
| 
 | |
|         const int row_y = col_x;
 | |
| 
 | |
| 
 | |
|         // y is not transposed but permuted
 | |
|         const int iy = channel*nrows_y + row_y;
 | |
| 
 | |
|         tmp += xi * y[iy];
 | |
|     }
 | |
| 
 | |
|     // dst is not transposed and not permuted
 | |
|     const int idst = channel*nrows_dst + row_dst;
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (item_ct1.get_local_id(2) == 0) {
 | |
|         dst[idst] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
 | |
|     const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
 | |
|     const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
 | |
|     const sycl::nd_item<3> &item_ct1) {
 | |
| 
 | |
|     const sycl::half *x = (const sycl::half *)vx;
 | |
| 
 | |
|     const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                       item_ct1.get_local_id(1);
 | |
|     const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
 | |
|                         item_ct1.get_local_id(0);
 | |
|     const int channel_x = channel / channel_x_divisor;
 | |
| 
 | |
|     const int nrows_y   = ncols_x;
 | |
|     const int nrows_dst = nrows_x;
 | |
|     const int row_dst   = row_x;
 | |
| 
 | |
|     const int idst = channel*nrows_dst + row_dst;
 | |
| 
 | |
|     float tmp = 0.0f;
 | |
| 
 | |
|     for (int col_x0 = 0; col_x0 < ncols_x;
 | |
|          col_x0 += item_ct1.get_local_range(2)) {
 | |
|         const int col_x = col_x0 + item_ct1.get_local_id(2);
 | |
| 
 | |
|         if (col_x >= ncols_x) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         const int row_y = col_x;
 | |
| 
 | |
|         const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
 | |
|         const int iy = channel*nrows_y + row_y;
 | |
| 
 | |
|         const float xi =
 | |
|             sycl::vec<sycl::half, 1>(x[ix])
 | |
|                 .convert<float, sycl::rounding_mode::automatic>()[0];
 | |
| 
 | |
|         tmp += xi * y[iy];
 | |
|     }
 | |
| 
 | |
|     // sum up partial sums and write back result
 | |
| #pragma unroll
 | |
|     for (int mask = 16; mask > 0; mask >>= 1) {
 | |
|         tmp +=
 | |
|             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
 | |
|     }
 | |
| 
 | |
|     if (item_ct1.get_local_id(2) == 0) {
 | |
|         dst[idst] = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     float * dsti = (float *) cdsti;
 | |
| 
 | |
|     *dsti = *xi;
 | |
| }
 | |
| 
 | |
| static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     sycl::half *dsti = (sycl::half *)cdsti;
 | |
| 
 | |
|     *dsti = sycl::vec<float, 1>(*xi)
 | |
|                 .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
 | |
| }
 | |
| 
 | |
| static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
 | |
|     const sycl::half *xi = (const sycl::half *)cxi;
 | |
|     sycl::half *dsti = (sycl::half *)cdsti;
 | |
| 
 | |
|     *dsti = *xi;
 | |
| }
 | |
| 
 | |
| static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
 | |
|     const sycl::half *xi = (const sycl::half *)cxi;
 | |
|     float *dsti = (float *)cdsti;
 | |
| 
 | |
|     *dsti = *xi;
 | |
| }
 | |
| 
 | |
| static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
 | |
|     const int16_t *xi = (const int16_t *)cxi;
 | |
|     int16_t *dsti = (int16_t *)cdsti;
 | |
| 
 | |
|     *dsti = *xi;
 | |
| }
 | |
| 
 | |
| static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
 | |
|     const int32_t *xi = (const int32_t *)cxi;
 | |
|     int32_t *dsti = (int32_t *)cdsti;
 | |
| 
 | |
|     *dsti = *xi;
 | |
| }
 | |
| 
 | |
| template <cpy_kernel_t cpy_1>
 | |
| static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
 | |
|                         const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
 | |
|                         const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
 | |
|                         const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (i >= ne) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
 | |
|     // then combine those indices with the corresponding byte offsets to get the total offsets
 | |
|     const int i03 = i/(ne00 * ne01 * ne02);
 | |
|     const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
 | |
|     const int i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
 | |
|     const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
 | |
|     const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
 | |
| 
 | |
|     const int i13 = i/(ne10 * ne11 * ne12);
 | |
|     const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
 | |
|     const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
 | |
|     const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
 | |
|     const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
 | |
| 
 | |
|     cpy_1(cx + x_offset, cdst + dst_offset);
 | |
| }
 | |
| 
 | |
| static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     block_q8_0 * dsti = (block_q8_0 *) cdsti;
 | |
| 
 | |
|     float amax = 0.0f; // absolute max
 | |
| 
 | |
|     for (int j = 0; j < QK8_0; j++) {
 | |
|         const float v = xi[j];
 | |
|         amax = sycl::fmax(amax, sycl::fabs((float)v));
 | |
|     }
 | |
| 
 | |
|     const float d = amax / ((1 << 7) - 1);
 | |
|     const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|     dsti->d = d;
 | |
| 
 | |
|     for (int j = 0; j < QK8_0; ++j) {
 | |
|         const float x0 = xi[j]*id;
 | |
| 
 | |
|         dsti->qs[j] = sycl::round((float)x0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     block_q4_0 * dsti = (block_q4_0 *) cdsti;
 | |
| 
 | |
|     float amax = 0.0f;
 | |
|     float vmax = 0.0f;
 | |
| 
 | |
|     for (int j = 0; j < QK4_0; ++j) {
 | |
|         const float v = xi[j];
 | |
|         if (amax < sycl::fabs((float)v)) {
 | |
|             amax = sycl::fabs((float)v);
 | |
|             vmax = v;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const float d  = vmax / -8;
 | |
|     const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|     dsti->d = d;
 | |
| 
 | |
|     for (int j = 0; j < QK4_0/2; ++j) {
 | |
|         const float x0 = xi[0       + j]*id;
 | |
|         const float x1 = xi[QK4_0/2 + j]*id;
 | |
| 
 | |
|         const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
 | |
|         const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
 | |
| 
 | |
|         dsti->qs[j]  = xi0;
 | |
|         dsti->qs[j] |= xi1 << 4;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
 | |
|     const float * xi = (const float *) cxi;
 | |
|     block_q4_1 * dsti = (block_q4_1 *) cdsti;
 | |
| 
 | |
|     float vmin = FLT_MAX;
 | |
|     float vmax = -FLT_MAX;
 | |
| 
 | |
|     for (int j = 0; j < QK4_1; ++j) {
 | |
|         const float v = xi[j];
 | |
| 
 | |
|         if (v < vmin) vmin = v;
 | |
|         if (v > vmax) vmax = v;
 | |
|     }
 | |
| 
 | |
|     const float d  = (vmax - vmin) / ((1 << 4) - 1);
 | |
|     const float id = d ? 1.0f/d : 0.0f;
 | |
| 
 | |
|     dsti->dm.x() = d;
 | |
|     dsti->dm.y() = vmin;
 | |
| 
 | |
|     for (int j = 0; j < QK4_1/2; ++j) {
 | |
|         const float x0 = (xi[0       + j] - vmin)*id;
 | |
|         const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
 | |
| 
 | |
|         const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
 | |
|         const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
 | |
| 
 | |
|         dsti->qs[j]  = xi0;
 | |
|         dsti->qs[j] |= xi1 << 4;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <cpy_kernel_t cpy_blck, int qk>
 | |
| static void cpy_f32_q(const char * cx, char * cdst, const int ne,
 | |
|                       const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
 | |
|                       const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
 | |
|                       const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                    item_ct1.get_local_id(2)) *
 | |
|                   qk;
 | |
| 
 | |
|     if (i >= ne) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i03 = i/(ne00 * ne01 * ne02);
 | |
|     const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
 | |
|     const int i01 = (i - i03*ne00*ne01*ne02  -  i02*ne01*ne00) / ne00;
 | |
|     const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
 | |
|     const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
 | |
| 
 | |
|     const int i13 = i/(ne10 * ne11 * ne12);
 | |
|     const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
 | |
|     const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
 | |
|     const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
 | |
|     const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
 | |
| 
 | |
|     cpy_blck(cx + x_offset, cdst + dst_offset);
 | |
| }
 | |
| 
 | |
| static float rope_yarn_ramp(const float low, const float high, const int i0) {
 | |
|     const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
 | |
|     return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
 | |
| }
 | |
| 
 | |
| struct rope_corr_dims {
 | |
|     float v[4];
 | |
| };
 | |
| 
 | |
| // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
 | |
| // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
 | |
| static void rope_yarn(
 | |
|     float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
 | |
|     float * cos_theta, float * sin_theta
 | |
| ) {
 | |
|     // Get n-d rotational scaling corrected for extrapolation
 | |
|     float theta_interp = freq_scale * theta_extrap;
 | |
|     float theta = theta_interp;
 | |
|     if (ext_factor != 0.0f) {
 | |
|         float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
 | |
|         theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
 | |
| 
 | |
|         // Get n-d magnitude scaling corrected for interpolation
 | |
|         mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
 | |
|     }
 | |
|     *cos_theta = sycl::cos(theta) * mscale;
 | |
|     *sin_theta = sycl::sin(theta) * mscale;
 | |
| }
 | |
| 
 | |
| // rope == RoPE == rotary positional embedding
 | |
| template<typename T, bool has_pos>
 | |
| static void rope(
 | |
|     const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
 | |
|     float ext_factor, float attn_factor, rope_corr_dims corr_dims
 | |
| ,
 | |
|     const sycl::nd_item<3> &item_ct1) {
 | |
|     const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                          item_ct1.get_local_id(1));
 | |
| 
 | |
|     if (col >= ncols) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                     item_ct1.get_local_id(2);
 | |
|     const int i = row*ncols + col;
 | |
|     const int i2 = row/p_delta_rows;
 | |
| 
 | |
|     const int p = has_pos ? pos[i2] : 0;
 | |
|     const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
 | |
| 
 | |
|     float cos_theta, sin_theta;
 | |
|     rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
 | |
| 
 | |
|     const float x0 = x[i + 0];
 | |
|     const float x1 = x[i + 1];
 | |
| 
 | |
|     dst[i + 0] = x0*cos_theta - x1*sin_theta;
 | |
|     dst[i + 1] = x0*sin_theta + x1*cos_theta;
 | |
| }
 | |
| 
 | |
| template<typename T, bool has_pos>
 | |
| static void rope_neox(
 | |
|     const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
 | |
|     float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
 | |
| ,
 | |
|     const sycl::nd_item<3> &item_ct1) {
 | |
|     const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                          item_ct1.get_local_id(1));
 | |
| 
 | |
|     if (col >= ncols) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                     item_ct1.get_local_id(2);
 | |
|     const int ib = col / n_dims;
 | |
|     const int ic = col % n_dims;
 | |
| 
 | |
|     if (ib > 0) {
 | |
|         const int i = row*ncols + ib*n_dims + ic;
 | |
| 
 | |
|         dst[i + 0] = x[i + 0];
 | |
|         dst[i + 1] = x[i + 1];
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i  = row*ncols + ib*n_dims + ic/2;
 | |
|     const int i2 = row/p_delta_rows;
 | |
| 
 | |
|     float cur_rot = inv_ndims * ic - ib;
 | |
| 
 | |
|     const int p = has_pos ? pos[i2] : 0;
 | |
|     const float theta_base =
 | |
|         p * freq_scale * dpct::pow(theta_scale, col / 2.0f);
 | |
| 
 | |
|     float cos_theta, sin_theta;
 | |
|     rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
 | |
| 
 | |
|     const float x0 = x[i + 0];
 | |
|     const float x1 = x[i + n_dims/2];
 | |
| 
 | |
|     dst[i + 0]        = x0*cos_theta - x1*sin_theta;
 | |
|     dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
 | |
| }
 | |
| 
 | |
| static void rope_glm_f32(
 | |
|     const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
 | |
|     int n_ctx
 | |
| , const sycl::nd_item<3> &item_ct1) {
 | |
|     const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                     item_ct1.get_local_id(2);
 | |
|     const int half_n_dims = ncols/4;
 | |
| 
 | |
|     if (col >= half_n_dims) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     const int i = row*ncols + col;
 | |
|     const int i2 = row/p_delta_rows;
 | |
| 
 | |
|     const float col_theta_scale = dpct::pow(freq_base, -2.0f * col / ncols);
 | |
|      // FIXME: this is likely wrong
 | |
|     const int p = pos != nullptr ? pos[i2] : 0;
 | |
| 
 | |
|     const float theta = sycl::min(p, n_ctx - 2) * freq_scale * col_theta_scale;
 | |
|     const float sin_theta = sycl::sin((float)theta);
 | |
|     const float cos_theta = sycl::cos((float)theta);
 | |
| 
 | |
|     const float x0 = x[i + 0];
 | |
|     const float x1 = x[i + half_n_dims];
 | |
| 
 | |
|     dst[i + 0]           = x0*cos_theta - x1*sin_theta;
 | |
|     dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
 | |
| 
 | |
|     const float block_theta =
 | |
|         ((float)sycl::max(p - n_ctx - 2, 0)) * col_theta_scale;
 | |
|     const float sin_block_theta = sycl::sin((float)block_theta);
 | |
|     const float cos_block_theta = sycl::cos((float)block_theta);
 | |
| 
 | |
|     const float x2 = x[i + half_n_dims * 2];
 | |
|     const float x3 = x[i + half_n_dims * 3];
 | |
| 
 | |
|     dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
 | |
|     dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
 | |
| }
 | |
| 
 | |
| static void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
 | |
|                                  const int n_heads_log2_floor, const float m0, const float m1,
 | |
|                                  const sycl::nd_item<3> &item_ct1) {
 | |
|     const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                     item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (col >= ncols) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     const int i = row*ncols + col;
 | |
| 
 | |
|     const int k = row/k_rows;
 | |
| 
 | |
|     float m_k;
 | |
|     if (k < n_heads_log2_floor) {
 | |
|         m_k = dpct::pow(m0, k + 1);
 | |
|     } else {
 | |
|         m_k = dpct::pow(m1, 2 * (k - n_heads_log2_floor) + 1);
 | |
|     }
 | |
| 
 | |
|     dst[i] = col * m_k + x[i];
 | |
| }
 | |
| 
 | |
| static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
 | |
|                            const sycl::nd_item<3> &item_ct1) {
 | |
|     const int row = item_ct1.get_group(1);
 | |
|     const int col = item_ct1.get_local_id(2);
 | |
| 
 | |
|     float sum = 0.0f;
 | |
|     for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
 | |
|         sum += x[row * ncols + i];
 | |
|     }
 | |
| 
 | |
|     sum = warp_reduce_sum(sum, item_ct1);
 | |
| 
 | |
|     if (col == 0) {
 | |
|         dst[row] = sum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static inline void swap(T & a, T & b) {
 | |
|     T tmp = a;
 | |
|     a = b;
 | |
|     b = tmp;
 | |
| }
 | |
| 
 | |
| template<ggml_sort_order order>
 | |
| static void k_argsort_f32_i32(const float * x, int * dst, const int ncols,
 | |
|                               const sycl::nd_item<3> &item_ct1) {
 | |
|     // bitonic sort
 | |
|     int col = item_ct1.get_local_id(2);
 | |
|     int row = item_ct1.get_group(1);
 | |
| 
 | |
|     if (col >= ncols) return;
 | |
| 
 | |
|     const float * x_row = x + row * ncols;
 | |
|     int * dst_row = dst + row * ncols;
 | |
| 
 | |
|     // initialize indices
 | |
|     if (col < ncols) {
 | |
|         dst_row[col] = col;
 | |
|     }
 | |
|     /*
 | |
|     DPCT1065:58: Consider replacing sycl::nd_item::barrier() with
 | |
|     sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
 | |
|     performance if there is no access to global memory.
 | |
|     */
 | |
|     item_ct1.barrier();
 | |
| 
 | |
|     for (int k = 2; k <= ncols; k *= 2) {
 | |
|         for (int j = k / 2; j > 0; j /= 2) {
 | |
|             int ixj = col ^ j;
 | |
|             if (ixj > col) {
 | |
|                 if ((col & k) == 0) {
 | |
|                     if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
 | |
|                         swap(dst_row[col], dst_row[ixj]);
 | |
|                     }
 | |
|                 } else {
 | |
|                     if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
 | |
|                         swap(dst_row[col], dst_row[ixj]);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             /*
 | |
|             DPCT1118:11: SYCL group functions and algorithms must be encountered
 | |
|             in converged control flow. You may need to adjust the code.
 | |
|             */
 | |
|             /*
 | |
|             DPCT1065:59: Consider replacing sycl::nd_item::barrier() with
 | |
|             sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | |
|             better performance if there is no access to global memory.
 | |
|             */
 | |
|             item_ct1.barrier();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
 | |
|                               const sycl::nd_item<3> &item_ct1) {
 | |
|     const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
 | |
|                     item_ct1.get_local_id(1);
 | |
|     const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                     item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (col >= ncols) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int i = row*ncols + col;
 | |
|     //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
 | |
|     //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
 | |
|     dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
 | |
| }
 | |
| 
 | |
| static void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale,
 | |
|                          const sycl::nd_item<3> &item_ct1, float *buf) {
 | |
|     const int tid = item_ct1.get_local_id(2);
 | |
|     const int rowx = item_ct1.get_group(2);
 | |
|     const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
 | |
| 
 | |
|     const int block_size = item_ct1.get_local_range(2);
 | |
| 
 | |
|     const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
 | |
|     const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
 | |
| 
 | |
|     float max_val = -INFINITY;
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const int ix = rowx*ncols + col;
 | |
|         const int iy = rowy*ncols + col;
 | |
|         max_val = sycl::max(max_val, x[ix] * scale + (y ? y[iy] : 0.0f));
 | |
|     }
 | |
| 
 | |
|     // find the max value in the block
 | |
|     max_val = warp_reduce_max(max_val, item_ct1);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         if (warp_id == 0) {
 | |
|             buf[lane_id] = -INFINITY;
 | |
|         }
 | |
|         /*
 | |
|         DPCT1118:12: SYCL group functions and algorithms must be encountered in
 | |
|         converged control flow. You may need to adjust the code.
 | |
|         */
 | |
|         /*
 | |
|         DPCT1065:60: Consider replacing sycl::nd_item::barrier() with
 | |
|         sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | |
|         better performance if there is no access to global memory.
 | |
|         */
 | |
|         item_ct1.barrier();
 | |
| 
 | |
|         if (lane_id == 0) {
 | |
|             buf[warp_id] = max_val;
 | |
|         }
 | |
|         /*
 | |
|         DPCT1118:13: SYCL group functions and algorithms must be encountered in
 | |
|         converged control flow. You may need to adjust the code.
 | |
|         */
 | |
|         /*
 | |
|         DPCT1065:61: Consider replacing sycl::nd_item::barrier() with
 | |
|         sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | |
|         better performance if there is no access to global memory.
 | |
|         */
 | |
|         item_ct1.barrier();
 | |
| 
 | |
|         max_val = buf[lane_id];
 | |
|         max_val = warp_reduce_max(max_val, item_ct1);
 | |
|     }
 | |
| 
 | |
|     float tmp = 0.f;
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const int ix = rowx*ncols + col;
 | |
|         const int iy = rowy*ncols + col;
 | |
|         const float val =
 | |
|             sycl::native::exp((x[ix] * scale + (y ? y[iy] : 0.0f)) - max_val);
 | |
|         tmp += val;
 | |
|         dst[ix] = val;
 | |
|     }
 | |
| 
 | |
|     // find the sum of exps in the block
 | |
|     tmp = warp_reduce_sum(tmp, item_ct1);
 | |
|     if (block_size > WARP_SIZE) {
 | |
|         if (warp_id == 0) {
 | |
|             buf[lane_id] = 0.f;
 | |
|         }
 | |
|         /*
 | |
|         DPCT1118:14: SYCL group functions and algorithms must be encountered in
 | |
|         converged control flow. You may need to adjust the code.
 | |
|         */
 | |
|         /*
 | |
|         DPCT1065:62: Consider replacing sycl::nd_item::barrier() with
 | |
|         sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | |
|         better performance if there is no access to global memory.
 | |
|         */
 | |
|         item_ct1.barrier();
 | |
| 
 | |
|         if (lane_id == 0) {
 | |
|             buf[warp_id] = tmp;
 | |
|         }
 | |
|         /*
 | |
|         DPCT1118:15: SYCL group functions and algorithms must be encountered in
 | |
|         converged control flow. You may need to adjust the code.
 | |
|         */
 | |
|         /*
 | |
|         DPCT1065:63: Consider replacing sycl::nd_item::barrier() with
 | |
|         sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
 | |
|         better performance if there is no access to global memory.
 | |
|         */
 | |
|         item_ct1.barrier();
 | |
| 
 | |
|         tmp = buf[lane_id];
 | |
|         tmp = warp_reduce_sum(tmp, item_ct1);
 | |
|     }
 | |
| 
 | |
|     const float inv_tmp = 1.f / tmp;
 | |
| 
 | |
|     for (int col = tid; col < ncols; col += block_size) {
 | |
|         const int i = rowx*ncols + col;
 | |
|         dst[i] *= inv_tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void scale_f32(const float * x, float * dst, const float scale, const int k,
 | |
|                       const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     dst[i] = scale * x[i];
 | |
| }
 | |
| 
 | |
| static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
 | |
|                       const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
| 
 | |
|     if (i >= k) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| static void im2col_kernel(const float *x, T *dst, int offset_delta,
 | |
|                            int IW, int IH, int OW, int KW, int KH,
 | |
|                            int pelements, int CHW, int s0, int s1, int p0,
 | |
|                            int p1, int d0, int d1,
 | |
|                            const sycl::nd_item<3> &item_ct1) {
 | |
|     const int i = item_ct1.get_local_id(2) +
 | |
|                   item_ct1.get_group(2) * item_ct1.get_local_range(2);
 | |
|     if (i >= pelements) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const int ksize = OW * (KH > 1 ? KW : 1);
 | |
|     const int kx = i / ksize;
 | |
|     const int kd = kx * ksize;
 | |
|     const int ky = (i - kd) / OW;
 | |
|     const int ix = i % OW;
 | |
| 
 | |
|     const int64_t iiw = ix * s0 + kx * d0 - p0;
 | |
|     const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
 | |
| 
 | |
|     const int64_t offset_dst =
 | |
|         (item_ct1.get_group(1) * OW + ix) * CHW +
 | |
|         (item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
 | |
| 
 | |
|     if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
 | |
|         dst[offset_dst] =
 | |
|             sycl::vec<float, 1>(0.0f)
 | |
|                 .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
 | |
|     } else {
 | |
|         const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
 | |
|         dst[offset_dst] =
 | |
|             sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
 | |
|                 .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dq>
 | |
| static void get_rows_sycl(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                           ggml_tensor *dst, const void *src0_dd,
 | |
|                           const int32_t *src1_dd, float *dst_dd,
 | |
|                           dpct::queue_ptr stream) {
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|     const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
 | |
|     const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
 | |
|     const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
 | |
| 
 | |
|     // strides in elements
 | |
|     //const size_t s0 = nb0 / ggml_element_size(dst);
 | |
|     const size_t s1 = nb1 / ggml_element_size(dst);
 | |
|     const size_t s2 = nb2 / ggml_element_size(dst);
 | |
|     const size_t s3 = nb3 / ggml_element_size(dst);
 | |
| 
 | |
|     const size_t s10 = nb10 / ggml_element_size(src1);
 | |
|     const size_t s11 = nb11 / ggml_element_size(src1);
 | |
|     const size_t s12 = nb12 / ggml_element_size(src1);
 | |
|     //const size_t s13 = nb13 / ggml_element_size(src1);
 | |
| 
 | |
|     GGML_ASSERT(ne00 % 2 == 0);
 | |
| 
 | |
|     stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                          [=](sycl::nd_item<3> item_ct1) {
 | |
|                              k_get_rows<qk, qr, dq>(
 | |
|                                  src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
 | |
|                                  s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
 | |
|                          });
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| template <typename src0_t>
 | |
| static void get_rows_sycl_float(const ggml_tensor *src0,
 | |
|                                 const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                 const src0_t *src0_dd, const int32_t *src1_dd,
 | |
|                                 float *dst_dd, dpct::queue_ptr stream) {
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|     const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
 | |
|     const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
 | |
|     const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
 | |
| 
 | |
|     // strides in elements
 | |
|     //const size_t s0 = nb0 / ggml_element_size(dst);
 | |
|     const size_t s1 = nb1 / ggml_element_size(dst);
 | |
|     const size_t s2 = nb2 / ggml_element_size(dst);
 | |
|     const size_t s3 = nb3 / ggml_element_size(dst);
 | |
| 
 | |
|     const size_t s10 = nb10 / ggml_element_size(src1);
 | |
|     const size_t s11 = nb11 / ggml_element_size(src1);
 | |
|     const size_t s12 = nb12 / ggml_element_size(src1);
 | |
|     //const size_t s13 = nb13 / ggml_element_size(src1);
 | |
| 
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
 | |
|                                  s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
 | |
|             });
 | |
|     }
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| template<float (*bin_op)(const float, const float)>
 | |
| struct bin_bcast_sycl {
 | |
|     template <typename src0_t, typename src1_t, typename dst_t>
 | |
|     void operator()(const struct ggml_tensor *src0,
 | |
|                     const struct ggml_tensor *src1, struct ggml_tensor *dst,
 | |
|                     const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
 | |
|                     dpct::queue_ptr stream) {
 | |
| 
 | |
|         GGML_TENSOR_BINARY_OP_LOCALS
 | |
| 
 | |
|         int nr0 = ne10/ne0;
 | |
|         int nr1 = ne11/ne1;
 | |
|         int nr2 = ne12/ne2;
 | |
|         int nr3 = ne13/ne3;
 | |
| 
 | |
|         int nr[4] = { nr0, nr1, nr2, nr3 };
 | |
| 
 | |
|         // collapse dimensions until first broadcast dimension
 | |
|         int64_t cne0[] = {ne0, ne1, ne2, ne3};
 | |
|         int64_t cne1[] = {ne10, ne11, ne12, ne13};
 | |
|         size_t cnb0[] = {nb0, nb1, nb2, nb3};
 | |
|         size_t cnb1[] = {nb10, nb11, nb12, nb13};
 | |
|         auto collapse = [](int64_t cne[]) {
 | |
|             cne[0] *= cne[1];
 | |
|             cne[1] = cne[2];
 | |
|             cne[2] = cne[3];
 | |
|             cne[3] = 1;
 | |
|         };
 | |
| 
 | |
|         auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
 | |
|             cnb[1] *= cne[1];
 | |
|             cnb[2] *= cne[2];
 | |
|             cnb[3] *= cne[3];
 | |
|         };
 | |
| 
 | |
|         for (int i = 0; i < 4; i++) {
 | |
|             if (nr[i] != 1) {
 | |
|                 break;
 | |
|             }
 | |
|             if (i > 0) {
 | |
|                 collapse_nb(cnb0, cne0);
 | |
|                 collapse_nb(cnb1, cne1);
 | |
|                 collapse(cne0);
 | |
|                 collapse(cne1);
 | |
|             }
 | |
|         }
 | |
|         {
 | |
|             int64_t ne0 = cne0[0];
 | |
|             int64_t ne1 = cne0[1];
 | |
|             int64_t ne2 = cne0[2];
 | |
|             int64_t ne3 = cne0[3];
 | |
| 
 | |
|             int64_t ne10 = cne1[0];
 | |
|             int64_t ne11 = cne1[1];
 | |
|             int64_t ne12 = cne1[2];
 | |
|             int64_t ne13 = cne1[3];
 | |
| 
 | |
|             size_t nb0 = cnb0[0];
 | |
|             size_t nb1 = cnb0[1];
 | |
|             size_t nb2 = cnb0[2];
 | |
|             size_t nb3 = cnb0[3];
 | |
| 
 | |
|             size_t nb10 = cnb1[0];
 | |
|             size_t nb11 = cnb1[1];
 | |
|             size_t nb12 = cnb1[2];
 | |
|             size_t nb13 = cnb1[3];
 | |
| 
 | |
|             size_t s0 = nb0 / sizeof(dst_t);
 | |
|             size_t s1 = nb1 / sizeof(dst_t);
 | |
|             size_t s2 = nb2 / sizeof(dst_t);
 | |
|             size_t s3 = nb3 / sizeof(dst_t);
 | |
| 
 | |
|             size_t s10 = nb10 / sizeof(src1_t);
 | |
|             size_t s11 = nb11 / sizeof(src1_t);
 | |
|             size_t s12 = nb12 / sizeof(src1_t);
 | |
|             size_t s13 = nb13 / sizeof(src1_t);
 | |
| 
 | |
|             GGML_ASSERT(s0 == 1);
 | |
|             GGML_ASSERT(s10 == 1);
 | |
| 
 | |
|             const int block_size = 128;
 | |
| 
 | |
|             int64_t hne0 = std::max(ne0/2LL, 1LL);
 | |
| 
 | |
|             sycl::range<3> block_dims(1, 1, 1);
 | |
|             block_dims[2] = std::min<unsigned int>(hne0, block_size);
 | |
|             block_dims[1] = std::min<unsigned int>(
 | |
|                 ne1, block_size / (unsigned int)block_dims[2]);
 | |
|             block_dims[0] = std::min(
 | |
|                 std::min<unsigned int>(
 | |
|                     ne2 * ne3, block_size / (unsigned int)block_dims[2] /
 | |
|                                    (unsigned int)block_dims[1]),
 | |
|                 64U);
 | |
| 
 | |
|             sycl::range<3> block_nums(
 | |
|                 (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
 | |
|                 (ne1 + block_dims[1] - 1) / block_dims[1],
 | |
|                 (hne0 + block_dims[2] - 1) / block_dims[2]);
 | |
| 
 | |
|             if (block_nums[0] > 65535) {
 | |
|                 // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
 | |
|                 int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
 | |
|                 {
 | |
|                     dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                                  {sycl::aspect::fp16});
 | |
| 
 | |
|                     stream->parallel_for(
 | |
|                         sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
 | |
|                                               sycl::range<3>(1, 1, block_size),
 | |
|                                           sycl::range<3>(1, 1, block_size)),
 | |
|                         [=](sycl::nd_item<3> item_ct1) {
 | |
|                             k_bin_bcast_unravel<bin_op>(
 | |
|                                 src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
 | |
|                                 ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
 | |
|                                 s13, item_ct1);
 | |
|                         });
 | |
|                 }
 | |
|             } else {
 | |
|                 /*
 | |
|                 DPCT1049:16: The work-group size passed to the SYCL kernel may
 | |
|                 exceed the limit. To get the device limit, query
 | |
|                 info::device::max_work_group_size. Adjust the work-group size if
 | |
|                 needed.
 | |
|                 */
 | |
|                 dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                              {sycl::aspect::fp16});
 | |
| 
 | |
|                 stream->parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
 | |
|                                             ne2, ne3, ne10, ne11, ne12, ne13,
 | |
|                                             s1, s2, s3, s11, s12, s13,
 | |
|                                             item_ct1);
 | |
|                     });
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void acc_f32_sycl(const float *x, const float *y, float *dst,
 | |
|                          const int n_elements, const int ne10, const int ne11,
 | |
|                          const int ne12, const int nb1, const int nb2,
 | |
|                          const int offset, dpct::queue_ptr stream) {
 | |
|     int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
 | |
|                     item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void gelu_f32_sycl(const float *x, float *dst, const int k,
 | |
|                           dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             gelu_f32(x, dst, k, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void silu_f32_sycl(const float *x, float *dst, const int k,
 | |
|                           dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             silu_f32(x, dst, k, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
 | |
|                                 dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             gelu_quick_f32(x, dst, k, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void tanh_f32_sycl(const float *x, float *dst, const int k,
 | |
|                           dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             tanh_f32(x, dst, k, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void relu_f32_sycl(const float *x, float *dst, const int k,
 | |
|                           dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             relu_f32(x, dst, k, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
 | |
|                                 const float negative_slope,
 | |
|                                 dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void sqr_f32_sycl(const float *x, float *dst, const int k,
 | |
|                          dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             sqr_f32(x, dst, k, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void norm_f32_sycl(const float *x, float *dst, const int ncols,
 | |
|                           const int nrows, const float eps,
 | |
|                           dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % WARP_SIZE == 0);
 | |
|     if (ncols < 1024) {
 | |
|         const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | |
|         stream->submit([&](sycl::handler &cgh) {
 | |
|             sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
 | |
|                 sycl::range<1>(32), cgh);
 | |
| 
 | |
|             cgh.parallel_for(
 | |
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
 | |
|                                   block_dims),
 | |
|                 [=](sycl::nd_item<3> item_ct1)
 | |
|                     [[intel::reqd_sub_group_size(32)]] {
 | |
|                         norm_f32(x, dst, ncols, eps, item_ct1,
 | |
|                                             s_sum_acc_ct1.get_pointer(), WARP_SIZE);
 | |
|                     });
 | |
|         });
 | |
|     } else {
 | |
|         const int work_group_size = g_work_group_size;
 | |
|         const sycl::range<3> block_dims(1, 1, work_group_size);
 | |
|         /*
 | |
|         DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         stream->submit([&](sycl::handler &cgh) {
 | |
|             sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
 | |
|                 sycl::range<1>(32), cgh);
 | |
| 
 | |
|             cgh.parallel_for(
 | |
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
 | |
|                                   block_dims),
 | |
|                 [=](sycl::nd_item<3> item_ct1)
 | |
|                     [[intel::reqd_sub_group_size(32)]] {
 | |
|                         norm_f32(x, dst, ncols, eps, item_ct1,
 | |
|                                        s_sum_acc_ct1.get_pointer(), work_group_size);
 | |
|                     });
 | |
|         });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void group_norm_f32_sycl(const float *x, float *dst,
 | |
|                                 const int num_groups, const int group_size,
 | |
|                                 const int ne_elements, dpct::queue_ptr stream) {
 | |
|     static const float eps = 1e-6f;
 | |
|     if (group_size < 1024) {
 | |
|         const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | |
|         stream->submit([&](sycl::handler &cgh) {
 | |
|             sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
 | |
|                                                          cgh);
 | |
| 
 | |
|             const float eps_ct4 = eps;
 | |
| 
 | |
|             cgh.parallel_for(
 | |
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
 | |
|                                   block_dims),
 | |
|                 [=](sycl::nd_item<3> item_ct1)
 | |
|                     [[intel::reqd_sub_group_size(32)]] {
 | |
|                         group_norm_f32(
 | |
|                             x, dst, group_size, ne_elements, eps_ct4, item_ct1,
 | |
|                             s_sum_acc_ct1.get_pointer(), WARP_SIZE);
 | |
|                     });
 | |
|         });
 | |
|     } else {
 | |
|         const int work_group_size = g_work_group_size;
 | |
|         const sycl::range<3> block_dims(1, 1, work_group_size);
 | |
|         /*
 | |
|         DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
| 
 | |
|         stream->submit([&](sycl::handler &cgh) {
 | |
|             sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
 | |
|                                                          cgh);
 | |
| 
 | |
|             const float eps_ct4 = eps;
 | |
| 
 | |
|             cgh.parallel_for(
 | |
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
 | |
|                                   block_dims),
 | |
|                 [=](sycl::nd_item<3> item_ct1)
 | |
|                     [[intel::reqd_sub_group_size(32)]] {
 | |
|                         group_norm_f32(x, dst, group_size, ne_elements,
 | |
|                                              eps_ct4, item_ct1,
 | |
|                                              s_sum_acc_ct1.get_pointer(), work_group_size);
 | |
|                     });
 | |
|         });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void concat_f32_sycl(const float *x, const float *y, float *dst,
 | |
|                             const int ne0, int ne1, int ne2, int ne02,
 | |
|                             dpct::queue_ptr stream) {
 | |
|     int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
 | |
|     sycl::range<3> gridDim(ne2, ne1, num_blocks);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(gridDim *
 | |
|                               sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             concat_f32(x, y, dst, ne0, ne02, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void upscale_f32_sycl(const float *x, float *dst, const int ne00,
 | |
|                              const int ne01, const int ne02,
 | |
|                              const int scale_factor, dpct::queue_ptr stream) {
 | |
|     int ne0 = (ne00 * scale_factor);
 | |
|     int num_blocks = (ne0 + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
 | |
|     sycl::range<3> gridDim(ne02, (ne01 * scale_factor), num_blocks);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(gridDim *
 | |
|                               sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             upscale_f32(x, dst, ne00, ne00 * ne01, scale_factor, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void pad_f32_sycl(const float *x, float *dst, const int ne00,
 | |
|                          const int ne01, const int ne02, const int ne0,
 | |
|                          const int ne1, const int ne2, dpct::queue_ptr stream) {
 | |
|     int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
 | |
|     sycl::range<3> gridDim(ne2, ne1, num_blocks);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
 | |
|                               const int nrows, const float eps,
 | |
|                               dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % WARP_SIZE == 0);
 | |
|     // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
 | |
|     if (ncols < 1024) {
 | |
|         const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | |
|         stream->submit([&](sycl::handler &cgh) {
 | |
|             sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
 | |
|                                                          cgh);
 | |
| 
 | |
|             cgh.parallel_for(
 | |
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
 | |
|                                   block_dims),
 | |
|                 [=](sycl::nd_item<3> item_ct1)
 | |
|                     [[intel::reqd_sub_group_size(32)]] {
 | |
|                         rms_norm_f32(x, dst, ncols, eps, item_ct1,
 | |
|                                                 s_sum_acc_ct1.get_pointer(), WARP_SIZE);
 | |
|                     });
 | |
|         });
 | |
|     } else {
 | |
|         const int work_group_size = g_work_group_size;
 | |
|         const sycl::range<3> block_dims(1, 1, work_group_size);
 | |
|         /*
 | |
|         DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         stream->submit([&](sycl::handler &cgh) {
 | |
|             sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
 | |
|                                                          cgh);
 | |
| 
 | |
|             cgh.parallel_for(
 | |
|                 sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
 | |
|                                   block_dims),
 | |
|                 [=](sycl::nd_item<3> item_ct1)
 | |
|                     [[intel::reqd_sub_group_size(32)]] {
 | |
|                         rms_norm_f32(x, dst, ncols, eps, item_ct1,
 | |
|                                            s_sum_acc_ct1.get_pointer(), work_group_size);
 | |
|                     });
 | |
|         });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
 | |
|                                    const int ky, const int kx_padded,
 | |
|                                    dpct::queue_ptr stream) {
 | |
|     const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
 | |
|     const sycl::range<3> num_blocks(1, ky, block_num_x);
 | |
|     const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(num_blocks * block_size, block_size),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
 | |
| static void dequantize_block_sycl(const void *__restrict__ vx,
 | |
|                                   dst_t *__restrict__ y, const int k,
 | |
|                                   dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(
 | |
|                 sycl::range<3>(1, 1, num_blocks) *
 | |
|                     sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
 | |
|                 sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 dequantize_block<qk, qr, dequantize_kernel>(vx, y, k, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <typename dst_t>
 | |
| static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
 | |
|                                      dpct::queue_ptr stream) {
 | |
|     const int nb = k / QK_K;
 | |
| #if QK_K == 256
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
 | |
|                                                    sycl::range<3>(1, 1, 64),
 | |
|                                                sycl::range<3>(1, 1, 64)),
 | |
|                              [=](sycl::nd_item<3> item_ct1) {
 | |
|                                  dequantize_block_q2_K(vx, y, item_ct1);
 | |
|                              });
 | |
|     }
 | |
| #else
 | |
|     dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename dst_t>
 | |
| static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
 | |
|                                      dpct::queue_ptr stream) {
 | |
|     const int nb = k / QK_K;
 | |
| #if QK_K == 256
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
 | |
|                                                    sycl::range<3>(1, 1, 64),
 | |
|                                                sycl::range<3>(1, 1, 64)),
 | |
|                              [=](sycl::nd_item<3> item_ct1) {
 | |
|                                  dequantize_block_q3_K(vx, y, item_ct1);
 | |
|                              });
 | |
|     }
 | |
| #else
 | |
|     dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename dst_t>
 | |
| static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
 | |
|                                      dpct::queue_ptr stream) {
 | |
|     const int nb = k / QK_K;
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
 | |
|                                                    sycl::range<3>(1, 1, 32),
 | |
|                                                sycl::range<3>(1, 1, 32)),
 | |
|                              [=](sycl::nd_item<3> item_ct1) {
 | |
|                                  dequantize_block_q4_K(vx, y, item_ct1);
 | |
|                              });
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <typename dst_t>
 | |
| static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
 | |
|                                      dpct::queue_ptr stream) {
 | |
|     const int nb = k / QK_K;
 | |
| #if QK_K == 256
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
 | |
|                                                    sycl::range<3>(1, 1, 64),
 | |
|                                                sycl::range<3>(1, 1, 64)),
 | |
|                              [=](sycl::nd_item<3> item_ct1) {
 | |
|                                  dequantize_block_q5_K(vx, y, item_ct1);
 | |
|                              });
 | |
|     }
 | |
| #else
 | |
|     dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename dst_t>
 | |
| static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
 | |
|                                      dpct::queue_ptr stream) {
 | |
|     const int nb = k / QK_K;
 | |
| #if QK_K == 256
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
 | |
|                                                    sycl::range<3>(1, 1, 64),
 | |
|                                                sycl::range<3>(1, 1, 64)),
 | |
|                              [=](sycl::nd_item<3> item_ct1) {
 | |
|                                  dequantize_block_q6_K(vx, y, item_ct1);
 | |
|                              });
 | |
|     }
 | |
| #else
 | |
|     dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             return dequantize_row_q2_K_sycl;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             return dequantize_row_q3_K_sycl;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             return dequantize_row_q4_K_sycl;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             return dequantize_row_q5_K_sycl;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return dequantize_row_q6_K_sycl;
 | |
|         case GGML_TYPE_F32:
 | |
|             return dequantize_block_sycl<1, 1, convert_f32>;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             return dequantize_row_q2_K_sycl;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             return dequantize_row_q3_K_sycl;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             return dequantize_row_q4_K_sycl;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             return dequantize_row_q5_K_sycl;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return dequantize_row_q6_K_sycl;
 | |
|         case GGML_TYPE_F16:
 | |
|             return dequantize_block_sycl<1, 1, convert_f16>;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
 | |
|                     vx, y, dst, ncols, nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, ny, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2 / K_QUANTS_PER_ITERATION;
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, ny, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2 / K_QUANTS_PER_ITERATION;
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, ny, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const sycl::range<3> block_dims(1, 1, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
 | |
|                                              float *dst, const int ncols,
 | |
|                                              const int nrows,
 | |
|                                              dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % QK_K == 0);
 | |
|     const int ny = 2 / K_QUANTS_PER_ITERATION;
 | |
|     const int block_num_y = (nrows + ny - 1) / ny;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, ny, 32);
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|             dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
 | |
|                                          float *dst, const int ncols,
 | |
|                                          const int nrows,
 | |
|                                          dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
 | |
|     const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|     const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|     const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
 | |
|                                                           nrows, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <int qk, int qi, typename block_q_t, int vdr,
 | |
|           vec_dot_q_sycl_t vec_dot_q_sycl>
 | |
| static void mul_mat_vec_q_sycl_submitter(const void *vx, const void *vy,
 | |
|                                          float *dst, const int ncols,
 | |
|                                          const int nrows,
 | |
|                                          dpct::queue_ptr stream) {
 | |
|   GGML_ASSERT(ncols % QK4_0 == 0);
 | |
|   const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
 | |
|   const sycl::range<3> block_nums(1, 1, block_num_y);
 | |
|   const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
 | |
|   stream->parallel_for(
 | |
|       sycl::nd_range<3>(block_nums * block_dims, block_dims), [=
 | |
|   ](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|         mul_mat_vec_q<qk, qi, block_q_t, vdr, vec_dot_q_sycl>(
 | |
|             vx, vy, dst, ncols, nrows, item_ct1);
 | |
|       });
 | |
| }
 | |
| 
 | |
| int get_device_index_by_id(int id){
 | |
|     int res = g_sycl_device_id2index[id].index;
 | |
|     // GGML_SYCL_DEBUG("get_device_index_by_id id=%d device_index=%d\n", id, res);
 | |
|     GGML_ASSERT(res>=0);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| int get_device_id_by_index(int index){
 | |
|     int res = g_device_caps[index].device_id;
 | |
|     GGML_ASSERT(res>=0);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| int get_current_device_index(){
 | |
|     return get_device_index_by_id(dpct::dev_mgr::instance().current_device_id());
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q4_0_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q4_0_RDNA2;
 | |
|         nwarps = NWARPS_Q4_0_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q4_0_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q4_0_RDNA1;
 | |
|         nwarps = NWARPS_Q4_0_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q4_0_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q4_0_AMPERE;
 | |
|         nwarps = NWARPS_Q4_0_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q4_0_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q4_0_PASCAL;
 | |
|         nwarps = NWARPS_Q4_0_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:20: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q4_0<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_qs_q4_0_acc_ct1.get_pointer(),
 | |
|                             tile_x_d_q4_0_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:21: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q4_0<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_qs_q4_0_acc_ct1.get_pointer(),
 | |
|                             tile_x_d_q4_0_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q4_1_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q4_1_RDNA2;
 | |
|         nwarps = NWARPS_Q4_1_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q4_1_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q4_1_RDNA1;
 | |
|         nwarps = NWARPS_Q4_1_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q4_1_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q4_1_AMPERE;
 | |
|         nwarps = NWARPS_Q4_1_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q4_1_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q4_1_PASCAL;
 | |
|         nwarps = NWARPS_Q4_1_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:22: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q4_1<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_qs_q4_1_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q4_1_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:23: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q4_1<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_qs_q4_1_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q4_1_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q5_0_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q5_0_RDNA2;
 | |
|         nwarps = NWARPS_Q5_0_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q5_0_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q5_0_RDNA1;
 | |
|         nwarps = NWARPS_Q5_0_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q5_0_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q5_0_AMPERE;
 | |
|         nwarps = NWARPS_Q5_0_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q5_0_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q5_0_PASCAL;
 | |
|         nwarps = NWARPS_Q5_0_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:24: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q5_0<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q5_0_acc_ct1.get_pointer(),
 | |
|                             tile_x_d_q5_0_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:25: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q5_0<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q5_0_acc_ct1.get_pointer(),
 | |
|                             tile_x_d_q5_0_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q5_1_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q5_1_RDNA2;
 | |
|         nwarps = NWARPS_Q5_1_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q5_1_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q5_1_RDNA1;
 | |
|         nwarps = NWARPS_Q5_1_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q5_1_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q5_1_AMPERE;
 | |
|         nwarps = NWARPS_Q5_1_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q5_1_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q5_1_PASCAL;
 | |
|         nwarps = NWARPS_Q5_1_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:26: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q5_1<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q5_1_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q5_1_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:27: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q5_1<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q5_1_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q5_1_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q8_0_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q8_0_RDNA2;
 | |
|         nwarps = NWARPS_Q8_0_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q8_0_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q8_0_RDNA1;
 | |
|         nwarps = NWARPS_Q8_0_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q8_0_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q8_0_AMPERE;
 | |
|         nwarps = NWARPS_Q8_0_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q8_0_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q8_0_PASCAL;
 | |
|         nwarps = NWARPS_Q8_0_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:28: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q8_0<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_qs_q8_0_acc_ct1.get_pointer(),
 | |
|                             tile_x_d_q8_0_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:29: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q8_0<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_qs_q8_0_acc_ct1.get_pointer(),
 | |
|                             tile_x_d_q8_0_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q2_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q2_K_RDNA2;
 | |
|         nwarps = NWARPS_Q2_K_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q2_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q2_K_RDNA1;
 | |
|         nwarps = NWARPS_Q2_K_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q2_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q2_K_AMPERE;
 | |
|         nwarps = NWARPS_Q2_K_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q2_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q2_K_PASCAL;
 | |
|         nwarps = NWARPS_Q2_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:30: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q2_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q2_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q2_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_q2_K_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:31: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q2_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q2_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q2_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_q2_K_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
| #if QK_K == 256
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q3_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q3_K_RDNA2;
 | |
|         nwarps = NWARPS_Q3_K_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q3_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q3_K_RDNA1;
 | |
|         nwarps = NWARPS_Q3_K_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q3_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q3_K_AMPERE;
 | |
|         nwarps = NWARPS_Q3_K_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q3_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q3_K_PASCAL;
 | |
|         nwarps = NWARPS_Q3_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:32: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q3_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q3_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q3_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_qh_q3_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_q3_K_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:33: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q3_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q3_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q3_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_qh_q3_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_q3_K_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q4_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q4_K_RDNA2;
 | |
|         nwarps = NWARPS_Q4_K_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q4_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q4_K_RDNA1;
 | |
|         nwarps = NWARPS_Q4_K_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q4_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q4_K_AMPERE;
 | |
|         nwarps = NWARPS_Q4_K_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q4_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q4_K_PASCAL;
 | |
|         nwarps = NWARPS_Q4_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:34: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q4_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q4_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q4_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_q4_K_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:35: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q4_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q4_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q4_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_q4_K_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q5_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q5_K_RDNA2;
 | |
|         nwarps = NWARPS_Q5_K_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q5_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q5_K_RDNA1;
 | |
|         nwarps = NWARPS_Q5_K_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q5_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q5_K_AMPERE;
 | |
|         nwarps = NWARPS_Q5_K_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q5_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q5_K_PASCAL;
 | |
|         nwarps = NWARPS_Q5_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:36: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q5_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q5_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q5_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_q5_K_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:37: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q5_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_q5_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_q5_K_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_q5_K_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy,
 | |
|                                         float *dst, const int ncols_x,
 | |
|                                         const int nrows_x, const int ncols_y,
 | |
|                                         const int nrows_y, const int nrows_dst,
 | |
|                                         dpct::queue_ptr stream) try {
 | |
| 
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     const int compute_capability = g_device_caps[id].cc;
 | |
| 
 | |
|     int mmq_x, mmq_y, nwarps;
 | |
|     if (compute_capability >= VER_GEN13) {
 | |
|         mmq_x  =  MMQ_X_Q6_K_RDNA2;
 | |
|         mmq_y  =  MMQ_Y_Q6_K_RDNA2;
 | |
|         nwarps = NWARPS_Q6_K_RDNA2;
 | |
|     } else if (compute_capability >= VER_GEN12) {
 | |
|         mmq_x  =  MMQ_X_Q6_K_RDNA1;
 | |
|         mmq_y  =  MMQ_Y_Q6_K_RDNA1;
 | |
|         nwarps = NWARPS_Q6_K_RDNA1;
 | |
|     } else if (compute_capability >= VER_GEN9) {
 | |
|         mmq_x  =  MMQ_X_Q6_K_AMPERE;
 | |
|         mmq_y  =  MMQ_Y_Q6_K_AMPERE;
 | |
|         nwarps = NWARPS_Q6_K_AMPERE;
 | |
|     } else if (compute_capability >= VER_4VEC) {
 | |
|         mmq_x  =  MMQ_X_Q6_K_PASCAL;
 | |
|         mmq_y  =  MMQ_Y_Q6_K_PASCAL;
 | |
|         nwarps = NWARPS_Q6_K_PASCAL;
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
 | |
|     const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
 | |
|     const sycl::range<3> block_nums(1, block_num_y, block_num_x);
 | |
|     const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
 | |
| 
 | |
|     if (nrows_x % mmq_y == 0) {
 | |
|         const bool need_check = false;
 | |
|         /*
 | |
|         DPCT1049:38: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q6_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     } else {
 | |
|         const bool need_check = true;
 | |
|         /*
 | |
|         DPCT1049:39: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             stream->submit([&](sycl::handler &cgh) {
 | |
|                 sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
 | |
|                     cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
 | |
|                     sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
 | |
|                 sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE), cgh);
 | |
|                 sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
 | |
|                     sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
 | |
| 
 | |
|                 cgh.parallel_for(
 | |
|                     sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                     [=](sycl::nd_item<3> item_ct1) {
 | |
|                         mul_mat_q6_K<need_check>(
 | |
|                             vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
 | |
|                             nrows_dst, item_ct1,
 | |
|                             tile_x_ql_acc_ct1.get_pointer(),
 | |
|                             tile_x_dm_acc_ct1.get_pointer(),
 | |
|                             tile_x_sc_acc_ct1.get_pointer(),
 | |
|                             tile_y_qs_acc_ct1.get_pointer(),
 | |
|                             tile_y_ds_acc_ct1.get_pointer());
 | |
|                     });
 | |
|             });
 | |
|         }
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
 | |
|                                            float *dst, const int ncols_x,
 | |
|                                            const int nrows_x,
 | |
|                                            const int nchannels_x,
 | |
|                                            const int nchannels_y,
 | |
|                                            dpct::queue_ptr stream) {
 | |
| 
 | |
|     const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
 | |
|     const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
 | |
|                                      nchannels_y, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_mul_mat_vec_nc_f16_f32_sycl(
 | |
|     const void *vx, const float *y, float *dst, const int ncols_x,
 | |
|     const int nrows_x, const int row_stride_x, const int nchannels_x,
 | |
|     const int nchannels_y, const int channel_stride_x, dpct::queue_ptr stream) {
 | |
| 
 | |
|     const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
 | |
|     const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
 | |
|                                        row_stride_x, channel_stride_x,
 | |
|                                        nchannels_y / nchannels_x, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
 | |
|                                   const int ne00, const int ne01,
 | |
|                                   const int ne02, const int nb00,
 | |
|                                   const int nb01, const int nb02,
 | |
|                                   const int nb03, const int ne10,
 | |
|                                   const int ne11, const int ne12,
 | |
|                                   const int nb10, const int nb11,
 | |
|                                   const int nb12, const int nb13,
 | |
|                                   dpct::queue_ptr stream) {
 | |
| 
 | |
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | |
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | |
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | |
|                                            item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
 | |
|                                   const int ne00, const int ne01,
 | |
|                                   const int ne02, const int nb00,
 | |
|                                   const int nb01, const int nb02,
 | |
|                                   const int nb03, const int ne10,
 | |
|                                   const int ne11, const int ne12,
 | |
|                                   const int nb10, const int nb11,
 | |
|                                   const int nb12, const int nb13,
 | |
|                                   dpct::queue_ptr stream) {
 | |
| 
 | |
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | |
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | |
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | |
|                                            item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
 | |
|                                    const int ne00, const int ne01,
 | |
|                                    const int ne02, const int nb00,
 | |
|                                    const int nb01, const int nb02,
 | |
|                                    const int nb03, const int ne10,
 | |
|                                    const int ne11, const int ne12,
 | |
|                                    const int nb10, const int nb11,
 | |
|                                    const int nb12, const int nb13,
 | |
|                                    dpct::queue_ptr stream) {
 | |
| 
 | |
|     GGML_ASSERT(ne % QK8_0 == 0);
 | |
|     const int num_blocks = ne / QK8_0;
 | |
|     stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
 | |
|                                            sycl::range<3>(1, 1, 1)),
 | |
|                          [=](sycl::nd_item<3> item_ct1) {
 | |
|                              cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
 | |
|                                  cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | |
|                                  nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | |
|                                  item_ct1);
 | |
|                          });
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
 | |
|                                    const int ne00, const int ne01,
 | |
|                                    const int ne02, const int nb00,
 | |
|                                    const int nb01, const int nb02,
 | |
|                                    const int nb03, const int ne10,
 | |
|                                    const int ne11, const int ne12,
 | |
|                                    const int nb10, const int nb11,
 | |
|                                    const int nb12, const int nb13,
 | |
|                                    dpct::queue_ptr stream) {
 | |
| 
 | |
|     GGML_ASSERT(ne % QK4_0 == 0);
 | |
|     const int num_blocks = ne / QK4_0;
 | |
|     stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
 | |
|                                            sycl::range<3>(1, 1, 1)),
 | |
|                          [=](sycl::nd_item<3> item_ct1) {
 | |
|                              cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
 | |
|                                  cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | |
|                                  nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | |
|                                  item_ct1);
 | |
|                          });
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
 | |
|                                    const int ne00, const int ne01,
 | |
|                                    const int ne02, const int nb00,
 | |
|                                    const int nb01, const int nb02,
 | |
|                                    const int nb03, const int ne10,
 | |
|                                    const int ne11, const int ne12,
 | |
|                                    const int nb10, const int nb11,
 | |
|                                    const int nb12, const int nb13,
 | |
|                                    dpct::queue_ptr stream) {
 | |
| 
 | |
|     GGML_ASSERT(ne % QK4_1 == 0);
 | |
|     const int num_blocks = ne / QK4_1;
 | |
|     stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
 | |
|                                            sycl::range<3>(1, 1, 1)),
 | |
|                          [=](sycl::nd_item<3> item_ct1) {
 | |
|                              cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
 | |
|                                  cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | |
|                                  nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | |
|                                  item_ct1);
 | |
|                          });
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
 | |
|                                   const int ne00, const int ne01,
 | |
|                                   const int ne02, const int nb00,
 | |
|                                   const int nb01, const int nb02,
 | |
|                                   const int nb03, const int ne10,
 | |
|                                   const int ne11, const int ne12,
 | |
|                                   const int nb10, const int nb11,
 | |
|                                   const int nb12, const int nb13,
 | |
|                                   dpct::queue_ptr stream) {
 | |
| 
 | |
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | |
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | |
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | |
|                                            item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
 | |
|                                   const int ne00, const int ne01,
 | |
|                                   const int ne02, const int nb00,
 | |
|                                   const int nb01, const int nb02,
 | |
|                                   const int nb03, const int ne10,
 | |
|                                   const int ne11, const int ne12,
 | |
|                                   const int nb10, const int nb11,
 | |
|                                   const int nb12, const int nb13,
 | |
|                                   dpct::queue_ptr stream) {
 | |
| 
 | |
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | |
|     {
 | |
|         // dpct::has_capability_or_fail(stream->get_device(),
 | |
|         //                              {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | |
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | |
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | |
|                                            item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
 | |
|                                   const int ne00, const int ne01,
 | |
|                                   const int ne02, const int nb00,
 | |
|                                   const int nb01, const int nb02,
 | |
|                                   const int nb03, const int ne10,
 | |
|                                   const int ne11, const int ne12,
 | |
|                                   const int nb10, const int nb11,
 | |
|                                   const int nb12, const int nb13,
 | |
|                                   dpct::queue_ptr stream) {
 | |
| 
 | |
|     const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
 | |
|     {
 | |
|         // dpct::has_capability_or_fail(stream->get_device(),
 | |
|         //                              {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                                   sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
 | |
|                               sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
 | |
|                                            nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
 | |
|                                            item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void scale_f32_sycl(const float *x, float *dst, const float scale,
 | |
|                            const int k, dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             scale_f32(x, dst, scale, k, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| static void clamp_f32_sycl(const float *x, float *dst, const float min,
 | |
|                            const float max, const int k,
 | |
|                            dpct::queue_ptr stream) {
 | |
|     const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
 | |
|     stream->parallel_for(
 | |
|         sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
 | |
|                               sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
 | |
|                           sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
 | |
|         [=](sycl::nd_item<3> item_ct1) {
 | |
|             clamp_f32(x, dst, min, max, k, item_ct1);
 | |
|         });
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| static void rope_sycl(const T *x, T *dst, int ncols, int nrows,
 | |
|                       const int32_t *pos, float freq_scale, int p_delta_rows,
 | |
|                       float freq_base, float ext_factor, float attn_factor,
 | |
|                       rope_corr_dims corr_dims, dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % 2 == 0);
 | |
|     const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
 | |
|     const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
 | |
|     const sycl::range<3> block_nums(1, num_blocks_x, nrows);
 | |
|     if (pos == nullptr) {
 | |
|         /*
 | |
|         DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 rope<T, false>(x, dst, ncols, pos, freq_scale, p_delta_rows,
 | |
|                                freq_base, ext_factor, attn_factor, corr_dims,
 | |
|                                item_ct1);
 | |
|             });
 | |
|     } else {
 | |
|         /*
 | |
|         DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 rope<T, true>(x, dst, ncols, pos, freq_scale, p_delta_rows,
 | |
|                               freq_base, ext_factor, attn_factor, corr_dims,
 | |
|                               item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
 | |
|                            const int32_t *pos, float freq_scale,
 | |
|                            int p_delta_rows, float freq_base, float ext_factor,
 | |
|                            float attn_factor, rope_corr_dims corr_dims,
 | |
|                            dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % 2 == 0);
 | |
|     const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
 | |
|     const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
 | |
|     const sycl::range<3> block_nums(1, num_blocks_x, nrows);
 | |
| 
 | |
|     const float theta_scale = powf(freq_base, -2.0f/n_dims);
 | |
|     const float inv_ndims = -1.0f / n_dims;
 | |
| 
 | |
|     if (pos == nullptr) {
 | |
|         /*
 | |
|         DPCT1049:42: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 rope_neox<T, false>(x, dst, ncols, n_dims, pos, freq_scale,
 | |
|                                     p_delta_rows, ext_factor, attn_factor,
 | |
|                                     corr_dims, theta_scale, inv_ndims,
 | |
|                                     item_ct1);
 | |
|             });
 | |
|     } else {
 | |
|         /*
 | |
|         DPCT1049:43: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 rope_neox<T, true>(x, dst, ncols, n_dims, pos, freq_scale,
 | |
|                                    p_delta_rows, ext_factor, attn_factor,
 | |
|                                    corr_dims, theta_scale, inv_ndims, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rope_glm_f32_sycl(const float *x, float *dst, int ncols, int nrows,
 | |
|                               const int32_t *pos, float freq_scale,
 | |
|                               int p_delta_rows, float freq_base, int n_ctx,
 | |
|                               dpct::queue_ptr stream) {
 | |
|     GGML_ASSERT(ncols % 4 == 0);
 | |
|     const sycl::range<3> block_dims(1, 1, SYCL_ROPE_BLOCK_SIZE / 4);
 | |
|     const int num_blocks_x = (ncols + SYCL_ROPE_BLOCK_SIZE - 1) / SYCL_ROPE_BLOCK_SIZE;
 | |
|     const sycl::range<3> block_nums(1, nrows, num_blocks_x);
 | |
|     stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                          [=](sycl::nd_item<3> item_ct1) {
 | |
|                              rope_glm_f32(x, dst, ncols, pos, freq_scale,
 | |
|                                           p_delta_rows, freq_base, n_ctx,
 | |
|                                           item_ct1);
 | |
|                          });
 | |
| }
 | |
| 
 | |
| static void alibi_f32_sycl(const float *x, float *dst, const int ncols,
 | |
|                            const int nrows, const int k_rows,
 | |
|                            const int n_heads_log2_floor, const float m0,
 | |
|                            const float m1, dpct::queue_ptr stream) {
 | |
|     const sycl::range<3> block_dims(1, 1, SYCL_ALIBI_BLOCK_SIZE);
 | |
|     const int num_blocks_x = (ncols + SYCL_ALIBI_BLOCK_SIZE - 1) / (SYCL_ALIBI_BLOCK_SIZE);
 | |
|     const sycl::range<3> block_nums(1, nrows, num_blocks_x);
 | |
|     stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                          [=](sycl::nd_item<3> item_ct1) {
 | |
|                              alibi_f32(x, dst, ncols, k_rows,
 | |
|                                        n_heads_log2_floor, m0, m1, item_ct1);
 | |
|                          });
 | |
| }
 | |
| 
 | |
| static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
 | |
|                               const int nrows, dpct::queue_ptr stream) {
 | |
|     const sycl::range<3> block_dims(1, 1, WARP_SIZE);
 | |
|     const sycl::range<3> block_nums(1, nrows, 1);
 | |
|     stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                          [=](sycl::nd_item<3> item_ct1)
 | |
|                              [[intel::reqd_sub_group_size(32)]] {
 | |
|                                  k_sum_rows_f32(x, dst, ncols, item_ct1);
 | |
|                              });
 | |
| }
 | |
| 
 | |
| static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
 | |
|                                  const int nrows, ggml_sort_order order,
 | |
|                                  dpct::queue_ptr stream) {
 | |
|     // bitonic sort requires ncols to be power of 2
 | |
|     GGML_ASSERT((ncols & (ncols - 1)) == 0);
 | |
| 
 | |
|     const sycl::range<3> block_dims(1, 1, ncols);
 | |
|     const sycl::range<3> block_nums(1, nrows, 1);
 | |
|     if (order == GGML_SORT_ASC) {
 | |
|         /*
 | |
|         DPCT1049:44: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 k_argsort_f32_i32<GGML_SORT_ASC>(x, dst, ncols, item_ct1);
 | |
|             });
 | |
|     } else if (order == GGML_SORT_DESC) {
 | |
|         /*
 | |
|         DPCT1049:45: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 k_argsort_f32_i32<GGML_SORT_DESC>(x, dst, ncols, item_ct1);
 | |
|             });
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void diag_mask_inf_f32_sycl(const float *x, float *dst,
 | |
|                                    const int ncols_x, const int nrows_x,
 | |
|                                    const int rows_per_channel, const int n_past,
 | |
|                                    dpct::queue_ptr stream) {
 | |
|     const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
 | |
|     const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
 | |
|     const sycl::range<3> block_nums(1, block_num_x, nrows_x);
 | |
|     stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|                          [=](sycl::nd_item<3> item_ct1) {
 | |
|                              diag_mask_inf_f32(x, dst, ncols_x,
 | |
|                                                rows_per_channel, n_past,
 | |
|                                                item_ct1);
 | |
|                          });
 | |
| }
 | |
| 
 | |
| static void soft_max_f32_sycl(const float *x, const float *y, float *dst,
 | |
|                               const int ncols_x, const int nrows_x,
 | |
|                               const int nrows_y, const float scale,
 | |
|                               dpct::queue_ptr stream) {
 | |
|     int nth = WARP_SIZE;
 | |
|     while (nth < ncols_x && nth < SYCL_SOFT_MAX_BLOCK_SIZE) nth *= 2;
 | |
|     const sycl::range<3> block_dims(1, 1, nth);
 | |
|     const sycl::range<3> block_nums(1, 1, nrows_x);
 | |
|     /*
 | |
|     DPCT1049:46: The work-group size passed to the SYCL kernel may exceed the
 | |
|     limit. To get the device limit, query info::device::max_work_group_size.
 | |
|     Adjust the work-group size if needed.
 | |
|     */
 | |
|     stream->submit([&](sycl::handler &cgh) {
 | |
|         /*
 | |
|         DPCT1101:96: 'SYCL_SOFT_MAX_BLOCK_SIZE/WARP_SIZE' expression was
 | |
|         replaced with a value. Modify the code to use the original expression,
 | |
|         provided in comments, if it is correct.
 | |
|         */
 | |
|         sycl::local_accessor<float, 1> buf_acc_ct1(
 | |
|             sycl::range<1>(32 /*SYCL_SOFT_MAX_BLOCK_SIZE/WARP_SIZE*/), cgh);
 | |
| 
 | |
|         cgh.parallel_for(
 | |
|             sycl::nd_range<3>(block_nums * block_dims, block_dims),
 | |
|             [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
 | |
|                 soft_max_f32(x, y, dst, ncols_x, nrows_y, scale, item_ct1,
 | |
|                              buf_acc_ct1.get_pointer());
 | |
|             });
 | |
|     });
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| static void im2col_sycl(const float *x, T *dst, int IW, int IH,
 | |
|                                 int OW, int OH, int KW, int KH, int IC,
 | |
|                                 int offset_delta, int s0, int s1, int p0,
 | |
|                                 int p1, int d0, int d1,
 | |
|                                 dpct::queue_ptr stream) {
 | |
|     const int parallel_elements = OW * KW * KH;
 | |
|     const int num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
 | |
|     sycl::range<3> block_nums(IC, OH, num_blocks);
 | |
|     {
 | |
|         dpct::has_capability_or_fail(stream->get_device(),
 | |
|                                      {sycl::aspect::fp16});
 | |
| 
 | |
|         stream->parallel_for(
 | |
|             sycl::nd_range<3>(block_nums *
 | |
|                                   sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
 | |
|                               sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
 | |
|             [=](sycl::nd_item<3> item_ct1) {
 | |
|                 im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
 | |
|                                parallel_elements, (IC * KH * KW), s0, s1, p0,
 | |
|                                p1, d0, d1, item_ct1);
 | |
|             });
 | |
|     }
 | |
| }
 | |
| 
 | |
| // buffer pool for sycl
 | |
| #define MAX_SYCL_BUFFERS 256
 | |
| 
 | |
| struct scoped_spin_lock {
 | |
|     std::atomic_flag& lock;
 | |
|     scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
 | |
|         while (lock.test_and_set(std::memory_order_acquire)) {
 | |
|             ; // spin
 | |
|         }
 | |
|     }
 | |
|     ~scoped_spin_lock() {
 | |
|         lock.clear(std::memory_order_release);
 | |
|     }
 | |
|     scoped_spin_lock(const scoped_spin_lock&) = delete;
 | |
|     scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
 | |
| };
 | |
| 
 | |
| static std::atomic_flag g_sycl_pool_lock = ATOMIC_FLAG_INIT;
 | |
| 
 | |
| // #define DEBUG_SYCL_MALLOC
 | |
| struct sycl_buffer {
 | |
|     void * ptr = nullptr;
 | |
|     size_t size = 0;
 | |
| };
 | |
| 
 | |
| static sycl_buffer g_sycl_buffer_pool[GGML_SYCL_MAX_DEVICES][MAX_SYCL_BUFFERS];
 | |
| static size_t g_sycl_pool_size[GGML_SYCL_MAX_DEVICES] = {0};
 | |
| 
 | |
| static void *ggml_sycl_pool_malloc_leg(size_t size, size_t *actual_size) try {
 | |
|     scoped_spin_lock lock(g_sycl_pool_lock);
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg index %d\n", id);
 | |
| #ifdef DEBUG_SYCL_MALLOC
 | |
|     int nnz = 0;
 | |
|     size_t max_size = 0;
 | |
| #endif
 | |
|     size_t best_diff = 1ull << 36;
 | |
|     int ibest = -1;
 | |
|     for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
 | |
|         sycl_buffer& b = g_sycl_buffer_pool[id][i];
 | |
|         if (b.ptr != nullptr) {
 | |
| #ifdef DEBUG_SYCL_MALLOC
 | |
|             ++nnz;
 | |
|             if (b.size > max_size) max_size = b.size;
 | |
| #endif
 | |
|             if (b.size >= size) {
 | |
|                 size_t diff = b.size - size;
 | |
|                 if (diff < best_diff) {
 | |
|                     best_diff = diff;
 | |
|                     ibest = i;
 | |
|                     if (!best_diff) {
 | |
|                         void * ptr = b.ptr;
 | |
|                         *actual_size = b.size;
 | |
|                         b.ptr = nullptr;
 | |
|                         b.size = 0;
 | |
|                         // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 1 %p\n", ptr);
 | |
|                         return ptr;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (ibest >= 0) {
 | |
|         sycl_buffer& b = g_sycl_buffer_pool[id][ibest];
 | |
|         void * ptr = b.ptr;
 | |
|         *actual_size = b.size;
 | |
|         b.ptr = nullptr;
 | |
|         b.size = 0;
 | |
|         // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 2 %p\n", ptr);
 | |
|         return ptr;
 | |
|     }
 | |
|     void * ptr;
 | |
|     size_t look_ahead_size = (size_t) (1.05 * size);
 | |
|     look_ahead_size = 256 * ((look_ahead_size + 255)/256);
 | |
| 
 | |
|     const dpct::queue_ptr stream = g_syclStreams[id][0];
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device(
 | |
|                              look_ahead_size, *stream)));
 | |
|     *actual_size = look_ahead_size;
 | |
|     g_sycl_pool_size[id] += look_ahead_size;
 | |
| 
 | |
| #ifdef DEBUG_SYCL_MALLOC
 | |
|     fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
 | |
|             (uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
 | |
| #endif
 | |
|     // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return %p\n", ptr);
 | |
|     return ptr;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_pool_free_leg(void *ptr, size_t size) try {
 | |
|     scoped_spin_lock lock(g_sycl_pool_lock);
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
| 
 | |
|     const dpct::queue_ptr stream = g_syclStreams[id][0];
 | |
|     for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
 | |
|         sycl_buffer& b = g_sycl_buffer_pool[id][i];
 | |
|         if (b.ptr == nullptr) {
 | |
|             b.ptr = ptr;
 | |
|             b.size = size;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "WARNING: sycl buffer pool full, increase MAX_SYCL_BUFFERS\n");
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *stream)));
 | |
|     g_sycl_pool_size[id] -= size;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| // pool with virtual memory
 | |
| /*
 | |
| DPCT1082:64: Migration of CUmemGenericAllocationHandle type is not supported.
 | |
| */
 | |
| // static std::vector<CUmemGenericAllocationHandle>
 | |
| //     g_sycl_pool_handles[GGML_SYCL_MAX_DEVICES];
 | |
| static dpct::device_ptr g_sycl_pool_addr[GGML_SYCL_MAX_DEVICES] = {0};
 | |
| static size_t g_sycl_pool_used[GGML_SYCL_MAX_DEVICES] = {0};
 | |
| 
 | |
| static void *ggml_sycl_pool_malloc_vmm(size_t size, size_t *actual_size) try {
 | |
|     GGML_UNUSED(size);
 | |
|     GGML_UNUSED(actual_size);
 | |
|     return NULL;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_pool_free_vmm(void *ptr, size_t size) try {
 | |
|     scoped_spin_lock lock(g_sycl_pool_lock);
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = dpct::dev_mgr::instance().current_device_id()));
 | |
| 
 | |
| #ifdef DEBUG_SYCL_MALLOC
 | |
|     printf("sycl pool[%d]: freed %llu bytes at %llx\n", id, (unsigned long long) size, ptr);
 | |
| #endif
 | |
| 
 | |
|     g_sycl_pool_used[id] -= size;
 | |
| 
 | |
|     // all deallocations must be in reverse order of the allocations
 | |
|     GGML_ASSERT(ptr == (void *) (g_sycl_pool_addr[id] + g_sycl_pool_used[id]));
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void *ggml_sycl_pool_malloc(size_t size, size_t *actual_size) try {
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     if (g_device_caps[id].vmm) {
 | |
|         return ggml_sycl_pool_malloc_vmm(size, actual_size);
 | |
|     } else {
 | |
|         return ggml_sycl_pool_malloc_leg(size, actual_size);
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_pool_free(void *ptr, size_t size) try {
 | |
|     int id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
|     if (g_device_caps[id].vmm) {
 | |
|         ggml_sycl_pool_free_vmm(ptr, size);
 | |
|     } else {
 | |
|         ggml_sycl_pool_free_leg(ptr, size);
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| 
 | |
| template<typename T>
 | |
| struct sycl_pool_alloc {
 | |
|     T * ptr = nullptr;
 | |
|     size_t actual_size = 0;
 | |
| 
 | |
|     // size is in number of elements
 | |
|     T * alloc(size_t size) {
 | |
|         GGML_ASSERT(ptr == nullptr);
 | |
|         ptr = (T *) ggml_sycl_pool_malloc(size * sizeof(T), &this->actual_size);
 | |
|         // GGML_SYCL_DEBUG("alloc %lu return %p actual size=%lu\n", size * sizeof(T), ptr, this->actual_size);
 | |
|         return ptr;
 | |
|     }
 | |
| 
 | |
|     sycl_pool_alloc(size_t size) {
 | |
|         alloc(size);
 | |
|     }
 | |
| 
 | |
|     ~sycl_pool_alloc() {
 | |
|         if (ptr != nullptr) {
 | |
|             ggml_sycl_pool_free(ptr, actual_size);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     T * get() {
 | |
|         return ptr;
 | |
|     }
 | |
| 
 | |
|     sycl_pool_alloc() = default;
 | |
|     sycl_pool_alloc(const sycl_pool_alloc &) = delete;
 | |
|     sycl_pool_alloc(sycl_pool_alloc &&) = delete;
 | |
|     sycl_pool_alloc& operator=(const sycl_pool_alloc &) = delete;
 | |
|     sycl_pool_alloc& operator=(sycl_pool_alloc &&) = delete;
 | |
| };
 | |
| 
 | |
| static bool g_sycl_loaded = false;
 | |
| 
 | |
| bool ggml_sycl_loaded(void) {
 | |
|     return g_sycl_loaded;
 | |
| }
 | |
| 
 | |
| void ggml_backend_sycl_print_sycl_devices(){
 | |
|     int device_count = dpct::dev_mgr::instance().device_count();
 | |
|     fprintf(stderr, "found %d SYCL devices:\n", device_count);
 | |
|     for (int id = 0; id < device_count; ++id) {
 | |
|         dpct::device_info prop;
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
 | |
|             prop, dpct::dev_mgr::instance().get_device(id))));
 | |
|         sycl::device cur_device = dpct::dev_mgr::instance().get_device(id);
 | |
|         fprintf(stderr, "  Device %d: %s,\tcompute capability %d.%d,\n\tmax compute_units %d,\tmax work group size %d,\tmax sub group size %d,\tglobal mem size %lu\n", id,
 | |
|                 prop.get_name(), prop.get_major_version(),
 | |
|                 prop.get_minor_version(),
 | |
|                 prop.get_max_compute_units(),
 | |
|                 prop.get_max_work_group_size(),
 | |
|                 prop.get_max_sub_group_size(),
 | |
|                 prop.get_global_mem_size()
 | |
|                 );
 | |
|     }
 | |
|     // fprintf(stderr, "\n");
 | |
| }
 | |
| 
 | |
| int get_sycl_env(const char* env_name, int default_val){
 | |
|     char * user_device_string = getenv(env_name);
 | |
|     int user_number = default_val;
 | |
| 
 | |
|     unsigned n;
 | |
|     if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1) {
 | |
|             user_number = (int)n;
 | |
|         } else {
 | |
|             user_number=default_val;
 | |
|         }
 | |
|     return user_number;
 | |
| }
 | |
| 
 | |
| int get_work_group_size(int user_device_id){
 | |
|     dpct::device_info prop;
 | |
|     dpct::get_device_info(
 | |
|         prop,
 | |
|         dpct::dev_mgr::instance().get_device(user_device_id));
 | |
|     return prop.get_max_work_group_size();
 | |
| }
 | |
| 
 | |
| void ggml_init_sycl() try {
 | |
|     static bool initialized = false;
 | |
| 
 | |
|     if (!initialized) {
 | |
|         g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
 | |
| 
 | |
|         printf("GGML_SYCL_DEBUG=%d\n", g_ggml_sycl_debug);
 | |
| 
 | |
|         int user_device_id = get_sycl_env("GGML_SYCL_DEVICE", 0);
 | |
| 
 | |
|         if (CHECK_TRY_ERROR(g_all_sycl_device_count =
 | |
|                                  dpct::dev_mgr::instance().device_count()) !=
 | |
|             0) {
 | |
|             initialized = true;
 | |
|             g_sycl_loaded = false;
 | |
|             return;
 | |
|         }
 | |
|         GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
 | |
|         int64_t total_vram = 0;
 | |
| 
 | |
| #if defined(GGML_SYCL_F16)
 | |
|         fprintf(stderr, "%s: GGML_SYCL_F16:   yes\n", __func__);
 | |
| #else
 | |
|         fprintf(stderr, "%s: GGML_SYCL_F16:   no\n", __func__);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if defined(SYCL_USE_XMX)
 | |
|         fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
 | |
| #else
 | |
|         fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
 | |
| #endif
 | |
|         ggml_backend_sycl_print_sycl_devices();
 | |
|         for (int id = 0; id < GGML_SYCL_MAX_DEVICES; ++id) {
 | |
|             g_sycl_device_id2index[id].index = -1;
 | |
|             g_device_caps[id].vmm = 0;
 | |
|             g_device_caps[id].device_id = -1;
 | |
|             g_device_caps[id].cc = 0;
 | |
|             g_tensor_split[id] = 0;
 | |
|         }
 | |
| 
 | |
|         int device_inx = -1;
 | |
|         for (int id = 0; id < g_all_sycl_device_count; ++id) {
 | |
|             if(id!=user_device_id) continue;
 | |
| 
 | |
|             device_inx++;
 | |
| 
 | |
|             g_device_caps[device_inx].vmm = 0;
 | |
|             g_device_caps[device_inx].device_id = id;
 | |
|             g_sycl_device_id2index[id].index = device_inx;
 | |
| 
 | |
|             dpct::device_info prop;
 | |
|             SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
 | |
|                 prop, dpct::dev_mgr::instance().get_device(id))));
 | |
| 
 | |
|             g_tensor_split[device_inx] = total_vram;
 | |
|             total_vram += prop.get_global_mem_size();
 | |
| 
 | |
|             g_device_caps[device_inx].cc =
 | |
|                 100 * prop.get_major_version() + 10 * prop.get_minor_version();
 | |
| 
 | |
|         }
 | |
|         device_inx = -1;
 | |
|         for (int id = 0; id < g_all_sycl_device_count; ++id) {
 | |
|             if(id!=user_device_id) continue;
 | |
|             device_inx++;
 | |
|             g_tensor_split[device_inx] /= total_vram;
 | |
|         }
 | |
| 
 | |
|         device_inx = -1;
 | |
|         for (int id = 0; id < g_all_sycl_device_count; ++id) {
 | |
|             if(id!=user_device_id) continue;
 | |
|             device_inx++;
 | |
|             SYCL_CHECK(ggml_sycl_set_device(id));
 | |
| 
 | |
|             // create sycl streams
 | |
|             for (int is = 0; is < MAX_STREAMS; ++is) {
 | |
|                 /*
 | |
|                 DPCT1025:88: The SYCL queue is created ignoring the flag and
 | |
|                 priority options.
 | |
|                 */
 | |
|                 SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|                     g_syclStreams[device_inx][is] =
 | |
|                         dpct::get_current_device().create_queue()));
 | |
|             }
 | |
| 
 | |
|             const dpct::queue_ptr stream = g_syclStreams[device_inx][0];
 | |
|             // create sycl handle
 | |
|             SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[device_inx] =
 | |
|                                               stream));
 | |
|             /*
 | |
|             DPCT1027:89: The call to syclSetMathMode was replaced with 0
 | |
|             because this functionality is redundant in SYCL.
 | |
|             */
 | |
|             SYCL_CHECK(0);
 | |
|         }
 | |
| 
 | |
|         // configure logging to stdout
 | |
|         // SYCL_CHECK(syclLoggerConfigure(1, 1, 0, nullptr));
 | |
| 
 | |
|         //hardcode, force set to 1 device
 | |
|         g_device_count = 1;
 | |
|         ggml_sycl_set_main_device(user_device_id);
 | |
|         ggml_sycl_set_device(user_device_id);
 | |
|         g_work_group_size = get_work_group_size(user_device_id);
 | |
|         // fprintf(stderr, "Using Device %d\n", user_device_id);
 | |
| 
 | |
|         // for (int id = 0; id < g_all_sycl_device_count; ++id) {
 | |
|         //     GGML_SYCL_DEBUG("id=%d  g_device_caps[%d].device_id=%d g_sycl_device_id2index[%d].index=%d ", id, id,
 | |
|         //     g_device_caps[id].device_id, id, g_sycl_device_id2index[id].index);
 | |
|         // }
 | |
| 
 | |
|         initialized = true;
 | |
|         g_sycl_loaded = true;
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| 
 | |
| void ggml_sycl_set_tensor_split(const float * tensor_split) {
 | |
|     if (tensor_split == nullptr) {
 | |
|         return;
 | |
|     }
 | |
|     bool all_zero = true;
 | |
|     for (int i = 0; i < g_device_count; ++i) {
 | |
|         if (tensor_split[i] != 0.0f) {
 | |
|             all_zero = false;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (all_zero) {
 | |
|         return;
 | |
|     }
 | |
|     float split_sum = 0.0f;
 | |
|     for (int i = 0; i < g_device_count; ++i) {
 | |
|         g_tensor_split[i] = split_sum;
 | |
|         split_sum += tensor_split[i];
 | |
|     }
 | |
|     for (int i = 0; i < g_device_count; ++i) {
 | |
|         g_tensor_split[i] /= split_sum;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void *ggml_sycl_host_malloc(size_t size) try {
 | |
|     if (getenv("GGML_SYCL_NO_PINNED") != nullptr) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     void * ptr = nullptr;
 | |
|     //allow to use dpct::get_in_order_queue() for host malloc
 | |
|     dpct::err0 err = CHECK_TRY_ERROR(
 | |
|         ptr = (void *)sycl::malloc_host(size, dpct::get_in_order_queue()));
 | |
|     /*
 | |
|     DPCT1000:82: Error handling if-stmt was detected but could not be rewritten.
 | |
|     */
 | |
|     if (err != 0) {
 | |
|         // clear the error
 | |
|         /*
 | |
|         DPCT1026:83: The call to syclGetLastError was removed because this
 | |
|         functionality is redundant in SYCL.
 | |
|         */
 | |
|         /*
 | |
|         DPCT1001:81: The statement could not be removed.
 | |
|         */
 | |
|         fprintf(
 | |
|             stderr,
 | |
|             "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
 | |
|             /*
 | |
|             DPCT1009:84: SYCL uses exceptions to report errors and does not use
 | |
|             the error codes. The original code was commented out and a warning
 | |
|             string was inserted. You need to rewrite this code.
 | |
|             */
 | |
|             size / 1024.0 / 1024.0,
 | |
|             "syclGetErrorString is not supported" /*syclGetErrorString(err)*/);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_host_free(void *ptr) try {
 | |
|     //allow to use dpct::get_in_order_queue() for host malloc
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, dpct::get_in_order_queue())));
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
 | |
|                                           const struct ggml_tensor *src,
 | |
|                                           int64_t i3, int64_t i2,
 | |
|                                           int64_t i1_low, int64_t i1_high,
 | |
|                                           dpct::queue_ptr stream) try {
 | |
| 
 | |
|     dpct::memcpy_direction kind;
 | |
|     char * src_ptr;
 | |
|     if (src->backend == GGML_BACKEND_CPU) {
 | |
|         kind = dpct::host_to_device;
 | |
|         src_ptr = (char *) src->data;
 | |
|         // GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d  GGML_BACKEND_CPU src_ptr %p\n", src_ptr);
 | |
|     } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
 | |
|         GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
 | |
|         kind = dpct::device_to_device;
 | |
|         ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
 | |
|         int id;
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|             id = get_current_device_index()));
 | |
|         // GGML_SYCL_DEBUG("current device index %d\n", id);
 | |
|         src_ptr = (char *) extra->data_device[id];
 | |
|     } else {
 | |
|         // GGML_SYCL_DEBUG("GGML_ASSERT(false)\n");
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
|     char * dst_ptr = (char *) dst;
 | |
| 
 | |
|     GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
 | |
|     GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
 | |
|     const enum ggml_type type = src->type;
 | |
|     const int64_t ts = ggml_type_size(type);
 | |
|     const int64_t bs = ggml_blck_size(type);
 | |
|     int64_t i1_diff = i1_high - i1_low;
 | |
| 
 | |
|     const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
 | |
|     if (nb0 == ts && nb1 == ts*ne0/bs) {
 | |
|         // GGML_SYCL_DEBUG("stream->memcpy: dst_ptr=%p, x=%p, size=%lu\n", dst_ptr, x, i1_diff * nb1);
 | |
|         // return CHECK_TRY_ERROR(stream->memcpy(dst_ptr, x, i1_diff * nb1));
 | |
|         return CHECK_TRY_ERROR(dpct::async_dpct_memcpy(dst_ptr, x, i1_diff * nb1,
 | |
|                                     kind, *stream));
 | |
| 
 | |
|     } else if (nb0 == ts) {
 | |
|         return CHECK_TRY_ERROR(
 | |
|             dpct::async_dpct_memcpy(dst_ptr, ts * ne0 / bs, x, nb1,
 | |
|                                     ts * ne0 / bs, i1_diff, kind, *stream));
 | |
|     } else {
 | |
|         for (int64_t i1 = 0; i1 < i1_diff; i1++) {
 | |
|             const void * rx = (const void *) ((const char *) x + i1*nb1);
 | |
|             void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
 | |
|             // pretend the row is a matrix with cols=1
 | |
|             dpct::err0 r = CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
 | |
|                 rd, ts / bs, rx, nb0, ts / bs, ne0, kind, *stream));
 | |
|             /*
 | |
|             DPCT1001:85: The statement could not be removed.
 | |
|             */
 | |
|             /*
 | |
|             DPCT1000:86: Error handling if-stmt was detected but could not be
 | |
|             rewritten.
 | |
|             */
 | |
|             if (r != 0) return r;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_op_get_rows(const ggml_tensor *src0,
 | |
|                                   const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                   const float *src0_d, const float *src1_d,
 | |
|                                   float *dst_d, const dpct::queue_ptr &stream) {
 | |
| 
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | |
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
 | |
|     GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
 | |
|     GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
 | |
| 
 | |
|     const int32_t * src1_i32 = (const int32_t *) src1_d;
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_F16:
 | |
|             get_rows_sycl_float(src0, src1, dst, (const sycl::half *)src0_d,
 | |
|                                 src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_F32:
 | |
|             get_rows_sycl_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
 | |
|             break;
 | |
|         default:
 | |
|             // TODO: k-quants
 | |
|             fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
 | |
|             GGML_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <class op>
 | |
| inline void ggml_sycl_op_bin_bcast(const ggml_tensor *src0,
 | |
|                                    const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                    const float *src0_dd, const float *src1_dd,
 | |
|                                    float *dst_dd,
 | |
|                                    const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
 | |
|         op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
 | |
|         op()(src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
 | |
|              (sycl::half *)dst_dd, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
 | |
|         op()(src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
 | |
|              main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
 | |
|         op()(src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
 | |
|              main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
 | |
|         op()(src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
 | |
|              main_stream);
 | |
|     } else {
 | |
|         fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
 | |
|             ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_op_repeat(const ggml_tensor *src0,
 | |
|                                 const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                 const float *src0_d, const float *src1_d,
 | |
|                                 float *dst_d,
 | |
|                                 const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) src1_d;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_add(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                              ggml_tensor *dst, const float *src0_dd,
 | |
|                              const float *src1_dd, float *dst_dd,
 | |
|                              const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_acc(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                              ggml_tensor *dst, const float *src0_dd,
 | |
|                              const float *src1_dd, float *dst_dd,
 | |
|                              const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
 | |
| 
 | |
|     int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
 | |
|     int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
 | |
|     // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
 | |
|     int offset = dst->op_params[3] / 4; // offset in bytes
 | |
| 
 | |
|     acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_mul(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                              ggml_tensor *dst, const float *src0_dd,
 | |
|                              const float *src1_dd, float *dst_dd,
 | |
|                              const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_div(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                              ggml_tensor *dst, const float *src0_dd,
 | |
|                              const float *src1_dd, float *dst_dd,
 | |
|                              const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_gelu(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                               ggml_tensor *dst, const float *src0_dd,
 | |
|                               const float *src1_dd, float *dst_dd,
 | |
|                               const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_silu(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                               ggml_tensor *dst, const float *src0_dd,
 | |
|                               const float *src1_dd, float *dst_dd,
 | |
|                               const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_gelu_quick(const ggml_tensor *src0,
 | |
|                                     const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                     const float *src0_dd, const float *src1_dd,
 | |
|                                     float *dst_dd,
 | |
|                                     const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_tanh(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                               ggml_tensor *dst, const float *src0_dd,
 | |
|                               const float *src1_dd, float *dst_dd,
 | |
|                               const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_relu(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                               ggml_tensor *dst, const float *src0_dd,
 | |
|                               const float *src1_dd, float *dst_dd,
 | |
|                               const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_leaky_relu(const ggml_tensor *src0,
 | |
|                                     const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                     const float *src0_dd, const float *src1_dd,
 | |
|                                     float *dst_dd,
 | |
|                                     const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     float negative_slope;
 | |
|     memcpy(&negative_slope, dst->op_params, sizeof(float));
 | |
| 
 | |
|     leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_sqr(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                              ggml_tensor *dst, const float *src0_dd,
 | |
|                              const float *src1_dd, float *dst_dd,
 | |
|                              const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_norm(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                               ggml_tensor *dst, const float *src0_dd,
 | |
|                               const float *src1_dd, float *dst_dd,
 | |
|                               const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     float eps;
 | |
|     memcpy(&eps, dst->op_params, sizeof(float));
 | |
| 
 | |
|     norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_group_norm(const ggml_tensor *src0,
 | |
|                                     const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                     const float *src0_dd, const float *src1_dd,
 | |
|                                     float *dst_dd,
 | |
|                                     const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     int num_groups = dst->op_params[0];
 | |
|     int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
 | |
|     group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_concat(const ggml_tensor *src0,
 | |
|                                 const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                 const float *src0_dd, const float *src1_dd,
 | |
|                                 float *dst_dd,
 | |
|                                 const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     for (int i3 = 0; i3 < dst->ne[3]; i3++) {
 | |
|         concat_f32_sycl(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_upscale(const ggml_tensor *src0,
 | |
|                                  const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                  const float *src0_dd, const float *src1_dd,
 | |
|                                  float *dst_dd,
 | |
|                                  const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
 | |
| 
 | |
|     const int scale_factor = dst->op_params[0];
 | |
| 
 | |
|     upscale_f32_sycl(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_pad(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                              ggml_tensor *dst, const float *src0_dd,
 | |
|                              const float *src1_dd, float *dst_dd,
 | |
|                              const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(dst->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
 | |
| 
 | |
|     pad_f32_sycl(src0_dd, dst_dd,
 | |
|         src0->ne[0], src0->ne[1], src0->ne[2],
 | |
|         dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_rms_norm(const ggml_tensor *src0,
 | |
|                                   const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                   const float *src0_dd, const float *src1_dd,
 | |
|                                   float *dst_dd,
 | |
|                                   const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     float eps;
 | |
|     memcpy(&eps, dst->op_params, sizeof(float));
 | |
| 
 | |
|     rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_mul_mat_q(
 | |
|     const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
 | |
|     const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
 | |
|     float *dst_dd_i, const int64_t row_low, const int64_t row_high,
 | |
|     const int64_t src1_ncols, const int64_t src1_padded_row_size,
 | |
|     const dpct::queue_ptr &stream) try {
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     GGML_ASSERT(ne10 % QK8_1 == 0);
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
| 
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     int device_id;
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(device_id = dpct::dev_mgr::instance().current_device_id()));
 | |
| 
 | |
|     // the main device has a larger memory buffer to hold the results from all GPUs
 | |
|     // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
 | |
|     const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             ggml_mul_mat_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             ggml_mul_mat_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             ggml_mul_mat_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             ggml_mul_mat_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             ggml_mul_mat_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             ggml_mul_mat_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             ggml_mul_mat_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             ggml_mul_mat_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             ggml_mul_mat_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
 | |
|             break;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_ddf_i;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static int64_t get_row_rounding(ggml_type type) {
 | |
|     int64_t min_compute_capability = INT_MAX;
 | |
|     int64_t max_compute_capability = INT_MIN;
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if (g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
 | |
|             if (min_compute_capability > g_device_caps[id].cc) {
 | |
|                 min_compute_capability = g_device_caps[id].cc;
 | |
|             }
 | |
|             if (max_compute_capability < g_device_caps[id].cc) {
 | |
|                 max_compute_capability = g_device_caps[id].cc;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     switch(type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return max_compute_capability >= VER_GEN9 ? 128 : 64;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|         case GGML_TYPE_Q5_1:
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return 64;
 | |
|         case GGML_TYPE_F16:
 | |
|         case GGML_TYPE_F32:
 | |
|             return 1;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|         case GGML_TYPE_Q3_K:
 | |
|         case GGML_TYPE_Q4_K:
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             return max_compute_capability >= VER_GEN9 ? 128 : 64;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             return 64;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_mul_mat_vec_q(
 | |
|     const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
 | |
|     const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
 | |
|     float *dst_dd_i, const int64_t row_low, const int64_t row_high,
 | |
|     const int64_t src1_ncols, const int64_t src1_padded_row_size,
 | |
|     const dpct::queue_ptr &stream) {
 | |
| 
 | |
|     GGML_ASSERT(ggml_nrows(src1) == 1);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     // TODO: support these quantization types
 | |
|     GGML_ASSERT(!(src0->type == GGML_TYPE_IQ2_XXS ||
 | |
|                   src0->type == GGML_TYPE_IQ2_XS ||
 | |
|                   src0->type == GGML_TYPE_IQ3_XXS ||
 | |
|                   src0->type == GGML_TYPE_IQ1_S));
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|           mul_mat_vec_q_sycl_submitter<QK4_0, QI4_0, block_q4_0,
 | |
|                                        VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|           mul_mat_vec_q_sycl_submitter<QK4_1, QI4_1, block_q4_1,
 | |
|                                        VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|           mul_mat_vec_q_sycl_submitter<QK5_0, QI5_0, block_q5_0,
 | |
|                                        VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|           mul_mat_vec_q_sycl_submitter<QK5_1, QI5_1, block_q5_1,
 | |
|                                        VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|           mul_mat_vec_q_sycl_submitter<QK8_0, QI8_0, block_q8_0,
 | |
|                                        VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|           mul_mat_vec_q_sycl_submitter<QK_K, QI2_K, block_q2_K,
 | |
|                                        VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|           mul_mat_vec_q_sycl_submitter<QK_K, QI3_K, block_q3_K,
 | |
|                                        VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|           mul_mat_vec_q_sycl_submitter<QK_K, QI4_K, block_q4_K,
 | |
|                                        VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|           mul_mat_vec_q_sycl_submitter<QK_K, QI5_K, block_q5_K,
 | |
|                                        VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|           mul_mat_vec_q_sycl_submitter<QK_K, QI6_K, block_q6_K,
 | |
|                                        VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
 | |
|               src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
 | |
|           break;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_ddf_i;
 | |
|     (void) src1_ncols;
 | |
|     (void) src1_padded_row_size;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_dequantize_mul_mat_vec(
 | |
|     const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
 | |
|     const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
 | |
|     float *dst_dd_i, const int64_t row_low, const int64_t row_high,
 | |
|     const int64_t src1_ncols, const int64_t src1_padded_row_size,
 | |
|     const dpct::queue_ptr &stream) {
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
 | |
| #ifdef GGML_SYCL_F16
 | |
|     sycl_pool_alloc<sycl::half> src1_dfloat_a;
 | |
|     sycl::half *src1_dfloat = nullptr; // dfloat == half
 | |
| 
 | |
|     bool src1_convert_f16 =
 | |
|         src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
 | |
|         src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
 | |
|         src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
 | |
| 
 | |
|     if (src1_convert_f16) {
 | |
|         if (src1->type == GGML_TYPE_F16) {
 | |
|             src1_dfloat = (sycl::half *)src1->data + src1_padded_row_size;
 | |
|         } else {
 | |
|             src1_dfloat = src1_dfloat_a.alloc(ne00);
 | |
|             ggml_cpy_f32_f16_sycl((const char *)src1_ddf_i, (char *)src1_dfloat,
 | |
|                                   ne00, ne00, ne01, ne02, nb00, nb01, nb02,
 | |
|                                   nb03, ne10, ne11, ne12, nb10, nb11, nb12,
 | |
|                                   nb13, stream);
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
 | |
| #endif // GGML_SYCL_F16
 | |
| 
 | |
|     switch (src0->type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q2_K:
 | |
|             dequantize_mul_mat_vec_q2_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q3_K:
 | |
|             dequantize_mul_mat_vec_q3_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q4_K:
 | |
|             dequantize_mul_mat_vec_q4_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q5_K:
 | |
|             dequantize_mul_mat_vec_q5_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_Q6_K:
 | |
|             dequantize_mul_mat_vec_q6_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         case GGML_TYPE_F16:
 | |
|             convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
 | |
|             break;
 | |
|         default:
 | |
|             GGML_ASSERT(false);
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_ddq_i;
 | |
|     (void) src1_ncols;
 | |
|     (void) src1_padded_row_size;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_mul_mat_sycl(
 | |
|     const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
 | |
|     const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
 | |
|     float *dst_dd_i, const int64_t row_low, const int64_t row_high,
 | |
|     const int64_t src1_ncols, const int64_t src1_padded_row_size,
 | |
|     const dpct::queue_ptr &stream) try {
 | |
| 
 | |
|     GGML_ASSERT(src0_dd_i  != nullptr);
 | |
|     GGML_ASSERT(src1_ddf_i != nullptr);
 | |
|     GGML_ASSERT(dst_dd_i   != nullptr);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
| 
 | |
|     const int64_t row_diff = row_high - row_low;
 | |
| 
 | |
|     int id;
 | |
|     int device_id = dpct::dev_mgr::instance().current_device_id();
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(id = get_current_device_index()));
 | |
| 
 | |
|     // the main device has a larger memory buffer to hold the results from all GPUs
 | |
|     // ldc == nrows of the matrix that cuBLAS writes into
 | |
|     int ldc = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
 | |
| 
 | |
| #ifdef GGML_SYCL_F16
 | |
|     bool use_fp16 = true;  // TODO(Yu) SYCL capability check
 | |
| #else
 | |
|     bool use_fp16 = false;
 | |
| #endif
 | |
|     // if (compute_capability >= VER_GEN9 && (src0->type == GGML_TYPE_F16 ||
 | |
|     // ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff ==
 | |
|     // src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
|     if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
 | |
|         use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
 | |
|         dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
| 
 | |
|         // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
 | |
|         // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
 | |
|         sycl_pool_alloc<sycl::half> src0_as_f16;
 | |
|         if (src0->type != GGML_TYPE_F16) {
 | |
|             const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type);
 | |
|             GGML_ASSERT(to_fp16_sycl != nullptr);
 | |
|             size_t ne = row_diff*ne00;
 | |
|             src0_as_f16.alloc(ne);
 | |
|             to_fp16_sycl(src0_dd_i, src0_as_f16.get(), ne, stream);
 | |
|         }
 | |
|         const sycl::half *src0_ptr = src0->type == GGML_TYPE_F16
 | |
|                                          ? (const sycl::half *)src0_dd_i
 | |
|                                          : src0_as_f16.get();
 | |
| 
 | |
|         sycl_pool_alloc<sycl::half> src1_as_f16;
 | |
|         if (src1->type != GGML_TYPE_F16) {
 | |
|             const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
 | |
|             GGML_ASSERT(to_fp16_sycl != nullptr);
 | |
|             size_t ne = src1_ncols*ne10;
 | |
|             src1_as_f16.alloc(ne);
 | |
|             to_fp16_sycl(src1_ddf_i, src1_as_f16.get(), ne, stream);
 | |
|         }
 | |
|         const sycl::half *src1_ptr = src1->type == GGML_TYPE_F16
 | |
|                 ? (const sycl::half *)src1->data + src1_padded_row_size
 | |
|                                          : src1_as_f16.get();
 | |
|         sycl_pool_alloc<sycl::half> dst_f16(row_diff * src1_ncols);
 | |
| 
 | |
|         const sycl::half alpha_f16 = 1.0f;
 | |
|         const sycl::half beta_f16 = 0.0f;
 | |
| 
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[id] = stream));
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
 | |
|             *g_sycl_handles[id], oneapi::mkl::transpose::trans,
 | |
|             oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
 | |
|             &alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
 | |
|             src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
 | |
|             dst_f16.get(), dpct::library_data_t::real_half, ldc,
 | |
|             dpct::library_data_t::real_half)));
 | |
| 
 | |
|         const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
 | |
|         to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
 | |
|     }
 | |
|     else {
 | |
|         // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
 | |
|         sycl_pool_alloc<float> src0_ddq_as_f32;
 | |
| 
 | |
|         if (src0->type != GGML_TYPE_F32) {
 | |
|             const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type);
 | |
|             GGML_ASSERT(to_fp32_sycl != nullptr);
 | |
|             src0_ddq_as_f32.alloc(row_diff*ne00);
 | |
|             to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
 | |
|         }
 | |
|         const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
 | |
| 
 | |
|         const float alpha = 1.0f;
 | |
|         const float beta = 0.0f;
 | |
| 
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[id] = stream));
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
 | |
|             *g_sycl_handles[id], oneapi::mkl::transpose::trans,
 | |
|             oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
 | |
|             dpct::get_value(&alpha, *g_sycl_handles[id]), src0_ddf_i, ne00,
 | |
|             src1_ddf_i, ne10, dpct::get_value(&beta, *g_sycl_handles[id]),
 | |
|             dst_dd_i, ldc)));
 | |
|     }
 | |
| 
 | |
|     (void) dst;
 | |
|     (void) src1_ddq_i;
 | |
|     (void) src1_padded_row_size;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                               ggml_tensor *dst, const float *src0_dd,
 | |
|                               const float *src1_dd, float *dst_dd,
 | |
|                               const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src0->type == dst->type);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne2 = dst->ne[2];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     //const int n_past      = ((int32_t *) dst->op_params)[0];
 | |
|     const int n_dims      = ((int32_t *) dst->op_params)[1];
 | |
|     const int mode        = ((int32_t *) dst->op_params)[2];
 | |
|     const int n_ctx       = ((int32_t *) dst->op_params)[3];
 | |
|     const int n_orig_ctx  = ((int32_t *) dst->op_params)[4];
 | |
| 
 | |
|     // RoPE alteration for extended context
 | |
|     float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
 | |
|     memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
 | |
|     memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
 | |
|     memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
 | |
|     memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
 | |
|     memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
 | |
|     memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
 | |
| 
 | |
|     const int32_t * pos = nullptr;
 | |
|     if ((mode & 1) == 0) {
 | |
|         GGML_ASSERT(src1->type == GGML_TYPE_I32);
 | |
|         GGML_ASSERT(src1->ne[0] == ne2);
 | |
|         pos = (const int32_t *) src1_dd;
 | |
|     }
 | |
| 
 | |
|     const bool is_neox = mode & 2;
 | |
|     const bool is_glm  = mode & 4;
 | |
| 
 | |
|     rope_corr_dims corr_dims;
 | |
|     ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
 | |
| 
 | |
|     // compute
 | |
|     if (is_glm) {
 | |
|         GGML_ASSERT(false);
 | |
|         rope_glm_f32_sycl(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
 | |
|     } else if (is_neox) {
 | |
|         if (src0->type == GGML_TYPE_F32) {
 | |
|             rope_neox_sycl(
 | |
|                 (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | |
|                 attn_factor, corr_dims, main_stream
 | |
|             );
 | |
|         } else if (src0->type == GGML_TYPE_F16) {
 | |
|             rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
 | |
|                            ne00, n_dims, nrows, pos, freq_scale, ne01,
 | |
|                            freq_base, ext_factor, attn_factor, corr_dims,
 | |
|                            main_stream);
 | |
|         } else {
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|     } else {
 | |
|         if (src0->type == GGML_TYPE_F32) {
 | |
|             rope_sycl(
 | |
|                 (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | |
|                 attn_factor, corr_dims, main_stream
 | |
|             );
 | |
|         } else if (src0->type == GGML_TYPE_F16) {
 | |
|             rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00,
 | |
|                       nrows, pos, freq_scale, ne01, freq_base, ext_factor,
 | |
|                       attn_factor, corr_dims, main_stream);
 | |
|         } else {
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                                ggml_tensor *dst, const float *src0_dd,
 | |
|                                const float *src1_dd, float *dst_dd,
 | |
|                                const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS_3(int64_t, ne0, src0, ne);
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     //const int n_past = ((int32_t *) dst->op_params)[0];
 | |
|     const int n_head = ((int32_t *) dst->op_params)[1];
 | |
|     float max_bias;
 | |
|     memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
 | |
| 
 | |
|     //GGML_ASSERT(ne01 + n_past == ne00);
 | |
|     GGML_ASSERT(n_head == ne02);
 | |
| 
 | |
|     const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
 | |
| 
 | |
|     const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
 | |
|     const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
 | |
| 
 | |
|     alibi_f32_sycl(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_im2col(const ggml_tensor *src0,
 | |
|                                 const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                 const float *src0_dd, const float *src1_dd,
 | |
|                                 float *dst_dd,
 | |
|                                 const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
 | |
|     const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
 | |
|     const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
 | |
|     const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
 | |
|     const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
 | |
|     const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
 | |
| 
 | |
|     const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
 | |
| 
 | |
|     const int64_t IC = src1->ne[is_2D ? 2 : 1];
 | |
|     const int64_t IH = is_2D ? src1->ne[1] : 1;
 | |
|     const int64_t IW =         src1->ne[0];
 | |
| 
 | |
|     const int64_t KH = is_2D ? src0->ne[1] : 1;
 | |
|     const int64_t KW =         src0->ne[0];
 | |
| 
 | |
|     const int64_t OH = is_2D ? dst->ne[2] : 1;
 | |
|     const int64_t OW =         dst->ne[1];
 | |
| 
 | |
|     const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
 | |
| 
 | |
|     if (dst->type == GGML_TYPE_F16) {
 | |
|         im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
 | |
|     } else {
 | |
|         im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
 | |
|     }
 | |
| 
 | |
|     (void) src0;
 | |
|     (void) src0_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_sum_rows(const ggml_tensor *src0,
 | |
|                                   const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                   const float *src0_dd, const float *src1_dd,
 | |
|                                   float *dst_dd,
 | |
|                                   const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ncols = src0->ne[0];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_argsort(const ggml_tensor *src0,
 | |
|                                  const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                  const float *src0_dd, const float *src1_dd,
 | |
|                                  float *dst_dd,
 | |
|                                  const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_I32);
 | |
| 
 | |
|     const int64_t ncols = src0->ne[0];
 | |
|     const int64_t nrows = ggml_nrows(src0);
 | |
| 
 | |
|     enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
 | |
| 
 | |
|     argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_diag_mask_inf(const ggml_tensor *src0,
 | |
|                                        const ggml_tensor *src1,
 | |
|                                        ggml_tensor *dst, const float *src0_dd,
 | |
|                                        const float *src1_dd, float *dst_dd,
 | |
|                                        const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int nrows0 = ggml_nrows(src0);
 | |
| 
 | |
|     const int n_past = ((int32_t *) dst->op_params)[0];
 | |
| 
 | |
|     diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
 | |
|                                   const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                   const float *src0_dd, const float *src1_dd,
 | |
|                                   float *dst_dd,
 | |
|                                   const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t nrows_x = ggml_nrows(src0);
 | |
|     const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1;
 | |
| 
 | |
|     float scale = 1.0f;
 | |
|     memcpy(&scale, dst->op_params, sizeof(float));
 | |
| 
 | |
|     soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_scale(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                                ggml_tensor *dst, const float *src0_dd,
 | |
|                                const float *src1_dd, float *dst_dd,
 | |
|                                const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     float scale;
 | |
|     memcpy(&scale, dst->op_params, sizeof(float));
 | |
| 
 | |
|     scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
 | |
|     /*
 | |
|     DPCT1010:87: SYCL uses exceptions to report errors and does not use the
 | |
|     error codes. The call was replaced with 0. You need to rewrite this code.
 | |
|     */
 | |
|     SYCL_CHECK(0);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| inline void ggml_sycl_op_clamp(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                                ggml_tensor *dst, const float *src0_dd,
 | |
|                                const float *src1_dd, float *dst_dd,
 | |
|                                const dpct::queue_ptr &main_stream) {
 | |
| 
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F32);
 | |
|     GGML_ASSERT( dst->type == GGML_TYPE_F32);
 | |
| 
 | |
|     float min;
 | |
|     float max;
 | |
|     memcpy(&min, dst->op_params, sizeof(float));
 | |
|     memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
 | |
| 
 | |
|     clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
 | |
|     /*
 | |
|     DPCT1010:88: SYCL uses exceptions to report errors and does not use the
 | |
|     error codes. The call was replaced with 0. You need to rewrite this code.
 | |
|     */
 | |
|     SYCL_CHECK(0);
 | |
| 
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
|     (void) src1_dd;
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_op_flatten(const ggml_tensor *src0,
 | |
|                                  const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                  const ggml_sycl_op_flatten_t op) try {
 | |
|     const int64_t nrows0 = ggml_nrows(src0);
 | |
| 
 | |
|     const bool use_src1 = src1 != nullptr;
 | |
|     const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
 | |
| 
 | |
|     GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(              dst->backend != GGML_BACKEND_GPU_SPLIT);
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra =            (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
 | |
|     ggml_tensor_extra_gpu * dst_extra  =            (ggml_tensor_extra_gpu *)  dst->extra;
 | |
| 
 | |
|     const bool src0_on_device =             src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
 | |
|     const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
 | |
|     const bool  dst_on_device =              dst->backend == GGML_BACKEND_GPU;
 | |
| 
 | |
|     // dd = data device
 | |
|     float * src0_ddf = nullptr;
 | |
|     float * src1_ddf = nullptr;
 | |
|     float *  dst_ddf = nullptr;
 | |
| 
 | |
|     sycl_pool_alloc<float> src0_f;
 | |
|     sycl_pool_alloc<float> src1_f;
 | |
|     sycl_pool_alloc<float>  dst_f;
 | |
| 
 | |
|     ggml_sycl_set_device(g_main_device);
 | |
|     dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
 | |
|     // GGML_SYCL_DEBUG("g_main_device_index=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
 | |
|         // g_main_device_index, main_stream, src0_on_device, src1_on_device, dst_on_device);
 | |
| 
 | |
|     if (src0_on_device) {
 | |
|         src0_ddf = (float *) src0_extra->data_device[g_main_device_index];
 | |
|     } else {
 | |
|         src0_ddf = src0_f.alloc(ggml_nelements(src0));
 | |
|         // GGML_SYCL_DEBUG("before ggml_sycl_cpy_tensor_2d src0_ddf=%p, src0=%p\n", src0_ddf, src0);
 | |
|         SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
 | |
|     }
 | |
| 
 | |
|     if (use_src1) {
 | |
|         if (src1_on_device) {
 | |
|             src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
 | |
|         } else {
 | |
|             src1_ddf = src1_f.alloc(ggml_nelements(src1));
 | |
|             SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
 | |
|         }
 | |
|     }
 | |
|     if (dst_on_device) {
 | |
|         dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
 | |
|         // printf("zjy dst_ddf=%p main_stream=%p g_main_device_index=%d\n", dst_ddf, main_stream, g_main_device_index);
 | |
|     } else {
 | |
|         dst_ddf = dst_f.alloc(ggml_nelements(dst));
 | |
|     }
 | |
| 
 | |
|     // GGML_SYCL_DEBUG("op src0=%p, src1=%p, dst=%p, src0_ddf=%p, src1_ddf=%p, dst_ddf=%p, main_stream=%p\n",
 | |
|         // src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
 | |
|     // do the computation
 | |
|     op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
 | |
|     /*
 | |
|     DPCT1010:89: SYCL uses exceptions to report errors and does not use the
 | |
|     error codes. The call was replaced with 0. You need to rewrite this code.
 | |
|     */
 | |
|     SYCL_CHECK(0);
 | |
| 
 | |
|     // copy dst to host if necessary
 | |
|     if (!dst_on_device) {
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|             main_stream->memcpy(dst->data, dst_ddf, ggml_nbytes(dst))));
 | |
|     }
 | |
| 
 | |
|     if (dst->backend == GGML_BACKEND_CPU) {
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|             dpct::get_current_device().queues_wait_and_throw()));
 | |
|     }
 | |
|     // print_ggml_tensor("tensor", dst);
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
| 
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_set_peer_access(const int n_tokens) {
 | |
|     static bool peer_access_enabled = false;
 | |
| 
 | |
|     const bool enable_peer_access = n_tokens <= GGML_SYCL_PEER_MAX_BATCH_SIZE;
 | |
| 
 | |
|     if (peer_access_enabled == enable_peer_access) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| #ifdef NDEBUG
 | |
|     for (int id = 0; id < g_device_count; ++id) {
 | |
|         SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
 | |
|         // SYCL_CHECK(syclDeviceSynchronize());
 | |
|     }
 | |
| 
 | |
|     for (int id = 0; id < g_device_count; ++id) {
 | |
|         SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
 | |
|         int device_id = g_device_caps[id].device_id;
 | |
| 
 | |
|         for (int id_other = 0; id_other < g_device_count; ++id_other) {
 | |
|             int device_id_other = g_device_caps[id_other].device_id;
 | |
|             if (device_id == id_other) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (device_id != g_main_device && device_id_other != g_main_device) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             // int can_access_peer;
 | |
|             // SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
 | |
|             // if (can_access_peer) {
 | |
|             //     if (enable_peer_access) {
 | |
|             //         SYCL_CHECK(syclDeviceEnablePeerAccess(id_other, 0));
 | |
|             //     } else {
 | |
|             //         SYCL_CHECK(syclDeviceDisablePeerAccess(id_other));
 | |
|             //     }
 | |
|             // }
 | |
|         }
 | |
|     }
 | |
| #endif // NDEBUG
 | |
| 
 | |
|     peer_access_enabled = enable_peer_access;
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
 | |
|                                  const ggml_tensor *src1, ggml_tensor *dst,
 | |
|                                  ggml_sycl_op_mul_mat_t op,
 | |
|                                  const bool convert_src1_to_q8_1) try {
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
 | |
|     const int64_t nrows1 = ggml_nrows(src1);
 | |
| 
 | |
|     GGML_ASSERT(ne03 == ne13);
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     const int nb2 = dst->nb[2];
 | |
|     const int nb3 = dst->nb[3];
 | |
| 
 | |
|     GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
 | |
| 
 | |
|     GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
 | |
| 
 | |
|     const int64_t i02_divisor = ne12 / ne02;
 | |
| 
 | |
|     const size_t src0_ts = ggml_type_size(src0->type);
 | |
|     const size_t src0_bs = ggml_blck_size(src0->type);
 | |
|     const size_t q8_1_ts = sizeof(block_q8_1);
 | |
|     const size_t q8_1_bs = QK8_1;
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     ggml_tensor_extra_gpu *  dst_extra = (ggml_tensor_extra_gpu *)  dst->extra;
 | |
| 
 | |
|     const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
 | |
|     const bool src0_is_contiguous = ggml_is_contiguous(src0);
 | |
|     const bool src1_is_contiguous = ggml_is_contiguous(src1);
 | |
| 
 | |
|     int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
 | |
| 
 | |
|     const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
 | |
|     GGML_ASSERT(!(split && ne02 > 1));
 | |
|     GGML_ASSERT(!(split && ne03 > 1));
 | |
|     GGML_ASSERT(!(split && ne02 < ne12));
 | |
| 
 | |
|     // dd = data device
 | |
|     char  *  src0_dd[GGML_SYCL_MAX_DEVICES] = {nullptr};
 | |
|     float * src1_ddf[GGML_SYCL_MAX_DEVICES] = {nullptr}; // float
 | |
|     char  * src1_ddq[GGML_SYCL_MAX_DEVICES] = {nullptr}; // q8_1
 | |
|     float *   dst_dd[GGML_SYCL_MAX_DEVICES] = {nullptr};
 | |
| 
 | |
|     // as = actual size
 | |
|     size_t  src0_as[GGML_SYCL_MAX_DEVICES] = {0};
 | |
|     size_t src1_asf[GGML_SYCL_MAX_DEVICES] = {0};
 | |
|     size_t src1_asq[GGML_SYCL_MAX_DEVICES] = {0};
 | |
|     size_t   dst_as[GGML_SYCL_MAX_DEVICES] = {0};
 | |
| 
 | |
|     int64_t  row_low[GGML_SYCL_MAX_DEVICES];
 | |
|     int64_t row_high[GGML_SYCL_MAX_DEVICES];
 | |
| 
 | |
|     int used_devices = 0;
 | |
| 
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         // by default, use all rows
 | |
|         row_low[id]  = 0;
 | |
|         row_high[id] = ne01;
 | |
| 
 | |
|         // for multi GPU, get the row boundaries from tensor split
 | |
|         // and round to mul_mat_q tile sizes
 | |
|         if (split) {
 | |
|             const int64_t rounding = get_row_rounding(src0->type);
 | |
| 
 | |
|             if (id != 0) {
 | |
|                 row_low[id]  = ne01*g_tensor_split[id];
 | |
|                 if (row_low[id] < ne01) {
 | |
|                     row_low[id] -= row_low[id] % rounding;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (id != g_device_count - 1) {
 | |
|                 row_high[id]  = ne01*g_tensor_split[id + 1];
 | |
|                 if (row_high[id] < ne01) {
 | |
|                     row_high[id] -= row_high[id] % rounding;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
| 
 | |
|         if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         used_devices++;
 | |
| 
 | |
|         const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
 | |
|         const bool  dst_on_device =  dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
 | |
| 
 | |
|         ggml_sycl_set_device(get_device_id_by_index(id));
 | |
|         const dpct::queue_ptr stream = g_syclStreams[id][0];
 | |
| 
 | |
|         if (src0_on_device && src0_is_contiguous) {
 | |
|             src0_dd[id] = (char *) src0_extra->data_device[id];
 | |
|         } else {
 | |
|             // const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
 | |
|             src0_dd[id] = (char *) ggml_sycl_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
 | |
|         }
 | |
| 
 | |
|         if (src1_on_device && src1_is_contiguous) {
 | |
|             src1_ddf[id] = (float *) src1_extra->data_device[id];
 | |
|         } else {
 | |
|             src1_ddf[id] = (float *) ggml_sycl_pool_malloc(ggml_nbytes(src1), &src1_asf[id]);
 | |
|         }
 | |
| 
 | |
|         if (convert_src1_to_q8_1) {
 | |
|             src1_ddq[id] = (char *) ggml_sycl_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]);
 | |
| 
 | |
|             if (src1_on_device && src1_is_contiguous) {
 | |
|                 quantize_row_q8_1_sycl(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream);
 | |
|                 /*
 | |
|                 DPCT1010:90: SYCL uses exceptions to report errors and does not
 | |
|                 use the error codes. The call was replaced with 0. You need to
 | |
|                 rewrite this code.
 | |
|                 */
 | |
|                 SYCL_CHECK(0);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (dst_on_device) {
 | |
|             dst_dd[id] = (float *) dst_extra->data_device[id];
 | |
|         } else {
 | |
|             const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst);
 | |
|             dst_dd[id] = (float *) ggml_sycl_pool_malloc(size_dst_ddf, &dst_as[id]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // if multiple devices are used they need to wait for the main device
 | |
|     // here an event is recorded that signals that the main device has finished calculating the input data
 | |
|     if (split && used_devices > 1) {
 | |
|         SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|         /*
 | |
|         DPCT1024:91: The original code returned the error code that was further
 | |
|         consumed by the program logic. This original code was replaced with 0.
 | |
|         You may need to rewrite the program logic consuming the error code.
 | |
|         */
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|             *src0_extra->events[g_main_device_index][0] =
 | |
|                 g_syclStreams[g_main_device_index][0]->ext_oneapi_submit_barrier()));
 | |
|     }
 | |
| 
 | |
|     const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
 | |
|     for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
 | |
|         const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
 | |
|         const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
 | |
| 
 | |
|         for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|             if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
 | |
|             const bool  dst_on_device =  dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
 | |
|             const int64_t row_diff = row_high[id] - row_low[id];
 | |
| 
 | |
|             ggml_sycl_set_device(get_device_id_by_index(id));
 | |
|             const dpct::queue_ptr stream = g_syclStreams[id][is];
 | |
| 
 | |
|             // wait for main GPU data if necessary
 | |
|             if (split && (id != g_main_device_index || is != 0)) {
 | |
|                 SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
 | |
|                     {*src0_extra->events[g_main_device_index][0]})));
 | |
|             }
 | |
| 
 | |
|             for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
 | |
|                 const int64_t i03 = i0 / ne12;
 | |
|                 const int64_t i02 = i0 % ne12;
 | |
| 
 | |
|                 const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
 | |
| 
 | |
|                 // for split tensors the data begins at i0 == i0_offset_low
 | |
|                 char  *  src0_dd_i =  src0_dd[id] + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
 | |
|                 float * src1_ddf_i = src1_ddf[id] + (i0*ne11 + src1_col_0) * ne10;
 | |
|                 char  * src1_ddq_i = src1_ddq[id] +  src1_ddq_i_offset;
 | |
|                 float *   dst_dd_i =   dst_dd[id] + (i0*ne1  + src1_col_0) * (dst_on_device ? ne0 : row_diff);
 | |
| 
 | |
|                 // the main device memory buffer can be on VRAM scratch, with space for all partial results
 | |
|                 // in that case an offset on dst_ddf_i is needed
 | |
|                 if (dst->backend == GGML_BACKEND_GPU && id == g_main_device_index) {
 | |
|                     dst_dd_i += row_low[id]; // offset is 0 if no tensor split
 | |
|                 }
 | |
| 
 | |
|                 // copy src0, src1 to device if necessary
 | |
|                 if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
 | |
|                     if (id != g_main_device_index) {
 | |
|                         if (convert_src1_to_q8_1) {
 | |
|                             char * src1_ddq_i_source = src1_ddq[g_main_device_index] + src1_ddq_i_offset;
 | |
|                             SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
 | |
|                                 src1_ddq_i, src1_ddq_i_source,
 | |
|                                 src1_ncols * src1_padded_col_size * q8_1_ts /
 | |
|                                     q8_1_bs)));
 | |
|                         } else {
 | |
|                             float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device_index];
 | |
|                             src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
 | |
|                             SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
 | |
|                                 src1_ddf_i, src1_ddf_i_source,
 | |
|                                 src1_ncols * ne10 * sizeof(float))));
 | |
|                         }
 | |
|                     }
 | |
|                 } else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
 | |
|                     SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
 | |
|                                    src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
 | |
|                 } else {
 | |
|                     GGML_ASSERT(false);
 | |
|                 }
 | |
| 
 | |
|                 if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
 | |
|                     quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
 | |
|                     /*
 | |
|                     DPCT1010:92: SYCL uses exceptions to report errors and does
 | |
|                     not use the error codes. The call was replaced with 0. You
 | |
|                     need to rewrite this code.
 | |
|                     */
 | |
|                     SYCL_CHECK(0);
 | |
|                 }
 | |
| 
 | |
|                 if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
 | |
|                     SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, row_low[id], row_high[id], stream));
 | |
|                 }
 | |
|                 if (src1->type == GGML_TYPE_F16) {
 | |
|                     src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10;
 | |
|                 }
 | |
|                 // do the computation
 | |
|                 op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
 | |
|                    row_low[id], row_high[id], src1_ncols, src1_padded_col_size, stream);
 | |
|                 /*
 | |
|                 DPCT1010:93: SYCL uses exceptions to report errors and does not
 | |
|                 use the error codes. The call was replaced with 0. You need to
 | |
|                 rewrite this code.
 | |
|                 */
 | |
|                 SYCL_CHECK(0);
 | |
| 
 | |
|                 // copy dst to host or other device if necessary
 | |
|                 if (!dst_on_device) {
 | |
|                     void * dst_off_device;
 | |
|                     dpct::memcpy_direction kind;
 | |
|                     if (dst->backend == GGML_BACKEND_CPU) {
 | |
|                         dst_off_device = dst->data;
 | |
|                         kind = dpct::device_to_host;
 | |
|                     } else if (dst->backend == GGML_BACKEND_GPU) {
 | |
|                         dst_off_device = dst_extra->data_device[g_main_device_index];
 | |
|                         kind = dpct::device_to_device;
 | |
|                     } else {
 | |
|                         GGML_ASSERT(false);
 | |
|                     }
 | |
|                     if (split) {
 | |
|                         // src0 = weight matrix is saved as a transposed matrix for better memory layout.
 | |
|                         // dst is NOT transposed.
 | |
|                         // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
 | |
|                         // Instead they need to be copied to the correct slice in ne0 = dst row index.
 | |
|                         // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
 | |
|                         float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | |
|                         GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | |
|                         dhf_dst_i += src1_col_0*ne0 + row_low[id];
 | |
|                         SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
 | |
|                             dhf_dst_i, ne0 * sizeof(float), dst_dd_i,
 | |
|                             row_diff * sizeof(float), row_diff * sizeof(float),
 | |
|                             src1_ncols, kind, *stream)));
 | |
|                     } else {
 | |
|                         float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
 | |
|                         GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
 | |
|                         dhf_dst_i += src1_col_0*ne0;
 | |
|                         SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|                             stream->memcpy(dhf_dst_i, dst_dd_i,
 | |
|                                            src1_ncols * ne0 * sizeof(float))));
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // add event for the main device to wait on until other device is done
 | |
|                 if (split && (id != g_main_device_index || is != 0)) {
 | |
|                     /*
 | |
|                     DPCT1024:94: The original code returned the error code that
 | |
|                     was further consumed by the program logic. This original
 | |
|                     code was replaced with 0. You may need to rewrite the
 | |
|                     program logic consuming the error code.
 | |
|                     */
 | |
|                     SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|                         *src0_extra->events[id][is] =
 | |
|                             stream->ext_oneapi_submit_barrier()));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if ((!split && id != g_main_device_index) || row_low[id] == row_high[id]) {
 | |
|             continue;
 | |
|         }
 | |
|         SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
 | |
| 
 | |
|         // free buffers again when done
 | |
|         if (dst_as[id] > 0) {
 | |
|             ggml_sycl_pool_free(dst_dd[id], dst_as[id]);
 | |
|         }
 | |
|         if (src1_asq[id] > 0) {
 | |
|             ggml_sycl_pool_free(src1_ddq[id], src1_asq[id]);
 | |
|         }
 | |
|         if (src1_asf[id] > 0) {
 | |
|             ggml_sycl_pool_free(src1_ddf[id], src1_asf[id]);
 | |
|         }
 | |
|         if (src0_as[id] > 0) {
 | |
|             ggml_sycl_pool_free(src0_dd[id], src0_as[id]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // main device waits for all other devices to be finished
 | |
|     if (split && g_device_count > 1) {
 | |
|         int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
 | |
|         is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS;
 | |
| 
 | |
|         SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|         for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|             if (row_low[id] == row_high[id]) {
 | |
|                 continue;
 | |
|             }
 | |
|             for (int64_t is = 0; is < is_max; ++is) {
 | |
|                 SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|                     g_syclStreams[g_main_device_index][0]->ext_oneapi_submit_barrier(
 | |
|                         {*src0_extra->events[id][is]})));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (dst->backend == GGML_BACKEND_CPU) {
 | |
|         SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|             dpct::get_current_device().queues_wait_and_throw()));
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_repeat);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_get_rows);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_add);
 | |
|     // log_tensor_with_cnt("log_ggml_sycl_add_src0", (struct ggml_tensor *) src0, 6);
 | |
|     // log_tensor_with_cnt("log_ggml_sycl_add_src1", (struct ggml_tensor *)src1, 6);
 | |
|     // log_tensor_with_cnt("log_ggml_sycl_add_dst", dst, 6);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_acc);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_mul);
 | |
|     // log_tensor_with_cnt("log_ggml_sycl_mul_src0", (struct ggml_tensor *)src0, 6);
 | |
|     // log_tensor_with_cnt("log_ggml_sycl_mul_src1", (struct ggml_tensor *)src1, 6);
 | |
|     // log_tensor_with_cnt("log_ggml_sycl_mul_dst", dst, 6);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_div);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_silu);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu_quick);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_tanh);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_relu);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_leaky_relu);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_sqr);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_norm);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_group_norm);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_concat);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_upscale);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pad);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void ggml_sycl_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_SYCL_DEBUG("call %s\n", __func__);
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rms_norm);
 | |
|     // log_tensor_with_cnt("log_ggml_sycl_rms_norm_src0", (struct ggml_tensor *)src0, 6);
 | |
|     // log_tensor_with_cnt("log_ggml_sycl_rms_norm_src1", (struct ggml_tensor *)src1, 6);
 | |
|     // log_tensor_with_cnt("log_ggml_sycl_rms_norm_dst", dst, 6);
 | |
| }
 | |
| 
 | |
| bool ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     if (!g_sycl_loaded) return false;
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     // TODO: find the optimal values for these
 | |
|     return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
 | |
|             src1->type == GGML_TYPE_F32 &&
 | |
|              dst->type == GGML_TYPE_F32 &&
 | |
|             (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_mul_mat_vec_p021(const ggml_tensor *src0,
 | |
|                                        const ggml_tensor *src1,
 | |
|                                        ggml_tensor *dst) try {
 | |
|     GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
 | |
|     GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
 | |
|     GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
| 
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
| 
 | |
|     SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|     dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     void * src0_ddq = src0_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
 | |
|     float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_mul_mat_vec_nc(const ggml_tensor *src0,
 | |
|                                      const ggml_tensor *src1,
 | |
|                                      ggml_tensor *dst) try {
 | |
|     GGML_ASSERT(!ggml_is_transposed(src0));
 | |
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | |
|     GGML_ASSERT(!ggml_is_permuted(src0));
 | |
|     GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
| 
 | |
|     const int64_t nb01 = src0->nb[1];
 | |
|     const int64_t nb02 = src0->nb[2];
 | |
| 
 | |
|     const int64_t ne12 = src1->ne[2];
 | |
| 
 | |
|     SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|     dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     void * src0_ddq = src0_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
 | |
|     float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     const int64_t row_stride_x = nb01 / sizeof(sycl::half);
 | |
|     const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
 | |
| 
 | |
|     ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
 | |
|                                    const sycl::half *src1_as_f16, char *dst,
 | |
|                                    const void **ptrs_src, void **ptrs_dst,
 | |
|                                    int64_t ne12, int64_t ne13, int64_t ne23,
 | |
|                                    size_t nb02, size_t nb03, size_t nb12,
 | |
|                                    size_t nb13, size_t nbd2, size_t nbd3,
 | |
|                                    int64_t r2, int64_t r3,
 | |
|                                    const sycl::nd_item<3> &item_ct1) {
 | |
|     int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
 | |
|                   item_ct1.get_local_id(2);
 | |
|     int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
 | |
|                   item_ct1.get_local_id(1);
 | |
| 
 | |
|     if (i13 >= ne13 || i12 >= ne12) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int64_t i03 = i13 / r3;
 | |
|     int64_t i02 = i12 / r2;
 | |
| 
 | |
|     ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02   + i03*nb03;
 | |
|     ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2;
 | |
|     ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)         dst + i12*nbd2   + i13*nbd3;
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0,
 | |
|                                                  const ggml_tensor *src1,
 | |
|                                                  ggml_tensor *dst) try {
 | |
|     GGML_ASSERT(!ggml_is_transposed(src0));
 | |
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | |
| 
 | |
|     GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src0->type == GGML_TYPE_F16);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, nb0, src0, nb);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb);
 | |
| 
 | |
|     const int64_t ne1 = ggml_nelements(src1);
 | |
|     const int64_t ne  = ggml_nelements(dst);
 | |
| 
 | |
|     SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|     dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
 | |
| 
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(g_sycl_handles[g_main_device_index] = main_stream));
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     void * src0_ddq = src0_extra->data_device[g_main_device_index];
 | |
|     sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
 | |
|     float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     // convert src1 to fp16
 | |
|     const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
 | |
|     GGML_ASSERT(to_fp16_sycl != nullptr);
 | |
| 
 | |
|     sycl_pool_alloc<sycl::half> src1_as_f16(ne1);
 | |
|     to_fp16_sycl(src1_ddf, src1_as_f16.get(), ne1, main_stream);
 | |
| 
 | |
|     sycl_pool_alloc<sycl::half> dst_f16;
 | |
|     char * dst_t;
 | |
| 
 | |
|     dpct::library_data_t cu_compute_type = dpct::library_data_t::real_half;
 | |
|     dpct::library_data_t cu_data_type = dpct::library_data_t::real_half;
 | |
| 
 | |
|     // dst strides
 | |
|     size_t nbd2 = dst->nb[2];
 | |
|     size_t nbd3 = dst->nb[3];
 | |
| 
 | |
|     const sycl::half alpha_f16 = 1.0f;
 | |
|     const sycl::half beta_f16 = 0.0f;
 | |
| 
 | |
|     const float alpha_f32 = 1.0f;
 | |
|     const float beta_f32  = 0.0f;
 | |
| 
 | |
|     const void * alpha = &alpha_f16;
 | |
|     const void * beta  = &beta_f16;
 | |
| 
 | |
|     if (dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
|         dst_t = (char *) dst_f16.alloc(ne);
 | |
| 
 | |
|         nbd2 /= sizeof(float) / sizeof(sycl::half);
 | |
|         nbd3 /= sizeof(float) / sizeof(sycl::half);
 | |
|     } else {
 | |
|         dst_t = (char *) dst_ddf;
 | |
| 
 | |
|         cu_compute_type = dpct::library_data_t::real_float;
 | |
|         cu_data_type = dpct::library_data_t::real_float;
 | |
| 
 | |
|         alpha = &alpha_f32;
 | |
|         beta  = &beta_f32;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(ne12 % ne02 == 0);
 | |
|     GGML_ASSERT(ne13 % ne03 == 0);
 | |
| 
 | |
|     // broadcast factors
 | |
|     const int64_t r2 = ne12/ne02;
 | |
|     const int64_t r3 = ne13/ne03;
 | |
| 
 | |
| #if 0
 | |
|     // use syclGemmEx
 | |
|     {
 | |
|         for (int i13 = 0; i13 < ne13; ++i13) {
 | |
|             for (int i12 = 0; i12 < ne12; ++i12) {
 | |
|                 int i03 = i13 / r3;
 | |
|                 int i02 = i12 / r2;
 | |
| 
 | |
|                 SYCL_CHECK(
 | |
|                         syclGemmEx(g_sycl_handles[g_main_device_index], CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                             ne01, ne11, ne10,
 | |
|                             alpha, (const char *) src0_as_f16 + i02*src0->nb[2]   + i03*src0->nb[3]  , SYCL_R_16F,   nb01/sizeof(half),
 | |
|                                    (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, SYCL_R_16F,   nb11/sizeof(float),
 | |
|                             beta,  (      char *)       dst_t + i12*nbd2          + i13*nbd3,          cu_data_type, ne01,
 | |
|                             cu_compute_type,
 | |
|                             CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
 | |
|         // there is no broadcast and src0, src1 are contiguous across dims 2, 3
 | |
|         // use syclGemmStridedBatchedEx
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
 | |
|             *g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans,
 | |
|             oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
 | |
|             (const char *)src0_as_f16, dpct::library_data_t::real_half,
 | |
|             nb01 / sizeof(sycl::half), src0->nb[2] / sizeof(sycl::half),
 | |
|             (const char *)src1_as_f16.get(), dpct::library_data_t::real_half,
 | |
|             nb11 / sizeof(float), src1->nb[2] / sizeof(float), beta,
 | |
|             (char *)dst_t, cu_data_type, ne01, dst->nb[2] / sizeof(float),
 | |
|             ne12 * ne13, cu_compute_type)));
 | |
|     } else {
 | |
|         // use syclGemmBatchedEx
 | |
|         const int ne23 = ne12*ne13;
 | |
| 
 | |
|         sycl_pool_alloc<const void *> ptrs_src(2*ne23);
 | |
|         sycl_pool_alloc<      void *> ptrs_dst(1*ne23);
 | |
| 
 | |
|         sycl::range<3> block_dims(1, ne12, ne13);
 | |
|         /*
 | |
|         DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
 | |
|         the limit. To get the device limit, query
 | |
|         info::device::max_work_group_size. Adjust the work-group size if needed.
 | |
|         */
 | |
|         {
 | |
|             dpct::has_capability_or_fail(main_stream->get_device(),
 | |
|                                          {sycl::aspect::fp16});
 | |
| 
 | |
|             main_stream->submit([&](sycl::handler &cgh) {
 | |
|                 const sycl::half *src1_as_f16_get_ct1 = src1_as_f16.get();
 | |
|                 const void **ptrs_src_get_ct3 = ptrs_src.get();
 | |
|                 void **ptrs_dst_get_ct4 = ptrs_dst.get();
 | |
| 
 | |
|                 cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
 | |
|                                  [=](sycl::nd_item<3> item_ct1) {
 | |
|                                      k_compute_batched_ptrs(
 | |
|                                          src0_as_f16, src1_as_f16_get_ct1,
 | |
|                                          dst_t, ptrs_src_get_ct3,
 | |
|                                          ptrs_dst_get_ct4, ne12, ne13, ne23,
 | |
|                                          nb02, nb03, nb12, nb13, nbd2, nbd3, r2,
 | |
|                                          r3, item_ct1);
 | |
|                                  });
 | |
|             });
 | |
|         }
 | |
|         /*
 | |
|         DPCT1010:95: SYCL uses exceptions to report errors and does not use the
 | |
|         error codes. The call was replaced with 0. You need to rewrite this
 | |
|         code.
 | |
|         */
 | |
|         SYCL_CHECK(0);
 | |
| 
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
 | |
|             *g_sycl_handles[g_main_device_index], oneapi::mkl::transpose::trans,
 | |
|             oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
 | |
|             (const void **)(ptrs_src.get() + 0 * ne23),
 | |
|             dpct::library_data_t::real_half, nb01 / sizeof(sycl::half),
 | |
|             (const void **)(ptrs_src.get() + 1 * ne23),
 | |
|             dpct::library_data_t::real_half, nb11 / sizeof(float), beta,
 | |
|             (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
 | |
|             cu_compute_type)));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (dst->op_params[0] == GGML_PREC_DEFAULT) {
 | |
|         const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
 | |
|         to_fp32_sycl(dst_f16.get(), dst_ddf, ne, main_stream);
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const bool all_on_device =
 | |
|         (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
 | |
|         (src1->backend == GGML_BACKEND_GPU) &&
 | |
|         ( dst->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
 | |
| 
 | |
|     int64_t min_compute_capability = INT_MAX;
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if (min_compute_capability > g_device_caps[id].cc && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
 | |
|             min_compute_capability = g_device_caps[id].cc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef SYCL_USE_XMX
 | |
|     const bool use_xmx = true;
 | |
| #else
 | |
|     const bool use_xmx = false;
 | |
| #endif
 | |
| 
 | |
|     // debug helpers
 | |
|     //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
 | |
|     //printf("      %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
 | |
|     //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
 | |
|     //printf("      %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
 | |
|     //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
 | |
|     //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
 | |
| 
 | |
|     if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
 | |
|         // KQ single-batch
 | |
|         // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_p021\n");
 | |
|         ggml_sycl_mul_mat_vec_p021(src0, src1, dst);
 | |
|     } else if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
 | |
|         // KQV single-batch
 | |
|         // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n");
 | |
|         ggml_sycl_mul_mat_vec_nc(src0, src1, dst);
 | |
|     } else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
 | |
|         // KQ + KQV multi-batch
 | |
|         // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_mat_batched_sycl\n");
 | |
|         ggml_sycl_mul_mat_mat_batched_sycl(src0, src1, dst);
 | |
|     } else if (src0->type == GGML_TYPE_F32) {
 | |
|         // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n");
 | |
|         ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
 | |
|     } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
 | |
|         // GGML_SYCL_DEBUG("ggml_is_quantized or GGML_TYPE_F16\n");
 | |
|         if (src1->ne[1] == 1 && src0->ne[0] % GGML_SYCL_DMMV_X == 0) {
 | |
| #ifdef GGML_SYCL_FORCE_DMMV
 | |
|             const bool use_mul_mat_vec_q = false;
 | |
| #else
 | |
|             const bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type) && ggml_nrows(src1) == 1;
 | |
| #endif // GGML_SYCL_FORCE_DMMV
 | |
| 
 | |
|             if (use_mul_mat_vec_q) {
 | |
|                 // NOTE: this kernel does not support ggml_nrows(src1) > 1
 | |
|                 // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_vec_q path\n");
 | |
|                 ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
 | |
|             } else {
 | |
|                 // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_dequantize_mul_mat_vec path\n");
 | |
|                 ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
 | |
|             }
 | |
|         } else {
 | |
|             bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
 | |
| 
 | |
|             if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) {
 | |
|                 use_mul_mat_q = false;
 | |
|             }
 | |
| 
 | |
|             if (use_mul_mat_q) {
 | |
|                 // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_q path\n");
 | |
|                 ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
 | |
|             } else {
 | |
|                 // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_sycl path\n");
 | |
|                 ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| template<typename ... Srcs>
 | |
| static __global__ void k_compute_batched_ptrs_id(
 | |
|         const void ** ptrs_src, void ** ptrs_dst,
 | |
|         int ne12, int ne13,
 | |
|         int ne23,
 | |
|         int nb02, int nb03,
 | |
|         int nb12, int nb13,
 | |
|         int nb2, int nb3,
 | |
|         int r2, int r3,
 | |
|         ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
 | |
|         const half * src1_f16, half * dst_f16,
 | |
|         const int32_t * ids, const int id,
 | |
|         Srcs... src0s) {
 | |
| 
 | |
|     int i = ids[id];
 | |
| 
 | |
|     half * src0_f16;
 | |
|     const void * srcs_ar[] = { (const half *) src0s... };
 | |
|     if (src0_type == GGML_TYPE_F16) {
 | |
|         src0_f16 = (half *) srcs_ar[i];
 | |
|     } else {
 | |
|         src0_f16 = src0_as_f16;
 | |
|         if (threadIdx.x == 0 && threadIdx.y == 0) {
 | |
|             const to_fp16_sycl_t to_fp16 = ggml_get_to_fp16_sycl(src0_type);
 | |
|             to_fp16(srcs_ar[i], src0_f16, src0_ne, syclStreamFireAndForget);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     int i13 = blockIdx.x * blockDim.x + threadIdx.x;
 | |
|     int i12 = blockIdx.y * blockDim.y + threadIdx.y;
 | |
| 
 | |
|     if (i13 >= ne13 || i12 >= ne12) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int i03 = i13 / r3;
 | |
|     int i02 = i12 / r2;
 | |
| 
 | |
|     ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02   + i03*nb03;
 | |
|     ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
 | |
|     ptrs_dst[0*ne23 + i12 + i13*ne12] = (      char *)  dst_f16 + i12* nb2/2 + i13* nb3/2;
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
 | |
|     const struct ggml_tensor * ids = dst->src[0];
 | |
|     const struct ggml_tensor * src1 = dst->src[1];
 | |
|     const struct ggml_tensor * src00 = dst->src[2];
 | |
| 
 | |
|     const int id = dst->op_params[0];
 | |
| 
 | |
|     GGML_ASSERT(!ggml_is_transposed(src00));
 | |
|     GGML_ASSERT(!ggml_is_transposed(src1));
 | |
| 
 | |
|     GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
 | |
|     GGML_ASSERT(src1->type == GGML_TYPE_F32);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne);
 | |
| 
 | |
|     //const int64_t nb01 = src00->nb[1];
 | |
|     GGML_TENSOR_LOCALS(int64_t, nb0, src00, nb);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
 | |
| 
 | |
|     GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb);
 | |
|     //const int64_t nb11 = src1->nb[1];
 | |
| 
 | |
|     const int64_t ne1 = ggml_nelements(src1);
 | |
|     const int64_t ne  = ggml_nelements(dst);
 | |
| 
 | |
|     SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|     syclStream_t main_stream = g_syclStreams[g_main_device_index][0];
 | |
| 
 | |
|     SYCL_CHECK(syclSetStream(g_sycl_handles[g_main_device_index], main_stream));
 | |
| 
 | |
|     //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     //void * src0_ddq = src0_extra->data_device[g_main_device_index];
 | |
|     //half * src0_as_f16 = (half *) src0_ddq;
 | |
| 
 | |
|     ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
|     float * src1_ddf = (float *) src1_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
 | |
|     float * dst_ddf = (float *) dst_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     // convert src1 to fp16
 | |
|     const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
 | |
|     GGML_ASSERT(to_fp16_sycl != nullptr);
 | |
| 
 | |
|     size_t src1_as = 0;
 | |
|     half * src1_as_f16 = (half *) ggml_sycl_pool_malloc(ne1 * sizeof(half), &src1_as);
 | |
|     to_fp16_sycl(src1_ddf, src1_as_f16, ne1, main_stream);
 | |
| 
 | |
|     size_t dst_as = 0;
 | |
|     half * dst_f16 = (half *) ggml_sycl_pool_malloc(ne * sizeof(half), &dst_as);
 | |
| 
 | |
|     GGML_ASSERT(ne12 % ne02 == 0);
 | |
|     GGML_ASSERT(ne13 % ne03 == 0);
 | |
| 
 | |
|     // broadcast factors
 | |
|     const int64_t r2 = ne12/ne02;
 | |
|     const int64_t r3 = ne13/ne03;
 | |
| 
 | |
|     const half alpha_f16 = 1.0f;
 | |
|     const half beta_f16  = 0.0f;
 | |
| 
 | |
|     // use syclGemmBatchedEx
 | |
|     const int ne23 = ne12*ne13;
 | |
| 
 | |
|     const void ** ptrs_src = nullptr;
 | |
|           void ** ptrs_dst = nullptr;
 | |
| 
 | |
|     size_t ptrs_src_s = 0;
 | |
|     size_t ptrs_dst_s = 0;
 | |
| 
 | |
|     ptrs_src = (const void **) ggml_sycl_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
 | |
|     ptrs_dst = (      void **) ggml_sycl_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
 | |
| 
 | |
|     int64_t src0_ne = ggml_nelements(src00);
 | |
|     half * src0_as_f16 = nullptr;
 | |
|     size_t src0_as = 0;
 | |
|     if (src00->type != GGML_TYPE_F16) {
 | |
|         src0_as_f16 = (half *) ggml_sycl_pool_malloc(src0_ne * sizeof(half), &src0_as);
 | |
|     }
 | |
| 
 | |
|     static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
 | |
|     dim3 block_dims(ne13, ne12);
 | |
|     k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
 | |
|             ptrs_src, ptrs_dst,
 | |
|             ne12, ne13,
 | |
|             ne23,
 | |
|             ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
 | |
|             nb12, nb13,
 | |
|             dst->nb[2], dst->nb[3],
 | |
|             r2, r3,
 | |
|             src00->type, src0_as_f16, src0_ne,
 | |
|             src1_as_f16, dst_f16,
 | |
|             (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index], id,
 | |
|             dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device_index] : nullptr,
 | |
|             dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device_index] : nullptr,
 | |
|             dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device_index] : nullptr,
 | |
|             dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device_index] : nullptr
 | |
|     );
 | |
|     SYCL_CHECK(syclGetLastError());
 | |
| 
 | |
|     SYCL_CHECK(
 | |
|     syclGemmBatchedEx(g_sycl_handles[g_main_device_index], CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|             ne01, ne11, ne10,
 | |
|             &alpha_f16, (const void **) (ptrs_src + 0*ne23), SYCL_R_16F, ne00,
 | |
|                         (const void **) (ptrs_src + 1*ne23), SYCL_R_16F, ne10,
 | |
|             &beta_f16,  (      void **) (ptrs_dst + 0*ne23), SYCL_R_16F, ne01,
 | |
|             ne23,
 | |
|             CUBLAS_COMPUTE_16F,
 | |
|             CUBLAS_GEMM_DEFAULT_TENSOR_OP));
 | |
| 
 | |
|     if (src0_as != 0) {
 | |
|         ggml_sycl_pool_free(src0_as_f16, src0_as);
 | |
|     }
 | |
|     if (ptrs_src_s != 0) {
 | |
|         ggml_sycl_pool_free(ptrs_src, ptrs_src_s);
 | |
|     }
 | |
|     if (ptrs_dst_s != 0) {
 | |
|         ggml_sycl_pool_free(ptrs_dst, ptrs_dst_s);
 | |
|     }
 | |
| 
 | |
|     const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
 | |
|     to_fp32_sycl(dst_f16, dst_ddf, ne, main_stream);
 | |
| 
 | |
|     ggml_sycl_pool_free(src1_as_f16, src1_as);
 | |
|     ggml_sycl_pool_free(dst_f16, dst_as);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
 | |
|                                  const ggml_tensor *src1,
 | |
|                                  ggml_tensor *dst) try {
 | |
| #if 0
 | |
|     ggml_sycl_mul_mat_id_sycl(dst);
 | |
|     // TODO: mmq/mmv support
 | |
| #endif
 | |
| 
 | |
|     const int64_t nb11 = src1->nb[1];
 | |
|     const int64_t nb1  =  dst->nb[1];
 | |
| 
 | |
|     const struct ggml_tensor * ids = src0;
 | |
|     const int32_t id = ((int32_t *) dst->op_params)[0];
 | |
|     const int32_t n_as = ((int32_t *) dst->op_params)[1];
 | |
| 
 | |
|     std::vector<char> ids_host(ggml_nbytes(ids));
 | |
| 
 | |
|     const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
 | |
| 
 | |
|     if (ids->backend == GGML_BACKEND_GPU) {
 | |
|         const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index];
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|             stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
 | |
|     } else {
 | |
|         memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
 | |
|     }
 | |
| 
 | |
|     const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
 | |
|     const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
 | |
| 
 | |
|     ggml_tensor_extra_gpu src1_row_extra;
 | |
|     ggml_tensor_extra_gpu dst_row_extra;
 | |
| 
 | |
|     ggml_tensor src1_row = *src1;
 | |
|     ggml_tensor dst_row = *dst;
 | |
| 
 | |
|     src1_row.backend = GGML_BACKEND_GPU;
 | |
|     dst_row.backend  = GGML_BACKEND_GPU;
 | |
| 
 | |
|     src1_row.extra = &src1_row_extra;
 | |
|     dst_row.extra = &dst_row_extra;
 | |
| 
 | |
|     char * src1_original = src1->backend == GGML_BACKEND_CPU ?
 | |
|         (char *) src1->data : (char *) src1_extra->data_device[g_main_device_index];
 | |
|     char * dst_original  =  dst->backend == GGML_BACKEND_CPU ?
 | |
|         (char *)  dst->data : (char *)  dst_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     if (src1->ne[1] == 1) {
 | |
|         GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
 | |
|         GGML_ASSERT(dst->backend  == GGML_BACKEND_GPU);
 | |
| 
 | |
|         for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
 | |
|             //int32_t row_id;
 | |
|             //SYCL_CHECK(syclMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), syclMemcpyDeviceToHost, g_syclStreams[g_main_device][0]));
 | |
|             //SYCL_CHECK(syclStreamSynchronize(g_syclStreams[g_main_device][0]));
 | |
| 
 | |
|             const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
 | |
| 
 | |
|             GGML_ASSERT(row_id >= 0 && row_id < n_as);
 | |
| 
 | |
|             const struct ggml_tensor * src0_row = dst->src[row_id + 2];
 | |
| 
 | |
|             src1_row_extra.data_device[g_main_device_index] = src1_original + i01*src1->nb[1];
 | |
|             src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
 | |
| 
 | |
|             dst_row_extra.data_device[g_main_device_index] = dst_original + i01*dst->nb[1];
 | |
|             dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
 | |
| 
 | |
|             ggml_sycl_mul_mat(src0_row, &src1_row, &dst_row);
 | |
|         }
 | |
|     } else {
 | |
|         sycl_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
 | |
|         sycl_pool_alloc<char>  dst_contiguous(sizeof(float)*ggml_nelements(dst));
 | |
| 
 | |
|         src1_row_extra.data_device[g_main_device_index] = src1_contiguous.get();
 | |
|         dst_row_extra.data_device[g_main_device_index]  =  dst_contiguous.get();
 | |
| 
 | |
|         for (int32_t row_id = 0; row_id < n_as; ++row_id) {
 | |
|             const struct ggml_tensor * src0_row = dst->src[row_id + 2];
 | |
| 
 | |
|             int64_t num_src1_rows = 0;
 | |
|             for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
 | |
|                 const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
 | |
| 
 | |
|                 if (row_id_i != row_id) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 GGML_ASSERT(row_id >= 0 && row_id < n_as);
 | |
| 
 | |
|                 SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|                     stream->memcpy(src1_contiguous.get() + num_src1_rows * nb11,
 | |
|                                    src1_original + i01 * nb11, nb11)));
 | |
|                 num_src1_rows++;
 | |
|             }
 | |
| 
 | |
|             if (num_src1_rows == 0) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             src1_row.ne[1] = num_src1_rows;
 | |
|             dst_row.ne[1] = num_src1_rows;
 | |
| 
 | |
|             src1_row.nb[1] = nb11;
 | |
|             src1_row.nb[2] = num_src1_rows*nb11;
 | |
|             src1_row.nb[3] = num_src1_rows*nb11;
 | |
| 
 | |
|             dst_row.nb[1] = nb1;
 | |
|             dst_row.nb[2] = num_src1_rows*nb1;
 | |
|             dst_row.nb[3] = num_src1_rows*nb1;
 | |
| 
 | |
|             ggml_sycl_mul_mat(src0_row, &src1_row, &dst_row);
 | |
| 
 | |
|             num_src1_rows = 0;
 | |
|             for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
 | |
|                 const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
 | |
| 
 | |
|                 if (row_id_i != row_id) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 GGML_ASSERT(row_id >= 0 && row_id < n_as);
 | |
| 
 | |
|                 SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
 | |
|                     dst_original + i01 * nb1,
 | |
|                     dst_contiguous.get() + num_src1_rows * nb1, nb1)));
 | |
|                 num_src1_rows++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (dst->backend == GGML_BACKEND_CPU) {
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_scale);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_clamp);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
 | |
|                           ggml_tensor *dst) try {
 | |
|     const int64_t ne = ggml_nelements(src0);
 | |
|     GGML_ASSERT(ne == ggml_nelements(src1));
 | |
| 
 | |
|     GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
 | |
|     GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
 | |
|     GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
 | |
| 
 | |
|     GGML_TENSOR_BINARY_OP_LOCALS;
 | |
| 
 | |
|     SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|     dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
 | |
| 
 | |
|     const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
 | |
|     const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
 | |
| 
 | |
|     char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
 | |
|     char * src1_ddc = (char *) src1_extra->data_device[g_main_device_index];
 | |
| 
 | |
|     if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
 | |
|         ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
 | |
|         ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
 | |
|         ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
 | |
|         ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
 | |
|         ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
 | |
|         ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
 | |
|         ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | |
|     } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
 | |
|         ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
 | |
|     } else {
 | |
|         fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
 | |
|                 ggml_type_name(src0->type), ggml_type_name(src1->type));
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| 
 | |
|     (void) dst;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     // TODO: why do we pass dst as src1 here?
 | |
|     ggml_sycl_cpy(src0, dst, nullptr);
 | |
|     (void) src1;
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_diag_mask_inf);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_soft_max);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rope);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_alibi);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_im2col);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_sum_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_sum_rows);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_argsort(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     GGML_ASSERT(ggml_is_contiguous(src0));
 | |
|     ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_argsort);
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     (void) src0;
 | |
|     (void) src1;
 | |
|     (void) dst;
 | |
| }
 | |
| 
 | |
| static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
 | |
|     static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
 | |
| 
 | |
|     return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try {
 | |
|     const int64_t nrows = ggml_nrows(tensor);
 | |
| 
 | |
|     const int64_t ne0 = tensor->ne[0];
 | |
| 
 | |
|     const size_t nb1 = tensor->nb[1];
 | |
| 
 | |
|     ggml_backend_type backend = tensor->backend;
 | |
|     ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
 | |
|     memset(extra, 0, sizeof(*extra));
 | |
| 
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         if (backend == GGML_BACKEND_GPU && id != g_main_device_index) {
 | |
|             continue;
 | |
|         }
 | |
|         ggml_sycl_set_device(get_device_id_by_index(id));
 | |
|         const dpct::queue_ptr stream = g_syclStreams[id][0];
 | |
| 
 | |
|         int64_t row_low, row_high;
 | |
|         if (backend == GGML_BACKEND_GPU) {
 | |
|             row_low = 0;
 | |
|             row_high = nrows;
 | |
|         } else if (backend == GGML_BACKEND_GPU_SPLIT) {
 | |
|             const int64_t rounding = get_row_rounding(tensor->type);
 | |
| 
 | |
|             row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
 | |
|             row_low -= row_low % rounding;
 | |
| 
 | |
|             if (id == g_device_count - 1) {
 | |
|                 row_high = nrows;
 | |
|             } else {
 | |
|                 row_high = nrows*g_tensor_split[id + 1];
 | |
|                 row_high -= row_high % rounding;
 | |
|             }
 | |
|         } else {
 | |
|             GGML_ASSERT(false);
 | |
|         }
 | |
|         if (row_low == row_high) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         int64_t nrows_split = row_high - row_low;
 | |
| 
 | |
|         const size_t offset_split = row_low*nb1;
 | |
|         size_t size = ggml_nbytes_split(tensor, nrows_split);
 | |
|         const size_t original_size = size;
 | |
| 
 | |
|         // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
 | |
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | |
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | |
|         }
 | |
| 
 | |
|         char * buf;
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device(
 | |
|                                         size, *stream)));
 | |
|         char * buf_host = (char *)data + offset_split;
 | |
| 
 | |
|         // set padding to 0 to avoid possible NaN values
 | |
|         if (size > original_size) {
 | |
|             SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|                 (*stream)
 | |
|                 .memset(buf + original_size, 0, size - original_size)
 | |
|                 .wait()));
 | |
|         }
 | |
| 
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR((*stream)
 | |
|                                     .memcpy(buf, buf_host, original_size)
 | |
|                                     .wait()));
 | |
| 
 | |
|         extra->data_device[id] = buf;
 | |
| 
 | |
|         if (backend == GGML_BACKEND_GPU_SPLIT) {
 | |
|             for (int64_t is = 0; is < MAX_STREAMS; ++is) {
 | |
|                 SYCL_CHECK(CHECK_TRY_ERROR(extra->events[id][is] =
 | |
|                                                 new sycl::event()));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tensor->extra = extra;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_free_data(struct ggml_tensor *tensor) try {
 | |
|     if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
 | |
| 
 | |
|     for (int64_t id = 0; id < g_device_count; ++id) {
 | |
|         const dpct::queue_ptr stream = g_syclStreams[id][0];
 | |
|         if (extra->data_device[id] != nullptr) {
 | |
|             SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
 | |
|             SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(extra->data_device[id], *stream)));
 | |
|         }
 | |
| 
 | |
|         for (int64_t is = 0; is < MAX_STREAMS; ++is) {
 | |
|             if (extra->events[id][is] != nullptr) {
 | |
|                 SYCL_CHECK(ggml_sycl_set_device(get_device_id_by_index(id)));
 | |
|                 SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|                     dpct::destroy_event(extra->events[id][is])));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     delete extra;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
 | |
| static size_t g_temp_tensor_extra_index = 0;
 | |
| 
 | |
| static ggml_tensor_extra_gpu * ggml_sycl_alloc_temp_tensor_extra() {
 | |
|     if (g_temp_tensor_extras == nullptr) {
 | |
|         g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_SYCL_MAX_NODES];
 | |
|     }
 | |
| 
 | |
|     size_t alloc_index = g_temp_tensor_extra_index;
 | |
|     g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_SYCL_MAX_NODES;
 | |
|     ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
 | |
|     memset(extra, 0, sizeof(*extra));
 | |
| 
 | |
|     return extra;
 | |
| }
 | |
| 
 | |
| static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
 | |
|                                           bool scratch, bool force_inplace,
 | |
|                                           bool no_alloc) try {
 | |
|     if (scratch && g_scratch_size == 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     tensor->backend = GGML_BACKEND_GPU;
 | |
| 
 | |
|     if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
 | |
|         const ggml_op src0_op = tensor->src[0]->op;
 | |
|         if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
 | |
|             ggml_sycl_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
 | |
|         }
 | |
|     }
 | |
|     if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
 | |
|         ggml_sycl_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
 | |
|     }
 | |
| 
 | |
|     if (scratch && no_alloc) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra;
 | |
| 
 | |
|     const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
 | |
|         tensor->op == GGML_OP_VIEW ||
 | |
|         force_inplace;
 | |
|     const size_t size = ggml_nbytes(tensor);
 | |
| 
 | |
|     SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|     const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
 | |
| 
 | |
|     if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
 | |
|         ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
 | |
|         char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
 | |
|         size_t offset = 0;
 | |
|         if (tensor->op == GGML_OP_VIEW) {
 | |
|             memcpy(&offset, tensor->op_params, sizeof(size_t));
 | |
|         }
 | |
|         extra = ggml_sycl_alloc_temp_tensor_extra();
 | |
|         extra->data_device[g_main_device_index] = src0_ddc + offset;
 | |
|     } else if (tensor->op == GGML_OP_CPY) {
 | |
|         ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
 | |
|         void * src1_ddv = src1_extra->data_device[g_main_device_index];
 | |
|         extra = ggml_sycl_alloc_temp_tensor_extra();
 | |
|         extra->data_device[g_main_device_index] = src1_ddv;
 | |
|     } else if (scratch) {
 | |
|         GGML_ASSERT(size <= g_scratch_size);
 | |
|         if (g_scratch_offset + size > g_scratch_size) {
 | |
|             g_scratch_offset = 0;
 | |
|         }
 | |
| 
 | |
|         char * data = (char *) g_scratch_buffer;
 | |
|         if (data == nullptr) {
 | |
|             SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|                 data = (char *)sycl::malloc_device(
 | |
|                     g_scratch_size, *stream)));
 | |
|             g_scratch_buffer = data;
 | |
|         }
 | |
|         extra = ggml_sycl_alloc_temp_tensor_extra();
 | |
|         extra->data_device[g_main_device_index] = data + g_scratch_offset;
 | |
| 
 | |
|         g_scratch_offset += size;
 | |
| 
 | |
|         GGML_ASSERT(g_scratch_offset <= g_scratch_size);
 | |
|     } else { // allocate new buffers outside of scratch
 | |
|         void * data;
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(data = (void *)sycl::malloc_device(
 | |
|                                         size, *stream)));
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|             (*stream).memset(data, 0, size).wait()));
 | |
|         extra = new ggml_tensor_extra_gpu;
 | |
|         memset(extra, 0, sizeof(*extra));
 | |
|         extra->data_device[g_main_device_index] = data;
 | |
|     }
 | |
| 
 | |
|     tensor->extra = extra;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_assign_scratch_offset(struct ggml_tensor *tensor,
 | |
|                                      size_t offset) try {
 | |
|     if (g_scratch_size == 0) {
 | |
|         return;
 | |
|     }
 | |
|     if (g_scratch_buffer == nullptr) {
 | |
|         ggml_sycl_set_device(g_main_device);
 | |
|         const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
 | |
|         SYCL_CHECK(
 | |
|             CHECK_TRY_ERROR(g_scratch_buffer = (void *)sycl::malloc_device(
 | |
|                                  g_scratch_size, *stream)));
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra = ggml_sycl_alloc_temp_tensor_extra();
 | |
| 
 | |
|     const bool inplace = tensor->view_src != nullptr;
 | |
| 
 | |
|     if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
 | |
|         ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
 | |
|         char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
 | |
|         size_t view_offset = 0;
 | |
|         if (tensor->op == GGML_OP_VIEW) {
 | |
|             memcpy(&view_offset, tensor->op_params, sizeof(size_t));
 | |
|         }
 | |
|         extra->data_device[g_main_device_index] = src0_ddc + view_offset;
 | |
|     } else {
 | |
|         extra->data_device[g_main_device_index] = (char *) g_scratch_buffer + offset;
 | |
|     }
 | |
| 
 | |
|     tensor->extra = extra;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_copy_to_device(struct ggml_tensor *tensor) try {
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
|     GGML_ASSERT(ggml_is_contiguous(tensor));
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
 | |
|     SYCL_CHECK(ggml_sycl_set_device(g_main_device));
 | |
|     const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR((*stream)
 | |
|                                     .memcpy(extra->data_device[g_main_device_index],
 | |
|                                             tensor->data, ggml_nbytes(tensor))
 | |
|                                     .wait()));
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_assign_buffers(struct ggml_tensor * tensor) {
 | |
|     ggml_sycl_assign_buffers_impl(tensor, true, false, false);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor) {
 | |
|     ggml_sycl_assign_buffers_impl(tensor, true, false, true);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
 | |
|     ggml_sycl_assign_buffers_impl(tensor, false, false, false);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
 | |
|     ggml_sycl_assign_buffers_impl(tensor, false, true, false);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_set_main_device(const int main_device) try {
 | |
| 
 | |
|     if (main_device >= g_all_sycl_device_count) {
 | |
|         fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
 | |
|                 main_device, g_all_sycl_device_count, g_main_device);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (g_main_device != main_device && g_device_count >= 1) {
 | |
|         g_main_device = main_device;
 | |
|         g_main_device_index = get_device_index_by_id(g_main_device);
 | |
|         dpct::device_info prop;
 | |
|         SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
 | |
|             prop, dpct::dev_mgr::instance().get_device(g_main_device))));
 | |
|         fprintf(stderr, "Using device %d (%s) as main device\n",
 | |
|                 g_main_device, prop.get_name());
 | |
|     }
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_set_scratch_size(const size_t scratch_size) {
 | |
|     // this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously
 | |
|     // it still won't always work as expected, but it's better than nothing
 | |
|     if (scratch_size > g_scratch_size) {
 | |
|         ggml_sycl_free_scratch();
 | |
|     }
 | |
|     g_scratch_size = std::max(g_scratch_size, scratch_size);
 | |
| }
 | |
| 
 | |
| void ggml_sycl_free_scratch() try {
 | |
|     if (g_scratch_buffer == nullptr) {
 | |
|         return;
 | |
|     }
 | |
|     ggml_sycl_set_device(g_main_device);
 | |
|     const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
 | |
| 
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|         sycl::free(g_scratch_buffer, *stream)));
 | |
|     g_scratch_buffer = nullptr;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
 | |
|     if (!g_sycl_loaded) return false;
 | |
| 
 | |
|     ggml_sycl_func_t func;
 | |
|     const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
 | |
|         || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
 | |
|         || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (tensor->op == GGML_OP_MUL_MAT) {
 | |
|         if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
 | |
| #ifndef NDEBUG
 | |
|             fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
 | |
| #endif
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     switch (tensor->op) {
 | |
|         case GGML_OP_REPEAT:
 | |
|             func = ggml_sycl_repeat;
 | |
|             break;
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             func = ggml_sycl_get_rows;
 | |
|             break;
 | |
|         case GGML_OP_DUP:
 | |
|             func = ggml_sycl_dup;
 | |
|             break;
 | |
|         case GGML_OP_ADD:
 | |
|             func = ggml_sycl_add;
 | |
|             break;
 | |
|         case GGML_OP_ACC:
 | |
|             func = ggml_sycl_acc;
 | |
|             break;
 | |
|         case GGML_OP_MUL:
 | |
|             func = ggml_sycl_mul;
 | |
|             break;
 | |
|         case GGML_OP_DIV:
 | |
|             func = ggml_sycl_div;
 | |
|             break;
 | |
|         case GGML_OP_UNARY:
 | |
|             switch (ggml_get_unary_op(tensor)) {
 | |
|                 case GGML_UNARY_OP_GELU:
 | |
|                     func = ggml_sycl_gelu;
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_SILU:
 | |
|                     func = ggml_sycl_silu;
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_GELU_QUICK:
 | |
|                     func = ggml_sycl_gelu_quick;
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_TANH:
 | |
|                     func = ggml_sycl_tanh;
 | |
|                     break;
 | |
|                 case GGML_UNARY_OP_RELU:
 | |
|                     func = ggml_sycl_relu;
 | |
|                     break;
 | |
|                 default:
 | |
|                     return false;
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_NORM:
 | |
|             func = ggml_sycl_norm;
 | |
|             break;
 | |
|         case GGML_OP_GROUP_NORM:
 | |
|             func = ggml_sycl_group_norm;
 | |
|             break;
 | |
|         case GGML_OP_CONCAT:
 | |
|             func = ggml_sycl_concat;
 | |
|             break;
 | |
|         case GGML_OP_UPSCALE:
 | |
|             func = ggml_sycl_upscale;
 | |
|             break;
 | |
|         case GGML_OP_PAD:
 | |
|             func = ggml_sycl_pad;
 | |
|             break;
 | |
|         case GGML_OP_LEAKY_RELU:
 | |
|             func = ggml_sycl_leaky_relu;
 | |
|             break;
 | |
|         case GGML_OP_RMS_NORM:
 | |
|             func = ggml_sycl_rms_norm;
 | |
|             break;
 | |
|         case GGML_OP_MUL_MAT:
 | |
|             if (!any_on_device && !ggml_sycl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
 | |
|                 return false;
 | |
|             }
 | |
|             func = ggml_sycl_mul_mat;
 | |
|             break;
 | |
|         case GGML_OP_MUL_MAT_ID:
 | |
|             if (!any_on_device && !ggml_sycl_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
 | |
|                 return false;
 | |
|             }
 | |
|             func = ggml_sycl_mul_mat_id;
 | |
|             break;
 | |
|         case GGML_OP_SCALE:
 | |
|             func = ggml_sycl_scale;
 | |
|             break;
 | |
|         case GGML_OP_SQR:
 | |
|             func = ggml_sycl_sqr;
 | |
|             break;
 | |
|         case GGML_OP_CLAMP:
 | |
|             func = ggml_sycl_clamp;
 | |
|             break;
 | |
|         case GGML_OP_CPY:
 | |
|             func = ggml_sycl_cpy;
 | |
|             break;
 | |
|         case GGML_OP_CONT:
 | |
|             func = ggml_sycl_dup;
 | |
|             break;
 | |
|         case GGML_OP_NONE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_VIEW:
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|             func = ggml_sycl_nop;
 | |
|             break;
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|             func = ggml_sycl_diag_mask_inf;
 | |
|             break;
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|             func = ggml_sycl_soft_max;
 | |
|             break;
 | |
|         case GGML_OP_ROPE:
 | |
|             func = ggml_sycl_rope;
 | |
|             break;
 | |
|         case GGML_OP_ALIBI:
 | |
|             func = ggml_sycl_alibi;
 | |
|             break;
 | |
|         case GGML_OP_IM2COL:
 | |
|             func = ggml_sycl_im2col;
 | |
|             break;
 | |
|         case GGML_OP_SUM_ROWS:
 | |
|             func = ggml_sycl_sum_rows;
 | |
|             break;
 | |
|         case GGML_OP_ARGSORT:
 | |
|             func = ggml_sycl_argsort;
 | |
|             break;
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
 | |
|         ggml_sycl_set_peer_access(tensor->src[1]->ne[1]);
 | |
|     }
 | |
| 
 | |
|     if (params->ith != 0) {
 | |
|         return true;
 | |
|     }
 | |
|     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
 | |
|         return true;
 | |
|     }
 | |
|     func(tensor->src[0], tensor->src[1], tensor);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| GGML_API GGML_CALL void   ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
 | |
|     int max_compute_units = -1;
 | |
|     for(int i=0;i<max_len;i++) id_list[i] = 0;
 | |
| 
 | |
|     int device_count = dpct::dev_mgr::instance().device_count();
 | |
| 
 | |
|     for(int id=0; id< device_count; id++){
 | |
|         sycl::device device = dpct::dev_mgr::instance().get_device(id);
 | |
|         if (!device.is_gpu()) continue;
 | |
|         dpct::device_info prop;
 | |
|         dpct::get_device_info(prop, device);
 | |
|         if(max_compute_units < prop.get_max_compute_units()) max_compute_units = prop.get_max_compute_units();
 | |
|     }
 | |
| 
 | |
|     for(int id=0;id< device_count;id++){
 | |
|         sycl::device device = dpct::dev_mgr::instance().get_device(id);
 | |
|         if (!device.is_gpu()) continue;
 | |
|         dpct::device_info prop;
 | |
|         dpct::get_device_info(prop, device);
 | |
|         if(max_compute_units == prop.get_max_compute_units() && prop.get_major_version() == 1 ){
 | |
|             id_list[id] = 1;
 | |
|         }
 | |
|     }
 | |
|     return;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| int ggml_sycl_get_device_count() try {
 | |
|     int device_count;
 | |
|     if (CHECK_TRY_ERROR(device_count =
 | |
|                              dpct::dev_mgr::instance().device_count()) != 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     return device_count;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
 | |
|                                       size_t description_size) try {
 | |
|     dpct::device_info prop;
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
 | |
|         prop, dpct::dev_mgr::instance().get_device(device))));
 | |
|     snprintf(description, description_size, "%s", prop.get_name());
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // backend interface
 | |
| 
 | |
| #define UNUSED GGML_UNUSED
 | |
| 
 | |
| struct ggml_backend_sycl_context {
 | |
|     int device;
 | |
|     std::string name;
 | |
| };
 | |
| 
 | |
| // sycl buffer
 | |
| 
 | |
| struct ggml_backend_sycl_buffer_context {
 | |
|     int device;
 | |
|     void * dev_ptr = nullptr;
 | |
|     ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
 | |
|     size_t temp_tensor_extra_index = 0;
 | |
|     std::string name;
 | |
| 
 | |
|      ggml_backend_sycl_buffer_context(int device, void * dev_ptr) : device(device), dev_ptr(dev_ptr) {}
 | |
| 
 | |
|     ~ ggml_backend_sycl_buffer_context() {
 | |
|         delete[] temp_tensor_extras;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * ggml_sycl_alloc_temp_tensor_extra() {
 | |
|         if (temp_tensor_extras == nullptr) {
 | |
|             temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_SYCL_MAX_NODES];
 | |
|         }
 | |
| 
 | |
|         size_t alloc_index = temp_tensor_extra_index;
 | |
|         temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_SYCL_MAX_NODES;
 | |
|         ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
 | |
|         memset(extra, 0, sizeof(*extra));
 | |
| 
 | |
|         return extra;
 | |
|     }
 | |
| };
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
 | |
|     ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
 | |
|     return ctx->name.c_str();
 | |
| }
 | |
| 
 | |
| GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
 | |
|     return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
 | |
|      ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | |
|     ggml_sycl_set_device(ctx->device);
 | |
|     int device_index = get_device_index_by_id(ctx->device);
 | |
|     const dpct::queue_ptr stream = g_syclStreams[device_index][0];
 | |
| 
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(sycl::free(ctx->dev_ptr, *stream)));
 | |
|     delete ctx;
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
 | |
|      ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | |
|     return ctx->dev_ptr;
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
 | |
|                                                  ggml_tensor *tensor) try {
 | |
|      ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | |
| 
 | |
|     if (tensor->view_src != NULL && tensor->view_offs == 0) {
 | |
|         assert(tensor->view_src->buffer->buft == buffer->buft);
 | |
|         tensor->backend = tensor->view_src->backend;
 | |
|         tensor->extra = tensor->view_src->extra;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ggml_tensor_extra_gpu * extra = ctx->ggml_sycl_alloc_temp_tensor_extra();
 | |
| 
 | |
|     extra->data_device[ctx->device] = tensor->data;
 | |
| 
 | |
|     tensor->backend = GGML_BACKEND_GPU;
 | |
|     tensor->extra = extra;
 | |
| 
 | |
|     if (ggml_is_quantized(tensor->type)) {
 | |
|         // initialize padding to 0 to avoid possible NaN values
 | |
|         int64_t row_low = 0;
 | |
|         int64_t row_high = ggml_nrows(tensor);
 | |
|         int64_t nrows_split = row_high - row_low;
 | |
| 
 | |
|         size_t original_size = ggml_nbytes_split(tensor, nrows_split);
 | |
|         size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
 | |
| 
 | |
|         if (padded_size > original_size && tensor->view_src == nullptr) {
 | |
|             SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[ctx->device][0]->memset(
 | |
|                 (char *)tensor->data + original_size, 0,
 | |
|                 padded_size - original_size)));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     UNUSED(buffer);
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
 | |
|                                                 ggml_tensor *tensor,
 | |
|                                                 const void *data, size_t offset,
 | |
|                                                 size_t size) try {
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|      ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | |
| 
 | |
|     ggml_sycl_set_device(ctx->device);
 | |
|     int device_index = get_device_index_by_id(ctx->device);
 | |
|     const dpct::queue_ptr stream = g_syclStreams[device_index][0];
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
 | |
| 
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR((*stream)
 | |
|                              .memcpy((char *)tensor->data + offset, data, size)
 | |
|                              .wait()));
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
 | |
|                                                 const ggml_tensor *tensor,
 | |
|                                                 void *data, size_t offset,
 | |
|                                                 size_t size) try {
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|      ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | |
| 
 | |
|     ggml_sycl_set_device(ctx->device);
 | |
|     int device_index = get_device_index_by_id(ctx->device);
 | |
|     const dpct::queue_ptr stream = g_syclStreams[device_index][0];
 | |
| 
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
 | |
| 
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(
 | |
|         (*stream)
 | |
|             .memcpy(data, (const char *)tensor->data + offset, size)
 | |
|             .wait()));
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
 | |
|                                            uint8_t value) try {
 | |
|      ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
 | |
| 
 | |
|     ggml_sycl_set_device(ctx->device);
 | |
|     int device_index = get_device_index_by_id(ctx->device);
 | |
|     const dpct::queue_ptr stream = g_syclStreams[device_index][0];
 | |
|     SYCL_CHECK(
 | |
|         CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
 | |
| 
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR((*stream)
 | |
|                                     .memset(ctx->dev_ptr, value, buffer->size)
 | |
|                                     .wait()));
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
 | |
|     /* .get_name        = */ ggml_backend_sycl_buffer_get_name,
 | |
|     /* .free_buffer     = */ ggml_backend_sycl_buffer_free_buffer,
 | |
|     /* .get_base        = */ ggml_backend_sycl_buffer_get_base,
 | |
|     /* .init_tensor     = */ ggml_backend_sycl_buffer_init_tensor,
 | |
|     /* .set_tensor      = */ ggml_backend_sycl_buffer_set_tensor,
 | |
|     /* .get_tensor      = */ ggml_backend_sycl_buffer_get_tensor,
 | |
|     /* .cpy_tensor      = */ NULL,
 | |
|     /* .clear           = */ ggml_backend_sycl_buffer_clear,
 | |
|     /* .reset           = */ NULL,
 | |
| };
 | |
| 
 | |
| // sycl buffer type
 | |
| struct ggml_backend_sycl_buffer_type_context {
 | |
|     int device;
 | |
|     std::string name;
 | |
| };
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | |
|     ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
 | |
| 
 | |
|     return ctx->name.c_str();
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_t
 | |
| ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
 | |
|                                            size_t size) try {
 | |
|     ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
 | |
|     int device = (int) buft_ctx->device;
 | |
| 
 | |
|     ggml_sycl_set_device(device);
 | |
|     int device_index = get_device_index_by_id(device);
 | |
|     const dpct::queue_ptr stream = g_syclStreams[device_index][0];
 | |
|     size = std::max(size, (size_t)1); // syclMalloc returns null for size 0
 | |
| 
 | |
|     void * dev_ptr;
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device(
 | |
|                                     size, *stream)));
 | |
| 
 | |
|      ggml_backend_sycl_buffer_context * ctx = new  ggml_backend_sycl_buffer_context(device, dev_ptr);
 | |
| 
 | |
|     return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size);
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
 | |
|     return 128;
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
 | |
|     return dpct::get_current_device().get_max_mem_alloc_size();
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
 | |
|     int64_t row_low = 0;
 | |
|     int64_t row_high = ggml_nrows(tensor);
 | |
|     int64_t nrows_split = row_high - row_low;
 | |
| 
 | |
|     size_t size = ggml_nbytes_split(tensor, nrows_split);
 | |
| 
 | |
|     int64_t ne0 = tensor->ne[0];
 | |
| 
 | |
|     if (ggml_is_quantized(tensor->type)) {
 | |
|         if (ne0 % MATRIX_ROW_PADDING != 0) {
 | |
|             size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return size;
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| static bool ggml_backend_sycl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
 | |
|     return ggml_backend_is_sycl(backend);
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
 | |
|     /* .get_name         = */ ggml_backend_sycl_buffer_type_name,
 | |
|     /* .alloc_buffer     = */ ggml_backend_sycl_buffer_type_alloc_buffer,
 | |
|     /* .get_alignment    = */ ggml_backend_sycl_buffer_type_get_alignment,
 | |
|     /* .get_max_size     = */ ggml_backend_sycl_buffer_type_get_max_size,
 | |
|     /* .get_alloc_size   = */ ggml_backend_sycl_buffer_type_get_alloc_size,
 | |
|     /* .supports_backend = */ ggml_backend_sycl_buffer_type_supports_backend,
 | |
|     /* .is_host          = */ nullptr,
 | |
| };
 | |
| 
 | |
| ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
 | |
|     static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
 | |
| 
 | |
|     static bool ggml_backend_sycl_buffer_type_initialized = false;
 | |
| 
 | |
|     if (!ggml_backend_sycl_buffer_type_initialized) {
 | |
|         for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
 | |
|             ggml_backend_sycl_buffer_types[i] = {
 | |
|                 /* .iface    = */ ggml_backend_sycl_buffer_type_interface,
 | |
|                 /* .context  = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i)},
 | |
|             };
 | |
|         }
 | |
|         ggml_backend_sycl_buffer_type_initialized = true;
 | |
|     }
 | |
| 
 | |
|     return &ggml_backend_sycl_buffer_types[device];
 | |
| }
 | |
| 
 | |
| // host buffer type
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
 | |
|     return GGML_SYCL_NAME "_Host";
 | |
| 
 | |
|     UNUSED(buft);
 | |
| }
 | |
| 
 | |
| GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
 | |
|     return GGML_SYCL_NAME "_Host";
 | |
| 
 | |
|     UNUSED(buffer);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
 | |
|     ggml_sycl_host_free(buffer->context);
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
 | |
|     void * ptr = ggml_sycl_host_malloc(size);
 | |
| 
 | |
|     if (ptr == nullptr) {
 | |
|         // fallback to cpu buffer
 | |
|         return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
 | |
|     }
 | |
| 
 | |
|     // FIXME: this is a hack to avoid having to implement a new buffer type
 | |
|     ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
 | |
|     buffer->buft = buft;
 | |
|     buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer;
 | |
| 
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
 | |
|     static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_type_host = {
 | |
|         /* .iface    = */ {
 | |
|             /* .get_name         = */ ggml_backend_sycl_host_buffer_type_name,
 | |
|             /* .alloc_buffer     = */ ggml_backend_sycl_host_buffer_type_alloc_buffer,
 | |
|             /* .get_alignment    = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
 | |
|             /* .get_max_size     = */ NULL, // TODO: return device.maxBufferLength
 | |
|             /* .get_alloc_size   = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
 | |
|             /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
 | |
|             /* .is_host          = */ ggml_backend_cpu_buffer_type()->iface.is_host,
 | |
|         },
 | |
|         /* .context  = */ nullptr,
 | |
|     };
 | |
| 
 | |
|     return &ggml_backend_sycl_buffer_type_host;
 | |
| }
 | |
| 
 | |
| // backend
 | |
| 
 | |
| static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
 | |
|     return GGML_SYCL_NAME;
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_free(ggml_backend_t backend) {
 | |
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | |
| 
 | |
|     delete sycl_ctx;
 | |
|     delete backend;
 | |
| }
 | |
| 
 | |
| static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
 | |
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | |
| 
 | |
|     return ggml_backend_sycl_buffer_type(sycl_ctx->device);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
 | |
|                                                ggml_tensor *tensor,
 | |
|                                                const void *data, size_t offset,
 | |
|                                                size_t size) try {
 | |
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | |
| 
 | |
|     GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
 | |
|         (char *)tensor->data + offset, data, size)));
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
 | |
|                                                const ggml_tensor *tensor,
 | |
|                                                void *data, size_t offset,
 | |
|                                                size_t size) try {
 | |
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | |
| 
 | |
|     GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
 | |
|     GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
 | |
| 
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
 | |
|         data, (const char *)tensor->data + offset, size)));
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
 | |
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | |
| 
 | |
|     SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->wait()));
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| catch (sycl::exception const &exc) {
 | |
|   std::cerr << exc.what() << "Exception caught at file:" << __FILE__
 | |
|             << ", line:" << __LINE__ << std::endl;
 | |
|   std::exit(1);
 | |
| }
 | |
| 
 | |
| static ggml_backend_graph_plan_t ggml_backend_sycl_graph_plan_create(ggml_backend_t backend, const ggml_cgraph * cgraph) {
 | |
|     GGML_ASSERT(!"not implemented");
 | |
| 
 | |
|     return nullptr;
 | |
| 
 | |
|     UNUSED(backend);
 | |
|     UNUSED(cgraph);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
 | |
|     GGML_ASSERT(!"not implemented");
 | |
| 
 | |
|     UNUSED(backend);
 | |
|     UNUSED(plan);
 | |
| }
 | |
| 
 | |
| static void ggml_backend_sycl_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
 | |
|     GGML_ASSERT(!"not implemented");
 | |
| 
 | |
|     UNUSED(backend);
 | |
|     UNUSED(plan);
 | |
| }
 | |
| 
 | |
| static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
 | |
|     ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
 | |
| 
 | |
|     ggml_sycl_set_main_device(sycl_ctx->device);
 | |
| 
 | |
|     ggml_compute_params params = {};
 | |
|     params.type = GGML_TASK_COMPUTE;
 | |
|     params.ith = 0;
 | |
|     for (int i = 0; i < cgraph->n_nodes; i++) {
 | |
|         ggml_tensor * node = cgraph->nodes[i];
 | |
| 
 | |
|         if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
 | |
|             continue;
 | |
| 
 | |
|         assert(node->backend == GGML_BACKEND_GPU);
 | |
|         assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
 | |
|         assert(node->extra != nullptr);
 | |
| 
 | |
|         for (int j = 0; j < GGML_MAX_SRC; j++) {
 | |
|             if (node->src[j] != nullptr) {
 | |
|                 assert(node->src[j]->backend == GGML_BACKEND_GPU);
 | |
|                 assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
 | |
|                 assert(node->src[j]->extra != nullptr);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         bool ok = ggml_sycl_compute_forward(¶ms, node);
 | |
|         if (!ok) {
 | |
|             fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
 | |
|         }
 | |
|         GGML_ASSERT(ok);
 | |
| 
 | |
| #if 0
 | |
|         if (node->type == GGML_TYPE_F32) {
 | |
|             syclDeviceSynchronize();
 | |
|             std::vector<float> tmp(ggml_nelements(node), 0.0f);
 | |
|             syclMemcpy(tmp.data(), node->data, ggml_nelements(node)*sizeof(float), syclMemcpyDeviceToHost);
 | |
|             printf("\n%s (%s) (%s %s) (%s %s): ", node->name, ggml_op_name(node->op),
 | |
|                 ggml_type_name(node->src[0]->type),
 | |
|                 node->src[1] ? ggml_type_name(node->src[1]->type) : "none",
 | |
|                 node->src[0]->name,
 | |
|                 node->src[1] ? node->src[1]->name : "none");
 | |
|             double sum = 0.0;
 | |
|             double sq_sum = 0.0;
 | |
|             for (int i = 0; i < ggml_nelements(node); i++) {
 | |
|                 printf("%f ", tmp[i]);
 | |
|                 sum += tmp[i];
 | |
|                 sq_sum += tmp[i]*tmp[i];
 | |
|             }
 | |
|             printf("\n");
 | |
|             printf("sum: %f, ", sum);
 | |
|             printf("sq_sum: %f\n", sq_sum);
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     UNUSED(backend);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
 | |
|     switch (op->op) {
 | |
|         case GGML_OP_UNARY:
 | |
|             switch (ggml_get_unary_op(op)) {
 | |
|                 case GGML_UNARY_OP_GELU:
 | |
|                 case GGML_UNARY_OP_SILU:
 | |
|                 case GGML_UNARY_OP_RELU:
 | |
|                 case GGML_UNARY_OP_GELU_QUICK:
 | |
|                 case GGML_UNARY_OP_TANH:
 | |
|                     return true;
 | |
|                 default:
 | |
|                     return false;
 | |
|             }
 | |
|             break;
 | |
|         case GGML_OP_MUL_MAT:
 | |
|         case GGML_OP_MUL_MAT_ID:
 | |
|             {
 | |
|                 struct ggml_tensor * a;
 | |
|                 struct ggml_tensor * b;
 | |
|                 if (op->op == GGML_OP_MUL_MAT) {
 | |
|                     a = op->src[0];
 | |
|                     b = op->src[1];
 | |
|                 } else {
 | |
|                     a = op->src[2];
 | |
|                     b = op->src[1];
 | |
|                 }
 | |
|                 if (a->ne[3] != b->ne[3]) {
 | |
|                     return false;
 | |
|                 }
 | |
| 
 | |
|                 if (a->type == GGML_TYPE_IQ1_S) {
 | |
|                     return false;
 | |
|                 }
 | |
|                 if (a->type == GGML_TYPE_IQ3_XXS) {
 | |
|                   return false;
 | |
|                 }
 | |
|                 if (a->type == GGML_TYPE_IQ2_XXS) {
 | |
|                     return false;
 | |
|                 }
 | |
|                 if (a->type == GGML_TYPE_IQ2_XS) {
 | |
|                     return false;
 | |
|                 }
 | |
| 
 | |
|                 return true;
 | |
|             } break;
 | |
|         case GGML_OP_GET_ROWS:
 | |
|             {
 | |
|                 switch (op->src[0]->type) {
 | |
|                     case GGML_TYPE_F16:
 | |
|                     case GGML_TYPE_F32:
 | |
|                     case GGML_TYPE_Q4_0:
 | |
|                     case GGML_TYPE_Q4_1:
 | |
|                     case GGML_TYPE_Q5_0:
 | |
|                     case GGML_TYPE_Q5_1:
 | |
|                     case GGML_TYPE_Q8_0:
 | |
|                         return true;
 | |
|                     default:
 | |
|                         return false;
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_CPY:
 | |
|             {
 | |
|                 ggml_type src0_type = op->src[0]->type;
 | |
|                 ggml_type src1_type = op->src[1]->type;
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
 | |
|                     return true;
 | |
|                 }
 | |
|                 return false;
 | |
|             } break;
 | |
|         case GGML_OP_CONCAT:
 | |
|             {
 | |
|                 ggml_type src0_type = op->src[0]->type;
 | |
|                 if (src0_type == GGML_TYPE_F32) {
 | |
|                     return true;
 | |
|                 } else {
 | |
|                     return false;
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OP_NONE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_VIEW:
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|         case GGML_OP_NORM:
 | |
|         case GGML_OP_REPEAT:
 | |
|         case GGML_OP_DUP:
 | |
|         case GGML_OP_ADD:
 | |
|         case GGML_OP_MUL:
 | |
|         case GGML_OP_DIV:
 | |
|         case GGML_OP_RMS_NORM:
 | |
|         case GGML_OP_SCALE:
 | |
|         case GGML_OP_SQR:
 | |
|         case GGML_OP_CLAMP:
 | |
|         case GGML_OP_CONT:
 | |
|         case GGML_OP_DIAG_MASK_INF:
 | |
|         case GGML_OP_SOFT_MAX:
 | |
|         case GGML_OP_ROPE:
 | |
|         case GGML_OP_ALIBI:
 | |
|         case GGML_OP_IM2COL:
 | |
|         case GGML_OP_SUM_ROWS:
 | |
|         case GGML_OP_ARGSORT:
 | |
|         case GGML_OP_ACC:
 | |
|         case GGML_OP_GROUP_NORM:
 | |
|         case GGML_OP_UPSCALE:
 | |
|         case GGML_OP_PAD:
 | |
|         case GGML_OP_LEAKY_RELU:
 | |
|             return true;
 | |
|         default:
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     UNUSED(backend);
 | |
| }
 | |
| 
 | |
| static ggml_backend_i ggml_backend_sycl_interface = {
 | |
|     /* .get_name                = */ ggml_backend_sycl_name,
 | |
|     /* .free                    = */ ggml_backend_sycl_free,
 | |
|     /* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type,
 | |
|     /* .set_tensor_async        = */ ggml_backend_sycl_set_tensor_async,
 | |
|     /* .get_tensor_async        = */ ggml_backend_sycl_get_tensor_async,
 | |
|     /* .cpy_tensor_async        = */ NULL,
 | |
|     /* .synchronize             = */ ggml_backend_sycl_synchronize,
 | |
|     /* .graph_plan_create       = */ ggml_backend_sycl_graph_plan_create,
 | |
|     /* .graph_plan_free         = */ ggml_backend_sycl_graph_plan_free,
 | |
|     /* .graph_plan_compute      = */ ggml_backend_sycl_graph_plan_compute,
 | |
|     /* .graph_compute           = */ ggml_backend_sycl_graph_compute,
 | |
|     /* .supports_op             = */ ggml_backend_sycl_supports_op,
 | |
| };
 | |
| 
 | |
| ggml_backend_t ggml_backend_sycl_init(int device) {
 | |
|     ggml_init_sycl(); // TODO: remove from ggml.c
 | |
| 
 | |
|     if (device < 0 || device >= ggml_sycl_get_device_count()) {
 | |
|         fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     // not strictly necessary, but it may reduce the overhead of the first graph_compute
 | |
|     ggml_sycl_set_main_device(device);
 | |
| 
 | |
|     ggml_backend_sycl_context * ctx = new ggml_backend_sycl_context {
 | |
|         /* .device = */ device,
 | |
|         /* .name   = */ GGML_SYCL_NAME + std::to_string(device),
 | |
|     };
 | |
| 
 | |
|     ggml_backend_t sycl_backend = new ggml_backend {
 | |
|         /* .interface = */ ggml_backend_sycl_interface,
 | |
|         /* .context   = */ ctx
 | |
|     };
 | |
| 
 | |
|     return sycl_backend;
 | |
| }
 | |
| 
 | |
| bool ggml_backend_is_sycl(ggml_backend_t backend) {
 | |
|     return backend->iface.get_name == ggml_backend_sycl_name;
 | |
| }
 | |
| 
 | |
| static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
 | |
|     ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
 | |
|     return sycl_backend;
 | |
| 
 | |
|     UNUSED(params);
 | |
| }
 | |
| 
 | |
| extern "C" int ggml_backend_sycl_reg_devices();
 | |
| 
 | |
| int ggml_backend_sycl_reg_devices() {
 | |
|     int device_count = ggml_sycl_get_device_count();
 | |
| 
 | |
|     for (int i = 0; i < device_count; i++) {
 | |
|         char name[128];
 | |
|         snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
 | |
|         ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
 | |
|     }
 | |
|     return device_count;
 | |
| }
 | 
