mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 26f3071d71
			
		
	
	26f3071d71
	
	
	
		
			
			* update: awq support llama-7b model * update: change order * update: benchmark results for llama2-7b * update: mistral 7b v1 benchmark * update: support 4 models * fix: Readme * update: ready for PR * update: readme * fix: readme * update: change order import * black * format code * update: work for bot mpt and awqmpt * update: readme * Rename to llm_build_ffn_mpt_awq * Formatted other files * Fixed params count * fix: remove code * update: more detail for mpt * fix: readme * fix: readme * update: change folder architecture * fix: common.cpp * fix: readme * fix: remove ggml_repeat * update: cicd * update: cicd * uppdate: remove use_awq arg * update: readme * llama : adapt plamo to new ffn ggml-ci * fix: update torch version --------- Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io> Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			1247 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1247 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| import argparse
 | |
| import contextlib
 | |
| import json
 | |
| import os
 | |
| import re
 | |
| import sys
 | |
| from enum import IntEnum
 | |
| from pathlib import Path
 | |
| from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast, Optional
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     from torch import Tensor
 | |
| 
 | |
| if 'NO_LOCAL_GGUF' not in os.environ:
 | |
|     sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
 | |
| import gguf
 | |
| 
 | |
| 
 | |
| ###### MODEL DEFINITIONS ######
 | |
| 
 | |
| class SentencePieceTokenTypes(IntEnum):
 | |
|     NORMAL = 1
 | |
|     UNKNOWN = 2
 | |
|     CONTROL = 3
 | |
|     USER_DEFINED = 4
 | |
|     UNUSED = 5
 | |
|     BYTE = 6
 | |
| 
 | |
| 
 | |
| class Model:
 | |
|     def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
 | |
|         self.dir_model = dir_model
 | |
|         self.ftype = ftype
 | |
|         self.fname_out = fname_out
 | |
|         self.is_big_endian = is_big_endian
 | |
|         self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
 | |
|         self.is_safetensors = self._is_model_safetensors()
 | |
|         self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
 | |
|         self.part_names = self._get_part_names()
 | |
|         self.hparams = Model.load_hparams(self.dir_model)
 | |
|         self.model_arch = self._get_model_architecture()
 | |
|         self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
 | |
| 
 | |
|     def set_vocab(self):
 | |
|         self._set_vocab_gpt2()
 | |
| 
 | |
|     def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
 | |
|         for part_name in self.part_names:
 | |
|             print(f"gguf: loading model part '{part_name}'")
 | |
|             ctx: ContextManager[Any]
 | |
|             if self.is_safetensors:
 | |
|                 from safetensors import safe_open
 | |
|                 ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
 | |
|             else:
 | |
|                 ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
 | |
| 
 | |
|             with ctx as model_part:
 | |
|                 for name in model_part.keys():
 | |
|                     data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
 | |
|                     yield name, data
 | |
| 
 | |
|     def set_gguf_parameters(self):
 | |
|         self.gguf_writer.add_name(self.dir_model.name)
 | |
|         self.gguf_writer.add_block_count(self.hparams.get(
 | |
|             "n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")),
 | |
|         ))
 | |
|         if (n_ctx := self.hparams.get("max_position_embeddings")) is not None:
 | |
|             self.gguf_writer.add_context_length(n_ctx)
 | |
|         if (n_embd := self.hparams.get("hidden_size")) is not None:
 | |
|             self.gguf_writer.add_embedding_length(n_embd)
 | |
|         if (n_ff := self.hparams.get("intermediate_size")) is not None:
 | |
|             self.gguf_writer.add_feed_forward_length(n_ff)
 | |
|         if (n_head := self.hparams.get("num_attention_heads")) is not None:
 | |
|             self.gguf_writer.add_head_count(n_head)
 | |
|         if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
 | |
|             self.gguf_writer.add_head_count_kv(n_head_kv)
 | |
| 
 | |
|         if (n_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
 | |
|             self.gguf_writer.add_layer_norm_rms_eps(n_rms_eps)
 | |
|         if (n_experts := self.hparams.get("num_local_experts")) is not None:
 | |
|             self.gguf_writer.add_expert_count(n_experts)
 | |
|         if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
 | |
|             self.gguf_writer.add_expert_used_count(n_experts_used)
 | |
| 
 | |
|         self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
|         for name, data_torch in self.get_tensors():
 | |
|             # we don't need these
 | |
|             if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
 | |
|                 continue
 | |
| 
 | |
|             old_dtype = data_torch.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | |
|                 data_torch = data_torch.to(torch.float32)
 | |
| 
 | |
|             data = data_torch.squeeze().numpy()
 | |
| 
 | |
|             # map tensor names
 | |
|             new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if self.ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
| 
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
|     def write(self):
 | |
|         self.write_tensors()
 | |
|         self.gguf_writer.write_header_to_file()
 | |
|         self.gguf_writer.write_kv_data_to_file()
 | |
|         self.gguf_writer.write_tensors_to_file()
 | |
|         self.gguf_writer.close()
 | |
| 
 | |
|     def write_vocab(self):
 | |
|         self.gguf_writer.write_header_to_file()
 | |
|         self.gguf_writer.write_kv_data_to_file()
 | |
|         self.gguf_writer.close()
 | |
| 
 | |
|     @staticmethod
 | |
|     def count_model_parts(dir_model: Path, prefix: str) -> int:
 | |
|         num_parts = 0
 | |
|         for filename in os.listdir(dir_model):
 | |
|             if filename.endswith(prefix):
 | |
|                 num_parts += 1
 | |
| 
 | |
|         return num_parts
 | |
| 
 | |
|     @staticmethod
 | |
|     def load_hparams(dir_model):
 | |
|         with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | |
|             return json.load(f)
 | |
| 
 | |
|     @staticmethod
 | |
|     def from_model_architecture(model_architecture):
 | |
|         if model_architecture == "GPTNeoXForCausalLM":
 | |
|             return GPTNeoXModel
 | |
|         if model_architecture == "BloomForCausalLM":
 | |
|             return BloomModel
 | |
|         if model_architecture == "MPTForCausalLM":
 | |
|             return MPTModel
 | |
|         if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
 | |
|             return BaichuanModel
 | |
|         if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
 | |
|             return FalconModel
 | |
|         if model_architecture == "GPTBigCodeForCausalLM":
 | |
|             return StarCoderModel
 | |
|         if model_architecture == "GPTRefactForCausalLM":
 | |
|             return RefactModel
 | |
|         if model_architecture == "PersimmonForCausalLM":
 | |
|             return PersimmonModel
 | |
|         if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
 | |
|             return StableLMModel
 | |
|         if model_architecture == "QWenLMHeadModel":
 | |
|             return QwenModel
 | |
|         if model_architecture == "MixtralForCausalLM":
 | |
|             return MixtralModel
 | |
|         if model_architecture == "GPT2LMHeadModel":
 | |
|             return GPT2Model
 | |
|         if model_architecture == "PhiForCausalLM":
 | |
|             return Phi2Model
 | |
|         if model_architecture == "PlamoForCausalLM":
 | |
|             return PlamoModel
 | |
|         return Model
 | |
| 
 | |
|     def _is_model_safetensors(self) -> bool:
 | |
|         return Model.count_model_parts(self.dir_model, ".safetensors") > 0
 | |
| 
 | |
|     def _get_part_names(self):
 | |
|         if self.is_safetensors:
 | |
|             if self.num_parts == 1:  # there's only one .safetensors file
 | |
|                 return ("model.safetensors",)
 | |
|             return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
 | |
| 
 | |
|         if self.num_parts == 1:  # there's only one .bin file
 | |
|             return ("pytorch_model.bin",)
 | |
|         return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
 | |
| 
 | |
|     def _get_model_architecture(self) -> gguf.MODEL_ARCH:
 | |
|         arch = self.hparams["architectures"][0]
 | |
|         if arch == "GPTNeoXForCausalLM":
 | |
|             return gguf.MODEL_ARCH.GPTNEOX
 | |
|         if arch == "BloomForCausalLM":
 | |
|             return gguf.MODEL_ARCH.BLOOM
 | |
|         if arch == "MPTForCausalLM":
 | |
|             return gguf.MODEL_ARCH.MPT
 | |
|         if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
 | |
|             return gguf.MODEL_ARCH.BAICHUAN
 | |
|         if arch in ("FalconForCausalLM", "RWForCausalLM"):
 | |
|             return gguf.MODEL_ARCH.FALCON
 | |
|         if arch == "GPTBigCodeForCausalLM":
 | |
|             return gguf.MODEL_ARCH.STARCODER
 | |
|         if arch == "GPTRefactForCausalLM":
 | |
|             return gguf.MODEL_ARCH.REFACT
 | |
|         if arch == "PersimmonForCausalLM":
 | |
|             return gguf.MODEL_ARCH.PERSIMMON
 | |
|         if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
 | |
|             return gguf.MODEL_ARCH.STABLELM
 | |
|         if arch == "QWenLMHeadModel":
 | |
|             return gguf.MODEL_ARCH.QWEN
 | |
|         if arch == "MixtralForCausalLM":
 | |
|             return gguf.MODEL_ARCH.LLAMA
 | |
|         if arch == "GPT2LMHeadModel":
 | |
|             return gguf.MODEL_ARCH.GPT2
 | |
|         if arch == "PhiForCausalLM":
 | |
|             return gguf.MODEL_ARCH.PHI2
 | |
|         if arch == "PlamoForCausalLM":
 | |
|             return gguf.MODEL_ARCH.PLAMO
 | |
| 
 | |
|         raise NotImplementedError(f'Architecture "{arch}" not supported!')
 | |
| 
 | |
|     def _set_vocab_gpt2(self):
 | |
|         dir_model = self.dir_model
 | |
|         hparams = self.hparams
 | |
|         tokens: list[bytearray] = []
 | |
|         toktypes: list[int] = []
 | |
| 
 | |
|         from transformers import AutoTokenizer
 | |
|         tokenizer = AutoTokenizer.from_pretrained(dir_model)
 | |
|         vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
 | |
|         assert max(tokenizer.vocab.values()) < vocab_size
 | |
| 
 | |
|         reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
 | |
|         added_vocab = tokenizer.get_added_vocab()
 | |
| 
 | |
|         for i in range(vocab_size):
 | |
|             if i not in reverse_vocab:
 | |
|                 pad_token = f"[PAD{i}]".encode('utf-8')
 | |
|                 tokens.append(bytearray(pad_token))
 | |
|                 toktypes.append(gguf.TokenType.USER_DEFINED)
 | |
|             elif reverse_vocab[i] in added_vocab:
 | |
|                 tokens.append(reverse_vocab[i])
 | |
|                 if tokenizer.added_tokens_decoder[i].special:
 | |
|                     toktypes.append(gguf.TokenType.CONTROL)
 | |
|                 else:
 | |
|                     toktypes.append(gguf.TokenType.USER_DEFINED)
 | |
|             else:
 | |
|                 tokens.append(reverse_vocab[i])
 | |
|                 toktypes.append(gguf.TokenType.NORMAL)
 | |
| 
 | |
|         self.gguf_writer.add_tokenizer_model("gpt2")
 | |
|         self.gguf_writer.add_token_list(tokens)
 | |
|         self.gguf_writer.add_token_types(toktypes)
 | |
| 
 | |
|         special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
 | |
|         special_vocab.add_to_gguf(self.gguf_writer)
 | |
| 
 | |
|     def _set_vocab_sentencepiece(self):
 | |
|         from sentencepiece import SentencePieceProcessor
 | |
| 
 | |
|         tokenizer_path = self.dir_model / 'tokenizer.model'
 | |
| 
 | |
|         tokens: list[bytes] = []
 | |
|         scores: list[float] = []
 | |
|         toktypes: list[int] = []
 | |
| 
 | |
|         if not tokenizer_path.is_file():
 | |
|             print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
 | |
|             sys.exit(1)
 | |
| 
 | |
|         tokenizer = SentencePieceProcessor(str(tokenizer_path))
 | |
|         vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
 | |
| 
 | |
|         for token_id in range(vocab_size):
 | |
|             piece = tokenizer.id_to_piece(token_id)
 | |
|             text = piece.encode("utf-8")
 | |
|             score = tokenizer.get_score(token_id)
 | |
| 
 | |
|             toktype = SentencePieceTokenTypes.NORMAL
 | |
|             if tokenizer.is_unknown(token_id):
 | |
|                 toktype = SentencePieceTokenTypes.UNKNOWN
 | |
|             elif tokenizer.is_control(token_id):
 | |
|                 toktype = SentencePieceTokenTypes.CONTROL
 | |
|             elif tokenizer.is_unused(token_id):
 | |
|                 toktype = SentencePieceTokenTypes.UNUSED
 | |
|             elif tokenizer.is_byte(token_id):
 | |
|                 toktype = SentencePieceTokenTypes.BYTE
 | |
| 
 | |
|             tokens.append(text)
 | |
|             scores.append(score)
 | |
|             toktypes.append(toktype)
 | |
| 
 | |
|         added_tokens_file = self.dir_model / 'added_tokens.json'
 | |
|         if added_tokens_file.is_file():
 | |
|             with open(added_tokens_file, "r", encoding="utf-8") as f:
 | |
|                 added_tokens_json = json.load(f)
 | |
| 
 | |
|                 for key in added_tokens_json:
 | |
|                     tokens.append(key.encode("utf-8"))
 | |
|                     scores.append(-1000.0)
 | |
|                     toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
 | |
| 
 | |
|         self.gguf_writer.add_tokenizer_model("llama")
 | |
|         self.gguf_writer.add_token_list(tokens)
 | |
|         self.gguf_writer.add_token_scores(scores)
 | |
|         self.gguf_writer.add_token_types(toktypes)
 | |
| 
 | |
|         special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
 | |
|         special_vocab.add_to_gguf(self.gguf_writer)
 | |
| 
 | |
| 
 | |
| class GPTNeoXModel(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         block_count = self.hparams["num_hidden_layers"]
 | |
| 
 | |
|         self.gguf_writer.add_name(self.dir_model.name)
 | |
|         self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | |
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | |
|         self.gguf_writer.add_rope_dimension_count(
 | |
|             int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
 | |
|         )
 | |
|         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | |
|         self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
 | |
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
 | |
| 
 | |
| 
 | |
| class BloomModel(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         self.gguf_writer.add_name("Bloom")
 | |
|         n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
 | |
|         n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
 | |
|         self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
 | |
|         self.gguf_writer.add_embedding_length(n_embed)
 | |
|         self.gguf_writer.add_feed_forward_length(4 * n_embed)
 | |
|         self.gguf_writer.add_block_count(self.hparams["n_layer"])
 | |
|         self.gguf_writer.add_head_count(n_head)
 | |
|         self.gguf_writer.add_head_count_kv(n_head)
 | |
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | |
|         self.gguf_writer.add_file_type(self.ftype)
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         block_count = self.hparams["n_layer"]
 | |
|         tensors = dict(self.get_tensors())
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
|         has_lm_head = True
 | |
|         n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
 | |
|         n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
 | |
| 
 | |
|         for name, data_torch in tensors.items():
 | |
|             if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
 | |
|                 has_lm_head = False
 | |
| 
 | |
|             name = re.sub(r'transformer\.', '', name)
 | |
| 
 | |
|             old_dtype = data_torch.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | |
|                 data_torch = data_torch.to(torch.float32)
 | |
| 
 | |
|             data = data_torch.squeeze().numpy()
 | |
| 
 | |
|             if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
 | |
|                 # Map bloom-style qkv_linear to gpt-style qkv_linear
 | |
|                 # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252  # noqa
 | |
|                 # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312  # noqa
 | |
|                 qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
 | |
|                 data = np.concatenate(
 | |
|                     (
 | |
|                         qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
 | |
|                         qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
 | |
|                         qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
 | |
|                     ),
 | |
|                     axis=0,
 | |
|                 )
 | |
|                 print("re-format attention.linear_qkv.weight")
 | |
|             elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
 | |
|                 qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
 | |
|                 data = np.concatenate(
 | |
|                     (
 | |
|                         qkv_bias[:, 0, :].reshape((n_embed,)),
 | |
|                         qkv_bias[:, 1, :].reshape((n_embed,)),
 | |
|                         qkv_bias[:, 2, :].reshape((n_embed,)),
 | |
|                     ),
 | |
|                     axis=0,
 | |
|                 )
 | |
|                 print("re-format attention.linear_qkv.bias")
 | |
| 
 | |
|             # map tensor names
 | |
|             new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if self.ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
 | |
| 
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
|             if not has_lm_head and name == "word_embeddings.weight":
 | |
|                 self.gguf_writer.add_tensor("output.weight", data)
 | |
|                 print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
 | |
| 
 | |
| 
 | |
| class MPTModel(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         block_count = self.hparams["n_layers"]
 | |
|         self.gguf_writer.add_name(self.dir_model.name)
 | |
|         self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
 | |
|         self.gguf_writer.add_embedding_length(self.hparams["d_model"])
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
 | |
|         self.gguf_writer.add_head_count(self.hparams["n_heads"])
 | |
|         if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
 | |
|             self.gguf_writer.add_head_count_kv(kv_n_heads)
 | |
|         self.gguf_writer.add_layer_norm_eps(1e-5)
 | |
|         if self.hparams["attn_config"]["clip_qkv"] is not None:
 | |
|             self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
 | |
|         self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
|         for name, data_torch in self.get_tensors():
 | |
|             # we don't need these
 | |
|             if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
 | |
|                 continue
 | |
| 
 | |
|             old_dtype = data_torch.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | |
|                 data_torch = data_torch.to(torch.float32)
 | |
| 
 | |
|             data = data_torch.squeeze().numpy()
 | |
| 
 | |
|             # map tensor names
 | |
|             if "scales" in name:
 | |
|                 new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
 | |
|                 new_name = new_name.replace("scales", "act.scales")
 | |
|             else:
 | |
|                 new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if self.ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
| 
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
|             # note: MPT output is tied to (same as) wte in original model;
 | |
|             # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
 | |
|             if new_name == "token_embd.weight":
 | |
|                 self.gguf_writer.add_tensor("output.weight", data)
 | |
| 
 | |
| 
 | |
| class BaichuanModel(Model):
 | |
|     def set_vocab(self):
 | |
|         self._set_vocab_sentencepiece()
 | |
| 
 | |
|     def set_gguf_parameters(self):
 | |
|         block_count = self.hparams["num_hidden_layers"]
 | |
|         head_count = self.hparams["num_attention_heads"]
 | |
|         head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | |
|         hf_repo = self.hparams.get("_name_or_path", "")
 | |
| 
 | |
|         ctx_length = 0
 | |
|         if "max_sequence_length" in self.hparams:
 | |
|             ctx_length = self.hparams["max_sequence_length"]
 | |
|         elif "max_position_embeddings" in self.hparams:
 | |
|             ctx_length = self.hparams["max_position_embeddings"]
 | |
|         elif "model_max_length" in self.hparams:
 | |
|             ctx_length = self.hparams["model_max_length"]
 | |
|         else:
 | |
|             print("gguf: can not find ctx length parameter.")
 | |
|             sys.exit()
 | |
| 
 | |
|         self.gguf_writer.add_name(self.dir_model.name)
 | |
|         self.gguf_writer.add_source_hf_repo(hf_repo)
 | |
|         self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | |
|         self.gguf_writer.add_context_length(ctx_length)
 | |
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | |
|         self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | |
|         self.gguf_writer.add_head_count(head_count)
 | |
|         self.gguf_writer.add_head_count_kv(head_count_kv)
 | |
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | |
| 
 | |
|         if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
 | |
|             if self.hparams["rope_scaling"].get("type") == "linear":
 | |
|                 self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
 | |
|                 self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         # Collect tensors from generator object
 | |
|         model_kv = dict(self.get_tensors())
 | |
|         block_count = self.hparams["num_hidden_layers"]
 | |
|         head_count = self.hparams["num_attention_heads"]
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
|         head_count_kv = self.hparams.get("num_key_value_heads", head_count)
 | |
| 
 | |
|         for i in range(block_count):
 | |
|             if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
 | |
|                 print(f"Unpacking and permuting layer {i}")
 | |
|                 model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
 | |
|                     self._reverse_hf_permute_part(w, 0, head_count, head_count)
 | |
|                 model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
 | |
|                     self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
 | |
|                 model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
 | |
|                     self._reverse_hf_part(w, 2)
 | |
|                 del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
 | |
| 
 | |
|         for name, data_torch in model_kv.items():
 | |
|             # we don't need these
 | |
|             if name.endswith(".rotary_emb.inv_freq"):
 | |
|                 continue
 | |
| 
 | |
|             old_dtype = data_torch.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | |
|                 data_torch = data_torch.to(torch.float32)
 | |
| 
 | |
|             data = data_torch.squeeze().numpy()
 | |
| 
 | |
|             # map tensor names
 | |
|             new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if self.ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
|     def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
 | |
|         if n_kv_head is not None and n_head != n_kv_head:
 | |
|             n_head //= n_kv_head
 | |
| 
 | |
|         return (
 | |
|             weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | |
|             .swapaxes(1, 2)
 | |
|             .reshape(weights.shape)
 | |
|         )
 | |
| 
 | |
|     def _reverse_hf_permute_part(
 | |
|         self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
 | |
|     ) -> Tensor:
 | |
|         r = weights.shape[0] // 3
 | |
|         return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
 | |
| 
 | |
|     def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
 | |
|         r = weights.shape[0] // 3
 | |
|         return weights[r * n_part:r * n_part + r, ...]
 | |
| 
 | |
| 
 | |
| class FalconModel(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         block_count = self.hparams.get("num_hidden_layers")
 | |
|         if block_count is None:
 | |
|             block_count = self.hparams["n_layer"]  # old name
 | |
| 
 | |
|         n_head = self.hparams.get("num_attention_heads")
 | |
|         if n_head is None:
 | |
|             n_head = self.hparams["n_head"]  # old name
 | |
| 
 | |
|         n_head_kv = self.hparams.get("num_kv_heads")
 | |
|         if n_head_kv is None:
 | |
|             n_head_kv = self.hparams.get("n_head_kv", 1)  # old name
 | |
| 
 | |
|         self.gguf_writer.add_name("Falcon")
 | |
|         self.gguf_writer.add_context_length(2048)  # not in config.json
 | |
|         self.gguf_writer.add_tensor_data_layout("jploski")  # qkv tensor transform
 | |
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | |
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_head_count(n_head)
 | |
|         self.gguf_writer.add_head_count_kv(n_head_kv)
 | |
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | |
|         self.gguf_writer.add_file_type(self.ftype)
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         block_count = self.hparams.get("num_hidden_layers")
 | |
|         if block_count is None:
 | |
|             block_count = self.hparams["n_layer"]  # old name
 | |
| 
 | |
|         n_head = self.hparams.get("num_attention_heads")
 | |
|         if n_head is None:
 | |
|             n_head = self.hparams["n_head"]  # old name
 | |
| 
 | |
|         n_head_kv = self.hparams.get("num_kv_heads")
 | |
|         if n_head_kv is None:
 | |
|             n_head_kv = self.hparams.get("n_head_kv", 1)  # old name
 | |
| 
 | |
|         head_dim = self.hparams["hidden_size"] // n_head
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
| 
 | |
|         for name, data_torch in self.get_tensors():
 | |
|             old_dtype = data_torch.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | |
|                 data_torch = data_torch.to(torch.float32)
 | |
| 
 | |
|             # QKV tensor transform
 | |
|             # The original query_key_value tensor contains n_head_kv "kv groups",
 | |
|             # each consisting of n_head/n_head_kv query weights followed by one key
 | |
|             # and one value weight (shared by all query heads in the kv group).
 | |
|             # This layout makes it a big pain to work with in GGML.
 | |
|             # So we rearrange them here,, so that we have n_head query weights
 | |
|             # followed by n_head_kv key weights followed by n_head_kv value weights,
 | |
|             # in contiguous fashion.
 | |
|             # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
 | |
| 
 | |
|             if "query_key_value" in name:
 | |
|                 qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
 | |
|                 q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
 | |
|                 k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | |
|                 v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
 | |
|                 data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
 | |
| 
 | |
|             data = data_torch.squeeze().numpy()
 | |
| 
 | |
|             # map tensor names
 | |
|             new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if self.ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
| 
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
| 
 | |
| class StarCoderModel(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         block_count = self.hparams["n_layer"]
 | |
| 
 | |
|         self.gguf_writer.add_name("StarCoder")
 | |
|         self.gguf_writer.add_context_length(self.hparams["n_positions"])
 | |
|         self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | |
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_head_count(self.hparams["n_head"])
 | |
|         self.gguf_writer.add_head_count_kv(1)
 | |
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | |
|         self.gguf_writer.add_file_type(self.ftype)
 | |
| 
 | |
| 
 | |
| class RefactModel(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         hidden_dim = self.hparams["n_embd"]
 | |
|         inner_dim = 4 * hidden_dim
 | |
|         hidden_dim = int(2 * inner_dim / 3)
 | |
|         multiple_of = 256
 | |
|         ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
 | |
| 
 | |
|         block_count = self.hparams["n_layer"]
 | |
| 
 | |
|         self.gguf_writer.add_name("Refact")
 | |
|         # refact uses Alibi. So this is from config.json which might be used by training.
 | |
|         self.gguf_writer.add_context_length(self.hparams["n_positions"])
 | |
|         self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | |
| 
 | |
|         self.gguf_writer.add_feed_forward_length(ff_dim)
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_head_count(self.hparams["n_head"])
 | |
|         self.gguf_writer.add_head_count_kv(1)
 | |
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
 | |
|         self.gguf_writer.add_file_type(self.ftype)
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         hidden_dim = self.hparams["n_embd"]
 | |
|         inner_dim = 4 * hidden_dim
 | |
|         hidden_dim = int(2 * inner_dim / 3)
 | |
|         multiple_of = 256
 | |
|         ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
 | |
|         n_head = self.hparams["n_head"]
 | |
|         n_head_kv = 1
 | |
|         head_dim = self.hparams["n_embd"] // n_head
 | |
|         block_count = self.hparams["n_layer"]
 | |
| 
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
| 
 | |
|         tensors = dict(self.get_tensors())
 | |
|         for i in range(block_count):
 | |
|             if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
 | |
|                 tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
 | |
|                 tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
 | |
|                 del tensors[f"transformer.h.{i}.attn.kv.weight"]
 | |
|             if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
 | |
|                 tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
 | |
|                 del tensors[f"transformer.h.{i}.attn.q.weight"]
 | |
|             if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
 | |
|                 tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
 | |
|                 tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
 | |
|                 del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
 | |
| 
 | |
|         for name, data_torch in tensors.items():
 | |
|             old_dtype = data_torch.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | |
|                 data_torch = data_torch.to(torch.float32)
 | |
| 
 | |
|             data = data_torch.squeeze().numpy()
 | |
| 
 | |
|             # map tensor names
 | |
|             new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if self.ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
| 
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
| 
 | |
| class PersimmonModel(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
 | |
|         head_count = self.hparams["num_attention_heads"]
 | |
|         head_count_kv = head_count
 | |
|         hidden_size = self.hparams["hidden_size"]
 | |
| 
 | |
|         self.gguf_writer.add_name('persimmon-8b-chat')
 | |
|         self.gguf_writer.add_embedding_length(hidden_size)
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | |
|         self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
 | |
|         self.gguf_writer.add_head_count(head_count)
 | |
|         self.gguf_writer.add_head_count_kv(head_count_kv)
 | |
|         self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
 | |
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
 | |
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
 | |
| 
 | |
|     def set_vocab(self):
 | |
|         self._set_vocab_sentencepiece()
 | |
|         # self.gguf_writer.add_bos_token_id(71013)
 | |
|         # self.gguf_writer.add_eos_token_id(71013)
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
| 
 | |
|         for name, data_torch in self.get_tensors():
 | |
|             if name.endswith(".self_attention.rotary_emb.inv_freq"):
 | |
|                 continue
 | |
|             old_dtype = data_torch.dtype
 | |
|             # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
 | |
|             data = data_torch.to(torch.float32).squeeze().numpy()
 | |
|             new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
|             n_dims = len(data.shape)
 | |
|             print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
| 
 | |
| class StableLMModel(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         hparams = self.hparams
 | |
|         block_count = hparams["num_hidden_layers"]
 | |
| 
 | |
|         self.gguf_writer.add_name(self.dir_model.name)
 | |
|         self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | |
|         self.gguf_writer.add_embedding_length(hparams["hidden_size"])
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | |
|         self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
 | |
|         self.gguf_writer.add_head_count(hparams["num_attention_heads"])
 | |
|         self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
 | |
|         self.gguf_writer.add_layer_norm_eps(1e-5)
 | |
| 
 | |
| 
 | |
| class MixtralModel(Model):
 | |
|     def set_vocab(self):
 | |
|         self._set_vocab_sentencepiece()
 | |
| 
 | |
| 
 | |
| class QwenModel(Model):
 | |
|     @staticmethod
 | |
|     def token_bytes_to_string(b):
 | |
|         from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
 | |
|         byte_encoder = bytes_to_unicode()
 | |
|         return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
 | |
| 
 | |
|     @staticmethod
 | |
|     def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: Optional[int] = None) -> list[bytes]:
 | |
|         parts = [bytes([b]) for b in token]
 | |
|         while True:
 | |
|             min_idx = None
 | |
|             min_rank = None
 | |
|             for i, pair in enumerate(zip(parts[:-1], parts[1:])):
 | |
|                 rank = mergeable_ranks.get(pair[0] + pair[1])
 | |
|                 if rank is not None and (min_rank is None or rank < min_rank):
 | |
|                     min_idx = i
 | |
|                     min_rank = rank
 | |
|             if min_rank is None or (max_rank is not None and min_rank >= max_rank):
 | |
|                 break
 | |
|             assert min_idx is not None
 | |
|             parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
 | |
|         return parts
 | |
| 
 | |
|     def set_vocab(self):
 | |
|         dir_model = self.dir_model
 | |
|         hparams = self.hparams
 | |
|         tokens: list[bytearray] = []
 | |
|         toktypes: list[int] = []
 | |
| 
 | |
|         from transformers import AutoTokenizer
 | |
|         tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
 | |
|         vocab_size = hparams["vocab_size"]
 | |
|         assert max(tokenizer.get_vocab().values()) < vocab_size
 | |
| 
 | |
|         merges = []
 | |
|         vocab = {}
 | |
|         mergeable_ranks = tokenizer.mergeable_ranks
 | |
|         for token, rank in mergeable_ranks.items():
 | |
|             vocab[self.token_bytes_to_string(token)] = rank
 | |
|             if len(token) == 1:
 | |
|                 continue
 | |
|             merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
 | |
|             assert len(merged) == 2
 | |
|             merges.append(' '.join(map(self.token_bytes_to_string, merged)))
 | |
| 
 | |
|         reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in vocab.items()}
 | |
|         added_vocab = tokenizer.special_tokens
 | |
| 
 | |
|         for i in range(vocab_size):
 | |
|             if i not in reverse_vocab:
 | |
|                 pad_token = f"[PAD{i}]".encode("utf-8")
 | |
|                 tokens.append(bytearray(pad_token))
 | |
|                 toktypes.append(gguf.TokenType.USER_DEFINED)
 | |
|             elif reverse_vocab[i] in added_vocab:
 | |
|                 tokens.append(reverse_vocab[i])
 | |
|                 toktypes.append(gguf.TokenType.CONTROL)
 | |
|             else:
 | |
|                 tokens.append(reverse_vocab[i])
 | |
|                 toktypes.append(gguf.TokenType.NORMAL)
 | |
| 
 | |
|         self.gguf_writer.add_tokenizer_model("gpt2")
 | |
|         self.gguf_writer.add_token_list(tokens)
 | |
|         self.gguf_writer.add_token_types(toktypes)
 | |
| 
 | |
|         special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
 | |
|         special_vocab.merges = merges
 | |
|         special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
 | |
|         special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
 | |
|         special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
 | |
|         special_vocab.add_to_gguf(self.gguf_writer)
 | |
| 
 | |
|     def set_gguf_parameters(self):
 | |
|         self.gguf_writer.add_name("Qwen")
 | |
|         self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
 | |
|         self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
 | |
|         self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
 | |
|         self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
 | |
|         self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
 | |
|         self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
 | |
|         self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
 | |
|         self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         block_count = self.hparams["num_hidden_layers"]
 | |
|         model_kv = dict(self.get_tensors())
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
|         for name, data_torch in model_kv.items():
 | |
|             # we don't need these
 | |
|             if name.endswith(".rotary_emb.inv_freq"):
 | |
|                 continue
 | |
| 
 | |
|             old_dtype = data_torch.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | |
|                 data_torch = data_torch.to(torch.float32)
 | |
| 
 | |
|             data = data_torch.squeeze().numpy()
 | |
| 
 | |
|             # map tensor names
 | |
|             new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if self.ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
| 
 | |
| class GPT2Model(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         self.gguf_writer.add_name(self.dir_model.name)
 | |
|         self.gguf_writer.add_block_count(self.hparams["n_layer"])
 | |
|         self.gguf_writer.add_context_length(self.hparams["n_ctx"])
 | |
|         self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | |
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
 | |
|         self.gguf_writer.add_head_count(self.hparams["n_head"])
 | |
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | |
|         self.gguf_writer.add_file_type(self.ftype)
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
| 
 | |
|         for name, data_torch in self.get_tensors():
 | |
|             # we don't need these
 | |
|             if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias")):
 | |
|                 continue
 | |
| 
 | |
|             if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
 | |
|                 data_torch = data_torch.transpose(1, 0)
 | |
| 
 | |
|             old_dtype = data_torch.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | |
|                 data_torch = data_torch.to(torch.float32)
 | |
| 
 | |
|             data = data_torch.squeeze().numpy()
 | |
| 
 | |
|             # map tensor names
 | |
|             new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if self.ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
| 
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
|             # note: GPT2 output is tied to (same as) wte in original model
 | |
|             if new_name == "token_embd.weight":
 | |
|                 print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
|                 self.gguf_writer.add_tensor("output.weight", data)
 | |
| 
 | |
| 
 | |
| class Phi2Model(Model):
 | |
|     def set_gguf_parameters(self):
 | |
|         block_count = self.hparams["n_layer"]
 | |
| 
 | |
|         self.gguf_writer.add_name("Phi2")
 | |
|         self.gguf_writer.add_context_length(self.hparams["n_positions"])
 | |
|         self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
 | |
|         self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_head_count(self.hparams["n_head"])
 | |
|         self.gguf_writer.add_head_count_kv(self.hparams["n_head"])
 | |
|         self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
 | |
|         self.gguf_writer.add_rope_dimension_count(self.hparams["rotary_dim"])
 | |
|         self.gguf_writer.add_file_type(self.ftype)
 | |
|         self.gguf_writer.add_add_bos_token(False)
 | |
| 
 | |
| 
 | |
| class PlamoModel(Model):
 | |
|     def set_vocab(self):
 | |
|         self._set_vocab_sentencepiece()
 | |
| 
 | |
|     def set_gguf_parameters(self):
 | |
|         hparams = self.hparams
 | |
|         block_count = hparams["num_hidden_layers"]
 | |
| 
 | |
|         self.gguf_writer.add_name("PLaMo")
 | |
|         self.gguf_writer.add_context_length(4096)  # not in config.json
 | |
|         self.gguf_writer.add_embedding_length(hparams["hidden_size"])
 | |
|         self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | |
|         self.gguf_writer.add_block_count(block_count)
 | |
|         self.gguf_writer.add_head_count(hparams["num_attention_heads"])
 | |
|         self.gguf_writer.add_head_count_kv(5)  # hparams["num_key_value_heads"]) is wrong
 | |
|         self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | |
| 
 | |
|     def shuffle_attn_q_weight(self, data_torch):
 | |
|         assert data_torch.size() == (5120, 5120)
 | |
|         data_torch = data_torch.reshape(8, 5, 128, 5120)
 | |
|         data_torch = torch.permute(data_torch, (1, 0, 2, 3))
 | |
|         data_torch = torch.reshape(data_torch, (5120, 5120))
 | |
|         return data_torch
 | |
| 
 | |
|     def shuffle_attn_output_weight(self, data_torch):
 | |
|         assert data_torch.size() == (5120, 5120)
 | |
|         data_torch = data_torch.reshape(5120, 8, 5, 128)
 | |
|         data_torch = torch.permute(data_torch, (0, 2, 1, 3))
 | |
|         data_torch = torch.reshape(data_torch, (5120, 5120))
 | |
|         return data_torch
 | |
| 
 | |
|     def write_tensors(self):
 | |
|         block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
 | |
|         tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
 | |
| 
 | |
|         for name, data_torch in self.get_tensors():
 | |
|             if "self_attn.rotary_emb.inv_freq" in name:
 | |
|                 continue
 | |
| 
 | |
|             # map tensor names
 | |
|             new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
 | |
|             if new_name is None:
 | |
|                 print(f"Can not map tensor {name!r}")
 | |
|                 sys.exit()
 | |
| 
 | |
|             # shuffle for broadcasting of gqa in ggml_mul_mat
 | |
|             if new_name.endswith("attn_q.weight"):
 | |
|                 data_torch = self.shuffle_attn_q_weight(data_torch)
 | |
|             elif new_name.endswith("attn_output.weight"):
 | |
|                 data_torch = self.shuffle_attn_output_weight(data_torch)
 | |
| 
 | |
|             old_dtype = data_torch.dtype
 | |
| 
 | |
|             # convert any unsupported data types to float32
 | |
|             if data_torch.dtype not in (torch.float16, torch.float32):
 | |
|                 data_torch = data_torch.to(torch.float32)
 | |
| 
 | |
|             data = data_torch.squeeze().numpy()
 | |
| 
 | |
|             n_dims = len(data.shape)
 | |
|             data_dtype = data.dtype
 | |
| 
 | |
|             # if f32 desired, convert any float16 to float32
 | |
|             if self.ftype == 0 and data_dtype == np.float16:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|             if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|                 data = data.astype(np.float32)
 | |
| 
 | |
|             # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|             if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|                 data = data.astype(np.float16)
 | |
| 
 | |
|             print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
 | |
| 
 | |
|             self.gguf_writer.add_tensor(new_name, data)
 | |
| 
 | |
| 
 | |
| ###### CONVERSION LOGIC ######
 | |
| 
 | |
| 
 | |
| def parse_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="Convert a huggingface model to a GGML compatible file")
 | |
|     parser.add_argument(
 | |
|         "--vocab-only", action="store_true",
 | |
|         help="extract only the vocab",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--awq-path", type=Path, default=None,
 | |
|         help="Path to scale awq cache file")
 | |
|     parser.add_argument(
 | |
|         "--outfile", type=Path,
 | |
|         help="path to write to; default: based on input",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--outtype", type=str, choices=["f32", "f16"], default="f16",
 | |
|         help="output format - use f32 for float32, f16 for float16",
 | |
|     )
 | |
|     parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
 | |
|     parser.add_argument(
 | |
|         "model", type=Path,
 | |
|         help="directory containing model file",
 | |
|     )
 | |
| 
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def main() -> None:
 | |
|     args = parse_args()
 | |
| 
 | |
|     dir_model = args.model
 | |
| 
 | |
|     if args.awq_path:
 | |
|         sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
 | |
|         from awq.apply_awq import add_scale_weights
 | |
|         tmp_model_path = args.model / "weighted_model"
 | |
|         dir_model = tmp_model_path
 | |
|         if tmp_model_path.is_dir():
 | |
|             print(f"{tmp_model_path} exists as a weighted model.")
 | |
|         else:
 | |
|             tmp_model_path.mkdir(parents=True, exist_ok=True)
 | |
|             print("Saving new weighted model ...")
 | |
|             add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
 | |
|             print(f"Saved weighted model at {tmp_model_path}.")
 | |
| 
 | |
|     if not dir_model.is_dir():
 | |
|         print(f'Error: {args.model} is not a directory', file=sys.stderr)
 | |
|         sys.exit(1)
 | |
| 
 | |
|     ftype_map = {
 | |
|         "f32": gguf.GGMLQuantizationType.F32,
 | |
|         "f16": gguf.GGMLQuantizationType.F16,
 | |
|     }
 | |
| 
 | |
|     if args.outfile is not None:
 | |
|         fname_out = args.outfile
 | |
|     else:
 | |
|         # output in the same directory as the model by default
 | |
|         fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
 | |
| 
 | |
|     print(f"Loading model: {dir_model.name}")
 | |
| 
 | |
|     hparams = Model.load_hparams(dir_model)
 | |
| 
 | |
|     with torch.inference_mode():
 | |
|         model_class = Model.from_model_architecture(hparams["architectures"][0])
 | |
|         model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
 | |
| 
 | |
|         print("Set model parameters")
 | |
|         model_instance.set_gguf_parameters()
 | |
| 
 | |
|         print("Set model tokenizer")
 | |
|         model_instance.set_vocab()
 | |
| 
 | |
|         if args.vocab_only:
 | |
|             print(f"Exporting model vocab to '{fname_out}'")
 | |
|             model_instance.write_vocab()
 | |
|         else:
 | |
|             print(f"Exporting model to '{fname_out}'")
 | |
|             model_instance.write()
 | |
| 
 | |
|         print(f"Model successfully exported to '{fname_out}'")
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     main()
 |