mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 b08e75baea
			
		
	
	b08e75baea
	
	
	
		
			
			* Fix für #2721 * Reenable tokenizer test for LLaMa * Add `console.cpp` dependency * Fix dependency to `common` * Fixing wrong fix. * Make console usage platform specific Work on compiler warnings. * Adapting makefile * Remove trailing whitespace * Adapting the other parts of the makefile * Fix typo. * Fixing the last deviations from sentencepiece indicated by test-tokenizer-1 * Simplify logic * Add missing change... * Fix ugly compiler warning * llama_tokenize should accept strings containing NUL now * Adding huichen's test case
		
			
				
	
	
		
			2272 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2272 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml.h"
 | |
| #include "ggml-alloc.h"
 | |
| #include "common.h"
 | |
| #include "llama.h"
 | |
| #include <unordered_map>
 | |
| #include <vector>
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstring>
 | |
| #include <cstdarg>
 | |
| #include <ctime>
 | |
| #include <random>
 | |
| #include <stdexcept>
 | |
| #include <algorithm>
 | |
| #include <string>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #pragma warning(disable: 4244 4267) // possible loss of data
 | |
| #endif
 | |
| 
 | |
| struct random_normal_distribution {
 | |
|     std::mt19937 gen;
 | |
|     std::normal_distribution<float> rd;
 | |
|     float min;
 | |
|     float max;
 | |
| };
 | |
| 
 | |
| struct random_uniform_distribution {
 | |
|     std::mt19937 gen;
 | |
|     std::uniform_real_distribution<float> rd;
 | |
| };
 | |
| 
 | |
| void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) {
 | |
|     rnd->gen = std::mt19937(seed);
 | |
|     rnd->rd = std::normal_distribution<float>{mean, std};
 | |
|     rnd->min = min;
 | |
|     rnd->max = max;
 | |
| }
 | |
| 
 | |
| void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) {
 | |
|     rnd->gen = std::mt19937(seed);
 | |
|     rnd->rd = std::uniform_real_distribution<float>{min, max};
 | |
| }
 | |
| 
 | |
| int clamp(const int v, const int min, const int max) {
 | |
|     return ((v < min) ? (min) : (v > max) ? (max) : v);
 | |
| }
 | |
| 
 | |
| float fclamp(const float v, const float min, const float max) {
 | |
|     return ((v < min) ? (min) : (v > max) ? (max) : v);
 | |
| }
 | |
| 
 | |
| float frand() {
 | |
|     return (float)rand()/(float)RAND_MAX;
 | |
| }
 | |
| 
 | |
| float frand_normal(struct random_normal_distribution * rnd) {
 | |
|     return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max);
 | |
| }
 | |
| 
 | |
| float frand_uniform(struct random_uniform_distribution * rnd) {
 | |
|     return rnd->rd(rnd->gen);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
 | |
|     float scale = 1.0f; // xavier
 | |
|     switch (tensor->n_dims) {
 | |
|         case 1:
 | |
|             scale /= sqrtf(tensor->ne[0]);
 | |
|             for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
 | |
|                 float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
 | |
|                 *dst = scale * frand_normal(rnd);
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
 | |
|             for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
 | |
|                 for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
 | |
|                     float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | |
|                     *dst = scale * frand_normal(rnd);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
 | |
|             for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
 | |
|                 for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
 | |
|                     for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
 | |
|                         float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
 | |
|                         *dst = scale * frand_normal(rnd);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 4:
 | |
|             scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
 | |
|             for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
 | |
|                 for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
 | |
|                     for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
 | |
|                         for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
 | |
|                             float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
 | |
|                             *dst = scale * frand_normal(rnd);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     };
 | |
|     return tensor;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
 | |
|     switch (tensor->n_dims) {
 | |
|         case 1:
 | |
|             for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
 | |
|                 float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
 | |
|                 *dst = frand_uniform(rnd);
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
 | |
|                 for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
 | |
|                     float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | |
|                     *dst = frand_uniform(rnd);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 3:
 | |
|             for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
 | |
|                 for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
 | |
|                     for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
 | |
|                         float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
 | |
|                         *dst = frand_uniform(rnd);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case 4:
 | |
|             for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
 | |
|                 for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
 | |
|                     for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
 | |
|                         for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
 | |
|                             float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
 | |
|                             *dst = frand_uniform(rnd);
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             assert(false);
 | |
|     };
 | |
|     return tensor;
 | |
| }
 | |
| 
 | |
| struct my_llama_hparams {
 | |
|     uint32_t n_vocab = 32000;
 | |
|     uint32_t n_ctx   = 512;
 | |
|     uint32_t n_embd  = 4096;
 | |
|     uint32_t n_head  = 32;
 | |
|     uint32_t n_layer = 32;
 | |
|     uint32_t n_rot   = 64;
 | |
|     uint32_t n_ff    = 11008;
 | |
| 
 | |
|     // float f_norm_eps     = 1e-5; // falcon
 | |
|     float f_norm_rms_eps = 1e-5; // llama
 | |
| 
 | |
|     float rope_freq_base  = 10000.0f;
 | |
|     float rope_freq_scale = 1.0f;
 | |
| };
 | |
| 
 | |
| struct my_llama_layer {
 | |
|     // normalization
 | |
|     struct ggml_tensor * attention_norm;
 | |
| 
 | |
|     // attention
 | |
|     struct ggml_tensor * wq;
 | |
|     struct ggml_tensor * wk;
 | |
|     struct ggml_tensor * wv;
 | |
|     struct ggml_tensor * wo;
 | |
| 
 | |
|     // normalization
 | |
|     struct ggml_tensor * ffn_norm;
 | |
| 
 | |
|     // ff
 | |
|     struct ggml_tensor * w1;
 | |
|     struct ggml_tensor * w2;
 | |
|     struct ggml_tensor * w3;
 | |
| };
 | |
| 
 | |
| struct my_llama_model {
 | |
|     struct ggml_context * ctx = NULL;
 | |
| 
 | |
|     my_llama_hparams hparams;
 | |
| 
 | |
|     struct ggml_tensor * tok_embeddings;
 | |
| 
 | |
|     struct ggml_tensor * norm;
 | |
|     struct ggml_tensor * output;
 | |
| 
 | |
|     std::vector<my_llama_layer> layers;
 | |
| 
 | |
|     uint32_t train_its = 0;
 | |
|     uint32_t train_samples = 0;
 | |
|     uint32_t train_tokens = 0;
 | |
| };
 | |
| 
 | |
| // gguf constants
 | |
| const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type";
 | |
| const char * LLM_KV_OPTIMIZER_TYPE_ADAM  = "adam";
 | |
| const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs";
 | |
| const char * LLM_KV_OPTIMIZER_FILE_VERSION               = "optimizer.file_version";
 | |
| const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT     = "optimizer.convergence_past_count";
 | |
| const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT            = "optimizer.parameter_count";
 | |
| const char * LLM_KV_OPTIMIZER_ITERATION_COUNT            = "optimizer.iteration_count";
 | |
| const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED           = "optimizer.just_initialized";
 | |
| const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS             = "optimizer.adam.best_loss";
 | |
| const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS         = "optimizer.adam.previous_loss";
 | |
| const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT  = "optimizer.adam.no_improvement_count";
 | |
| const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count";
 | |
| const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS            = "optimizer.lbfgs.best_loss";
 | |
| const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP     = "optimizer.lbfgs.line_search_step";
 | |
| const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J        = "optimizer.lbfgs.line_search_j";
 | |
| const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K        = "optimizer.lbfgs.line_search_k";
 | |
| const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END      = "optimizer.lbfgs.line_search_end";
 | |
| const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count";
 | |
| 
 | |
| const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS    = "optimizer.adam.first_moments";
 | |
| const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS   = "optimizer.adam.second_moments";
 | |
| const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values";
 | |
| 
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS  = "optimizer.lbfgs.current_parameters";
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters";
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS   = "optimizer.lbfgs.current_gradients";
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS  = "optimizer.lbfgs.previous_gradients";
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION    = "optimizer.lbfgs.search_direction";
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES    = "optimizer.lbfgs.past_loss_values";
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA        = "optimizer.lbfgs.memory_alpha";
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS           = "optimizer.lbfgs.memory_ys";
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S            = "optimizer.lbfgs.memory_s";
 | |
| const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y            = "optimizer.lbfgs.memory_y";
 | |
| 
 | |
| const char * LLM_KV_TRAINING_FILE_VERSION    = "training.file_version";
 | |
| const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count";
 | |
| const char * LLM_KV_TRAINING_SAMPLE_COUNT    = "training.sample_count";
 | |
| const char * LLM_KV_TRAINING_TOKEN_COUNT     = "training.token_count";
 | |
| 
 | |
| // gguf constants (sync with gguf.py)
 | |
| 
 | |
| const char * LLM_KV_GENERAL_ARCHITECTURE        = "general.architecture";
 | |
| const char * LLM_KV_GENERAL_FILE_TYPE           = "general.file_type";
 | |
| 
 | |
| const char * LLM_KV_CONTEXT_LENGTH              = "%s.context_length";
 | |
| const char * LLM_KV_EMBEDDING_LENGTH            = "%s.embedding_length";
 | |
| const char * LLM_KV_BLOCK_COUNT                 = "%s.block_count";
 | |
| const char * LLM_KV_FEED_FORWARD_LENGTH         = "%s.feed_forward_length";
 | |
| const char * LLM_KV_ATTENTION_HEAD_COUNT        = "%s.attention.head_count";
 | |
| const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
 | |
| const char * LLM_KV_ROPE_DIMENSION_COUNT        = "%s.rope.dimension_count";
 | |
| const char * LLM_KV_ROPE_FREQ_BASE              = "%s.rope.freq_base"; // TODO load in llama.cpp
 | |
| const char * LLM_KV_ROPE_SCALE_LINEAR           = "%s.rope.scale_linear";
 | |
| 
 | |
| const char * LLM_KV_TOKENIZER_MODEL             = "tokenizer.ggml.model";
 | |
| const char * LLM_KV_TOKENIZER_LIST              = "tokenizer.ggml.tokens";
 | |
| const char * LLM_KV_TOKENIZER_TOKEN_TYPE        = "tokenizer.ggml.token_type";
 | |
| const char * LLM_KV_TOKENIZER_SCORES            = "tokenizer.ggml.scores";
 | |
| const char * LLM_KV_TOKENIZER_MERGES            = "tokenizer.ggml.merges";
 | |
| const char * LLM_KV_TOKENIZER_BOS_ID            = "tokenizer.ggml.bos_token_id";
 | |
| const char * LLM_KV_TOKENIZER_EOS_ID            = "tokenizer.ggml.eos_token_id";
 | |
| const char * LLM_KV_TOKENIZER_UNK_ID            = "tokenizer.ggml.unknown_token_id";
 | |
| const char * LLM_KV_TOKENIZER_SEP_ID            = "tokenizer.ggml.seperator_token_id";
 | |
| const char * LLM_KV_TOKENIZER_PAD_ID            = "tokenizer.ggml.padding_token_id";
 | |
| 
 | |
| const char * LLM_TENSOR_TOKEN_EMBD    = "token_embd";
 | |
| const char * LLM_TENSOR_OUTPUT_NORM   = "output_norm";
 | |
| const char * LLM_TENSOR_OUTPUT        = "output";
 | |
| const char * LLM_TENSOR_ATTN_NORM     = "blk.%d.attn_norm";
 | |
| const char * LLM_TENSOR_ATTN_Q        = "blk.%d.attn_q";
 | |
| const char * LLM_TENSOR_ATTN_K        = "blk.%d.attn_k";
 | |
| const char * LLM_TENSOR_ATTN_V        = "blk.%d.attn_v";
 | |
| const char * LLM_TENSOR_ATTN_OUT      = "blk.%d.attn_output";
 | |
| const char * LLM_TENSOR_FFN_NORM      = "blk.%d.ffn_norm";
 | |
| const char * LLM_TENSOR_FFN_GATE      = "blk.%d.ffn_gate";
 | |
| const char * LLM_TENSOR_FFN_DOWN      = "blk.%d.ffn_down";
 | |
| const char * LLM_TENSOR_FFN_UP        = "blk.%d.ffn_up";
 | |
| 
 | |
| void print_params(struct my_llama_hparams * params) {
 | |
|     printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
 | |
|     printf("%s: n_ctx:   %d\n", __func__, params->n_ctx);
 | |
|     printf("%s: n_embd:  %d\n", __func__, params->n_embd);
 | |
|     printf("%s: n_head:  %d\n", __func__, params->n_head);
 | |
|     printf("%s: n_ff:    %d\n", __func__, params->n_ff);
 | |
|     printf("%s: n_layer: %d\n", __func__, params->n_layer);
 | |
|     printf("%s: n_rot:   %d\n", __func__, params->n_rot);
 | |
| }
 | |
| 
 | |
| void init_model(struct my_llama_model * model) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_embd  = hparams.n_embd;
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
|     const uint32_t n_vocab = hparams.n_vocab;
 | |
|     const uint32_t n_ff    = hparams.n_ff;
 | |
| 
 | |
|     struct ggml_context * ctx = model->ctx;
 | |
| 
 | |
|     model->train_its = 0;
 | |
|     model->train_samples = 0;
 | |
|     model->train_tokens = 0;
 | |
| 
 | |
|     std::vector<char> tn_buf;
 | |
|     tn_buf.resize(GGML_MAX_NAME);
 | |
|     auto tn = [&tn_buf](const char * key) -> const char * {
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
 | |
|         return tn_buf.data();
 | |
|     };
 | |
|     auto tni = [&tn_buf](const char * key, int bid) -> const char * {
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), key, bid);
 | |
|         std::string s = tn_buf.data();
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
 | |
|         return tn_buf.data();
 | |
|     };
 | |
| 
 | |
|     model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
 | |
|     model->norm           = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
|     model->output         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
 | |
| 
 | |
|     ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD));
 | |
|     ggml_set_name(model->norm,           tn(LLM_TENSOR_OUTPUT_NORM));
 | |
|     ggml_set_name(model->output,         tn(LLM_TENSOR_OUTPUT));
 | |
| 
 | |
|     model->layers.resize(n_layer);
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|         layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
|         layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
|         layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
|         layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
 | |
| 
 | |
|         layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
 | |
| 
 | |
|         layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);
 | |
|         layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32,   n_ff, n_embd);
 | |
|         layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);
 | |
| 
 | |
|         ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));
 | |
| 
 | |
|         ggml_set_name(layer.wq,             tni(LLM_TENSOR_ATTN_Q, i));
 | |
|         ggml_set_name(layer.wk,             tni(LLM_TENSOR_ATTN_K, i));
 | |
|         ggml_set_name(layer.wv,             tni(LLM_TENSOR_ATTN_V, i));
 | |
|         ggml_set_name(layer.wo,             tni(LLM_TENSOR_ATTN_OUT, i));
 | |
| 
 | |
|         ggml_set_name(layer.ffn_norm,       tni(LLM_TENSOR_FFN_NORM, i));
 | |
| 
 | |
|         ggml_set_name(layer.w1,             tni(LLM_TENSOR_FFN_GATE, i));
 | |
|         ggml_set_name(layer.w2,             tni(LLM_TENSOR_FFN_DOWN, i));
 | |
|         ggml_set_name(layer.w3,             tni(LLM_TENSOR_FFN_UP, i));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void set_param_model(struct my_llama_model * model) {
 | |
|     const auto& hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     struct ggml_context* ctx = model->ctx;
 | |
| 
 | |
|     ggml_set_param(ctx, model->tok_embeddings);
 | |
|     ggml_set_param(ctx, model->norm);
 | |
|     ggml_set_param(ctx, model->output);
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         ggml_set_param(ctx, layer.attention_norm);
 | |
|         ggml_set_param(ctx, layer.wq);
 | |
|         ggml_set_param(ctx, layer.wk);
 | |
|         ggml_set_param(ctx, layer.wv);
 | |
|         ggml_set_param(ctx, layer.wo);
 | |
|         ggml_set_param(ctx, layer.ffn_norm);
 | |
|         ggml_set_param(ctx, layer.w1);
 | |
|         ggml_set_param(ctx, layer.w2);
 | |
|         ggml_set_param(ctx, layer.w3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
 | |
|     const auto & hparams = model->hparams;
 | |
| 
 | |
|     const uint32_t n_layer = hparams.n_layer;
 | |
| 
 | |
|     struct random_normal_distribution rnd;
 | |
|     init_random_normal_distribution(&rnd, seed, mean, std, min, max);
 | |
| 
 | |
|     randomize_tensor_normal(model->tok_embeddings, &rnd);
 | |
|     randomize_tensor_normal(model->norm,           &rnd);
 | |
|     randomize_tensor_normal(model->output,         &rnd);
 | |
| 
 | |
|     for (uint32_t i = 0; i < n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
|         randomize_tensor_normal(layer.attention_norm, &rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.wq, &rnd);
 | |
|         randomize_tensor_normal(layer.wk, &rnd);
 | |
|         randomize_tensor_normal(layer.wv, &rnd);
 | |
|         randomize_tensor_normal(layer.wo, &rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.ffn_norm, &rnd);
 | |
| 
 | |
|         randomize_tensor_normal(layer.w1, &rnd);
 | |
|         randomize_tensor_normal(layer.w2, &rnd);
 | |
|         randomize_tensor_normal(layer.w3, &rnd);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
 | |
|     GGML_ASSERT(tensor->n_dims == 1);
 | |
|     GGML_ASSERT(tensor->ne[0] == ne0);
 | |
| }
 | |
| 
 | |
| void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
 | |
|     GGML_ASSERT(tensor->n_dims == 2);
 | |
|     GGML_ASSERT(tensor->ne[0] == ne0);
 | |
|     GGML_ASSERT(tensor->ne[1] == ne1);
 | |
| }
 | |
| 
 | |
| void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
 | |
|     GGML_ASSERT(tensor->n_dims == 3);
 | |
|     GGML_ASSERT(tensor->ne[0] == ne0);
 | |
|     GGML_ASSERT(tensor->ne[1] == ne1);
 | |
|     GGML_ASSERT(tensor->ne[2] == ne2);
 | |
| }
 | |
| 
 | |
| void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
 | |
|     GGML_ASSERT(tensor->n_dims == 4);
 | |
|     GGML_ASSERT(tensor->ne[0] == ne0);
 | |
|     GGML_ASSERT(tensor->ne[1] == ne1);
 | |
|     GGML_ASSERT(tensor->ne[2] == ne2);
 | |
|     GGML_ASSERT(tensor->ne[3] == ne3);
 | |
| }
 | |
| 
 | |
| static size_t hash(void * p) {
 | |
|     return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
 | |
| }
 | |
| 
 | |
| static size_t hash_find(void * hash_table[], void * p) {
 | |
|     size_t h = hash(p);
 | |
| 
 | |
|     // linear probing
 | |
|     size_t i = h;
 | |
|     while (hash_table[i] != NULL && hash_table[i] != p) {
 | |
|         i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
 | |
|         if (i == h) {
 | |
|             // visited all hash table entries -> not found
 | |
|             return GGML_GRAPH_HASHTABLE_SIZE;
 | |
|         }
 | |
|     }
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| static bool hash_insert(void * hash_table[], void * p) {
 | |
|     //size_t h = hash(p);
 | |
|     size_t i = hash_find(hash_table, p);
 | |
| 
 | |
|     GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
 | |
| 
 | |
|     if (hash_table[i] == p) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // insert
 | |
|     GGML_ASSERT(hash_table[i] == NULL);
 | |
|     hash_table[i] = p;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static bool hash_contains(void * hash_table[], void * p) {
 | |
|     size_t i = hash_find(hash_table, p);
 | |
|     return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
 | |
| }
 | |
| 
 | |
| struct hash_map {
 | |
|     void * keys[GGML_GRAPH_HASHTABLE_SIZE];
 | |
|     void * vals[GGML_GRAPH_HASHTABLE_SIZE];
 | |
| };
 | |
| //static const size_t HASH_MAP_SIZE = sizeof(struct hash_map);
 | |
| 
 | |
| struct hash_map * new_hash_map() {
 | |
|     struct hash_map * result = new struct hash_map;
 | |
|     for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
 | |
|         result->keys[i] = NULL;
 | |
|         result->vals[i] = NULL;
 | |
|     }
 | |
|     return result;
 | |
| };
 | |
| 
 | |
| void free_hash_map(struct hash_map * map) {
 | |
|     delete map;
 | |
| }
 | |
| 
 | |
| static bool ggml_is_view(struct ggml_tensor * t) {
 | |
|     return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
 | |
|            t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
 | |
|     switch (t->op) {
 | |
|         case GGML_OP_PERMUTE:
 | |
|         case GGML_OP_RESHAPE:
 | |
|         case GGML_OP_TRANSPOSE:
 | |
|         case GGML_OP_VIEW:
 | |
|             return t->src[0];
 | |
|         case GGML_OP_CPY:
 | |
|             return t->src[1];
 | |
|         default:
 | |
|             return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
 | |
|     struct ggml_tensor * parent = t;
 | |
|     do {
 | |
|         parent = get_view_parent(parent);
 | |
|     } while (ggml_is_view(parent));
 | |
|     return parent;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_recompute_graph_node(
 | |
|         struct ggml_context * ctx,
 | |
|         struct ggml_cgraph  * graph,
 | |
|         struct hash_map     * replacements,
 | |
|         struct ggml_tensor  * node) {
 | |
| 
 | |
|     if (node == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (node->is_param) {
 | |
|         return node;
 | |
|     }
 | |
| 
 | |
|     if (!hash_contains(graph->visited_hash_table, node)) {
 | |
|         return node;
 | |
|     }
 | |
| 
 | |
|     int count_children = 0;
 | |
|     for (int k = 0; k < GGML_MAX_SRC; ++k) {
 | |
|         if (node->src[k]) {
 | |
|             ++count_children;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (count_children == 0) {
 | |
|         return node;
 | |
|     }
 | |
| 
 | |
|     size_t i = hash_find(replacements->keys, node);
 | |
|     GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
 | |
|     if (replacements->keys[i] == node) {
 | |
|         return (struct ggml_tensor *) replacements->vals[i];
 | |
|     }
 | |
| 
 | |
|     struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
 | |
| 
 | |
|     // insert clone into replacements
 | |
|     GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
 | |
|     replacements->keys[i] = node;
 | |
|     replacements->vals[i] = clone;
 | |
| 
 | |
|     clone->op       = node->op;
 | |
|     clone->grad     = node->grad;
 | |
|     clone->is_param = node->is_param;
 | |
|     clone->extra    = node->extra;
 | |
|     for (int k = 0; k < GGML_MAX_DIMS; ++k) {
 | |
|         clone->nb[k] = node->nb[k];
 | |
|     }
 | |
|     for (int k = 0; k < GGML_MAX_SRC; ++k) {
 | |
|         clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
 | |
|     }
 | |
|     if (ggml_is_view(clone)) {
 | |
|         struct ggml_tensor * source = get_view_source(clone);
 | |
|         GGML_ASSERT(source != NULL);
 | |
|         clone->data = source->data;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
 | |
|     GGML_ASSERT(sizeof(node->name)      == GGML_MAX_NAME);
 | |
|     memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
 | |
|     ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
 | |
| 
 | |
|     return clone;
 | |
| };
 | |
| 
 | |
| void ggml_build_backward_gradient_checkpointing(
 | |
|         struct ggml_context   * ctx,
 | |
|         struct ggml_cgraph    * gf,
 | |
|         struct ggml_cgraph    * gb,
 | |
|         struct ggml_cgraph    * gb_tmp,
 | |
|         struct ggml_tensor  * * checkpoints,
 | |
|         int                     n_checkpoints) {
 | |
|     *gb_tmp = *gf;
 | |
|     ggml_build_backward_expand(ctx, gf, gb_tmp, true);
 | |
| 
 | |
|     if (n_checkpoints <= 0) {
 | |
|         *gb = *gb_tmp;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     struct hash_map * replacements = new_hash_map();
 | |
| 
 | |
|     // insert checkpoints in replacements
 | |
|     for (int i = 0; i < n_checkpoints; ++i) {
 | |
|         size_t k = hash_find(replacements->keys, checkpoints[i]);
 | |
|         GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
 | |
|         GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
 | |
|         replacements->keys[k] = checkpoints[i];
 | |
|         replacements->vals[k] = checkpoints[i];
 | |
|     }
 | |
| 
 | |
|     *gb = *gf;
 | |
|     // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
 | |
|     // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
 | |
|     // by recomputing them from checkpoints
 | |
|     for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
 | |
|         struct ggml_tensor * node = gb_tmp->nodes[i];
 | |
|         for (int k = 0; k < GGML_MAX_SRC; ++k) {
 | |
|             // insert new tensors recomputing src, reusing already made replacements,
 | |
|             // remember replacements: remember new tensors with mapping from corresponding gf nodes
 | |
|             // recurse for input tensors,
 | |
|             // unless (i.e. terminating when) input tensors are checkpoints
 | |
|             node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
 | |
|         }
 | |
|         // insert rewritten backward node with replacements made into resulting backward graph gb
 | |
|         ggml_build_forward_expand(gb, node);
 | |
|     }
 | |
| 
 | |
|     free_hash_map(replacements);
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * llama_build_train_graphs(
 | |
|         struct my_llama_model * model,
 | |
|         struct ggml_allocr    * alloc,
 | |
|         struct ggml_context   * ctx,
 | |
|         struct ggml_cgraph    * gf,
 | |
|         struct ggml_cgraph    * gb,
 | |
|         struct ggml_cgraph    * gb_tmp,
 | |
|         struct ggml_tensor  * * logits,
 | |
|         struct ggml_tensor    * tokens_input,
 | |
|         struct ggml_tensor    * targets,
 | |
|         const  int              n_tokens,
 | |
|         const  int              n_batch,
 | |
|         const  bool             enable_flash_attn,
 | |
|         const  bool             enable_checkpointing) {
 | |
| 
 | |
|     ggml_set_scratch(ctx, { 0, 0, nullptr, });
 | |
|     const int n_past = 0;
 | |
|     const int N = n_tokens;
 | |
|     const auto & hparams = model->hparams;
 | |
|     const int n_ctx      = hparams.n_ctx;
 | |
|     const int n_vocab    = hparams.n_vocab;
 | |
|     const int n_embd     = hparams.n_embd;
 | |
|     const int n_layer    = hparams.n_layer;
 | |
|     const int n_head     = hparams.n_head;
 | |
|     const int n_rot      = hparams.n_rot;
 | |
|     const int n_ff       = hparams.n_ff;
 | |
|     const float f_norm_rms_eps  = hparams.f_norm_rms_eps;
 | |
|     const float rope_freq_base  = hparams.rope_freq_base;
 | |
|     const float rope_freq_scale = hparams.rope_freq_scale;
 | |
| 
 | |
|     auto set_name = [](struct ggml_tensor * t, const char * n) {
 | |
|         ggml_set_name(t, n);
 | |
|         if (t->grad) {
 | |
|             ggml_format_name(t->grad, "%s->grad", n);
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // rope has so much parameters that we make a custom function for it
 | |
|     auto rope = [ctx, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
 | |
|                 (struct ggml_tensor * t) -> struct ggml_tensor * {
 | |
|         // not capturing these, to silcence warnings
 | |
|         const int n_past    = 0;
 | |
|         const int rope_mode = 0;
 | |
| 
 | |
|         return ggml_rope_custom(ctx,
 | |
|             t, n_past, n_rot, rope_mode, n_ctx,
 | |
|             rope_freq_base, rope_freq_scale);
 | |
|     };
 | |
| 
 | |
|     set_name(tokens_input, "tokens_input");
 | |
|     set_name(targets,      "targets");
 | |
| 
 | |
|     GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
 | |
|     struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch);  set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
 | |
|     struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
 | |
| 
 | |
|     struct ggml_tensor * cur = t01;
 | |
| 
 | |
|     std::vector<struct ggml_tensor *> checkpoints;
 | |
|     checkpoints.push_back(tokens_input);
 | |
|     checkpoints.push_back(targets);
 | |
|     checkpoints.push_back(t00);
 | |
|     checkpoints.push_back(t01);
 | |
| 
 | |
|     struct ggml_tensor * kv_scale;
 | |
|     if (!enable_flash_attn) {
 | |
|         kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
 | |
|     }
 | |
| 
 | |
|     for (int il = 0; il < n_layer; ++il) {
 | |
|         struct my_llama_layer & layer = model->layers[il];
 | |
|         struct ggml_tensor * t02 = ggml_rms_norm     (ctx, cur, f_norm_rms_eps);                    set_name(t02, "t02");     assert_shape_2d(t02, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t03 = ggml_repeat       (ctx, layer.attention_norm, t02);              set_name(t03, "t03");     assert_shape_2d(t03, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t04 = ggml_mul          (ctx, t03, t02);                               set_name(t04, "t04");     assert_shape_2d(t04, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t05 = ggml_mul_mat      (ctx, layer.wq, t04);                          set_name(t05, "t05");     assert_shape_2d(t05, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t06 = ggml_reshape_4d   (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06");     assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t07 = rope              (t06);                                         set_name(t07, "t07");     assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t08 = ggml_mul_mat      (ctx, layer.wk, t04);                          set_name(t08, "t08");     assert_shape_2d(t08, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t09 = ggml_reshape_4d   (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09");     assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t10 = rope              (t09);                                         set_name(t10, "t10");     assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t11 = ggml_mul_mat      (ctx, t04, layer.wv);                          set_name(t11, "t11");     assert_shape_2d(t11, N*n_batch, n_embd);
 | |
|         struct ggml_tensor * t12 = ggml_reshape_4d   (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12");     assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
 | |
|         struct ggml_tensor * t13 = ggml_permute      (ctx, t07, 0, 2, 1, 3);                        set_name(t13, "t13");     assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
 | |
|         struct ggml_tensor * t14 = ggml_permute      (ctx, t10, 0, 2, 1, 3);                        set_name(t14, "t14");     assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
 | |
|         struct ggml_tensor * t15 = ggml_permute      (ctx, t12, 0, 3, 1, 2);                        set_name(t15, "t15");     assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
 | |
|         struct ggml_tensor * t16;
 | |
|         if (enable_flash_attn) {
 | |
|             t16 = ggml_flash_attn(ctx, t13, t14, t15, true);                                        set_name(t16, "t16");     assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
 | |
|         } else {
 | |
|             struct ggml_tensor * t16_0 = ggml_mul_mat              (ctx, t14, t13);                 set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
 | |
|             struct ggml_tensor * t16_1 = ggml_scale_inplace        (ctx, t16_0, kv_scale);          set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
 | |
|             struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past);            set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
 | |
|             struct ggml_tensor * t16_3 = ggml_soft_max_inplace     (ctx, t16_2);                    set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
 | |
|             t16 = ggml_mul_mat(ctx, t15, t16_3);                                                    set_name(t16, "t16");     assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
 | |
|         }
 | |
|         struct ggml_tensor * t17 = ggml_permute      (ctx, t16, 0, 2, 1, 3);                        set_name(t17, "t17");     assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t18 = ggml_cont         (ctx, t17);                                    set_name(t18, "t18");     assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
 | |
|         struct ggml_tensor * t19 = ggml_reshape_2d   (ctx, t18, n_embd, N*n_batch);                 set_name(t19, "t19");     assert_shape_2d(t19, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t20 = ggml_mul_mat      (ctx, layer.wo, t19);                          set_name(t20, "t20");     assert_shape_2d(t20, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t21 = ggml_add          (ctx, t20, cur);                               set_name(t21, "t21");     assert_shape_2d(t21, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t22 = ggml_rms_norm     (ctx, t21, f_norm_rms_eps);                    set_name(t22, "t22");     assert_shape_2d(t22, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t23 = ggml_repeat       (ctx, layer.ffn_norm, t22);                    set_name(t23, "t23");     assert_shape_2d(t23, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t24 = ggml_mul          (ctx, t23, t22);                               set_name(t24, "t24");     assert_shape_2d(t24, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t25 = ggml_mul_mat      (ctx, layer.w3, t24);                          set_name(t25, "t25");     assert_shape_2d(t25, n_ff, N*n_batch);
 | |
|         struct ggml_tensor * t26 = ggml_mul_mat      (ctx, layer.w1, t24);                          set_name(t26, "t26");     assert_shape_2d(t26, n_ff, N*n_batch);
 | |
|         struct ggml_tensor * t27 = ggml_silu         (ctx, t26);                                    set_name(t27, "t27");     assert_shape_2d(t27, n_ff, N*n_batch);
 | |
|         struct ggml_tensor * t28 = ggml_mul          (ctx, t27, t25);                               set_name(t28, "t28");     assert_shape_2d(t28, n_ff, N*n_batch);
 | |
|         struct ggml_tensor * t29 = ggml_mul_mat      (ctx, layer.w2, t28);                          set_name(t29, "t29");     assert_shape_2d(t29, n_embd, N*n_batch);
 | |
|         struct ggml_tensor * t30 = ggml_add          (ctx, t29, t21);                               set_name(t30, "t30");     assert_shape_2d(t30, n_embd, N*n_batch);
 | |
|         cur = t30;
 | |
|         checkpoints.push_back(cur);
 | |
|     }
 | |
|     struct ggml_tensor * t31   = ggml_rms_norm          (ctx, cur, f_norm_rms_eps);                 set_name(t31, "t31");     assert_shape_2d(t31, n_embd, N*n_batch);
 | |
|     struct ggml_tensor * t32   = ggml_repeat            (ctx, model->norm, t31);                    set_name(t32, "t32");     assert_shape_2d(t32, n_embd, N*n_batch);
 | |
|     struct ggml_tensor * t33   = ggml_mul               (ctx, t32, t31);                            set_name(t33, "t33");     assert_shape_2d(t33, n_embd, N*n_batch);
 | |
|     struct ggml_tensor * t34   = ggml_mul_mat           (ctx, model->output, t33);                  set_name(t34, "t34");     assert_shape_2d(t34, n_vocab, N*n_batch);
 | |
|     struct ggml_tensor * t35   = ggml_reshape_3d        (ctx, t34, n_vocab, N, n_batch);            set_name(t35, "t35");     assert_shape_3d(t35, n_vocab, N, n_batch);
 | |
|     struct ggml_tensor * t36   = ggml_cross_entropy_loss(ctx, t35, targets);                        set_name(t36, "t36");     assert_shape_1d(t36, 1);
 | |
| 
 | |
|     checkpoints.push_back(t31);
 | |
|     checkpoints.push_back(t32);
 | |
|     checkpoints.push_back(t33);
 | |
|     checkpoints.push_back(t34);
 | |
|     checkpoints.push_back(t35);
 | |
|     checkpoints.push_back(t36);
 | |
| 
 | |
|     ggml_build_forward_expand(gf, t36);
 | |
| 
 | |
|     if (enable_checkpointing) {
 | |
|         ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
 | |
|     } else {
 | |
|         *gb = *gf;
 | |
|         ggml_build_backward_expand(ctx, gf, gb, true);
 | |
|     }
 | |
| 
 | |
|     if (alloc) {
 | |
|         // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
 | |
|         int n_leafs_before = gb->n_leafs;
 | |
|         int n_nodes_before = gb->n_nodes;
 | |
|         struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
 | |
|         // output tensors
 | |
|         ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
 | |
|         ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
 | |
|         // input gradient
 | |
|         ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
 | |
|         GGML_ASSERT(t36->grad->data == NULL && !ggml_is_view(t36->grad));
 | |
|         ggml_allocr_alloc(alloc, t36->grad);
 | |
|         // gradient tensors (will be set to zero by ggml_graph_reset)
 | |
|         // pinning these produces large unnecessary memory overhead, which will be resolved by PR 2632
 | |
|         for (int i = 0; i < gf->n_nodes; ++i) {
 | |
|             if (!gf->grads[i]) continue;
 | |
|             if (gf->grads[i]->data == NULL && !ggml_is_view(gf->grads[i])) {
 | |
|                 ggml_allocr_alloc(alloc, gf->grads[i]);
 | |
|             }
 | |
|             ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, gf->grads[i], one));
 | |
|         }
 | |
|         // allocating checkpoints in one block to reduce memory fragmentation
 | |
|         // note: they will be freed in reverse order
 | |
|         for (int i = 0; i < (int) checkpoints.size(); ++i) {
 | |
|             if (checkpoints[i]->data == NULL && !ggml_is_view(checkpoints[i])) {
 | |
|                 ggml_allocr_alloc(alloc, checkpoints[i]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         //int n_leafs_after = gb->n_leafs;
 | |
|         //int n_nodes_after = gb->n_nodes;
 | |
| 
 | |
|         ggml_allocr_alloc_graph(alloc, gb);
 | |
| 
 | |
|         // remove the additional nodes and leafs
 | |
|         for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
 | |
|             gb->leafs[i] = NULL;
 | |
|         }
 | |
|         for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
 | |
|             gb->nodes[i] = NULL;
 | |
|         }
 | |
|         gb->n_leafs = n_leafs_before;
 | |
|         gb->n_nodes = n_nodes_before;
 | |
|     }
 | |
| 
 | |
|     *logits = t35;
 | |
|     return t36;
 | |
| }
 | |
| 
 | |
| void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) {
 | |
|     float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
 | |
|     *ptr = value;
 | |
| }
 | |
| 
 | |
| void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) {
 | |
|     float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | |
|     *ptr = value;
 | |
| }
 | |
| 
 | |
| void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) {
 | |
|     int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | |
|     *ptr = value;
 | |
| }
 | |
| 
 | |
| float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
 | |
|     float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | |
|     return *ptr;
 | |
| }
 | |
| 
 | |
| int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
 | |
|     int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
 | |
|     return *ptr;
 | |
| }
 | |
| 
 | |
| void print_row(struct ggml_tensor * probs, int i) {
 | |
|     for (int k = 0; k < probs->ne[0]; ++k) {
 | |
|         float p = get_f32_2d(probs, k, i);
 | |
|         printf(" %.2f", p);
 | |
|     }
 | |
|     printf("\n");
 | |
| }
 | |
| 
 | |
| void print_matrix(struct ggml_tensor * probs) {
 | |
|     assert(probs->n_dims == 2);
 | |
|     for (int i = 0; i < probs->ne[1]; ++i) {
 | |
|         for (int k = 0; k < probs->ne[0]; ++k) {
 | |
|             float p = get_f32_2d(probs, k, i);
 | |
|             printf(" %.2f", p);
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
 | |
|     int n_tokens = tokens_input->ne[0];
 | |
|     int n_vocab  = target_logits->ne[0];
 | |
| 
 | |
|     size_t sample = train_samples[example_id % n_train_samples];
 | |
|     GGML_ASSERT(sample+n_tokens-1 < n_train_data);
 | |
| 
 | |
|     ggml_set_f32(target_logits, -1.0f/n_vocab);
 | |
|     ggml_set_f32(target_probs, 0.0f);
 | |
|     ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx));
 | |
|     for (int i=1; i<n_tokens+1; ++i) {
 | |
|         int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
 | |
|         set_f32_2d(target_logits, token, i-1, +1.0f);
 | |
|         set_f32_2d(target_probs,  token, i-1, +1.0f);
 | |
|         if (i<n_tokens) {
 | |
|             ggml_set_i32_1d(tokens_input, i, token);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void get_example_targets_batch(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
 | |
|     GGML_ASSERT(tokens_input->n_dims  == 2);
 | |
|     GGML_ASSERT(target_logits->n_dims == 3);
 | |
|     GGML_ASSERT(target_probs->n_dims  == 3);
 | |
|     int n_vocab  = target_logits->ne[0];
 | |
|     int n_tokens = tokens_input->ne[0];
 | |
|     int n_batch  = tokens_input->ne[1];
 | |
|     GGML_ASSERT(n_tokens == target_logits->ne[1]);
 | |
|     GGML_ASSERT(n_batch  == target_logits->ne[2]);
 | |
|     GGML_ASSERT(n_vocab  == target_probs->ne[0]);
 | |
|     GGML_ASSERT(n_tokens == target_probs->ne[1]);
 | |
|     GGML_ASSERT(n_batch  == target_probs->ne[2]);
 | |
| 
 | |
|     ggml_set_f32(target_logits, -1.0f/n_vocab);
 | |
|     ggml_set_f32(target_probs, 0.0f);
 | |
|     // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples);
 | |
|     for (int k=0; k<n_batch; ++k) {
 | |
|         // printf("%s: batch %d\n", __func__, k);
 | |
|         size_t sample_idx = (example_id*n_batch + k) % n_train_samples;
 | |
|         size_t sample = train_samples[sample_idx];
 | |
|         // printf("%s: sample_idx=%zu sample=%zu\n", __func__, sample_idx, sample);
 | |
|         GGML_ASSERT(sample+n_tokens-1 < n_train_data);
 | |
| 
 | |
|         set_i32_2d(tokens_input, 0, k, llama_token_bos(lctx));
 | |
|         for (int i=1; i<n_tokens+1; ++i) {
 | |
|             int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
 | |
|             set_f32_3d(target_logits, token, i-1, k, +1.0f);
 | |
|             set_f32_3d(target_probs,  token, i-1, k, +1.0f);
 | |
|             if (i<n_tokens) {
 | |
|                 set_i32_2d(tokens_input, i, k, token);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int tokenize_file(struct llama_context * lctx, const char * filename, std::vector<llama_token>& out) {
 | |
|     FILE * fp = std::fopen(filename, "rb");
 | |
|     if (fp == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
| #ifdef _WIN32
 | |
|     GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_END) == 0);
 | |
| #else
 | |
|     GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_END) == 0);
 | |
| #endif
 | |
| 
 | |
|     size_t size = 0;
 | |
| #ifdef _WIN32
 | |
|     __int64 ret = _ftelli64(fp);
 | |
|     size = ret;
 | |
| #else
 | |
|     long ret = std::ftell(fp);
 | |
|     size = ret;
 | |
| #endif
 | |
| 
 | |
| #ifdef _WIN32
 | |
|     GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_SET) == 0);
 | |
| #else
 | |
|     GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_SET) == 0);
 | |
| #endif
 | |
| 
 | |
|     std::vector<char> buf;
 | |
|     buf.resize(size+1);
 | |
|     out.resize(size+1);
 | |
| 
 | |
|     if (std::fread(buf.data(), size, 1, fp) != 1) {
 | |
|         die("unexpectedly reached end of file");
 | |
|     }
 | |
|     if (ferror(fp)) {
 | |
|         die_fmt("fread failed: %s", strerror(errno));
 | |
|     }
 | |
| 
 | |
|     buf[size] = '\0';
 | |
| 
 | |
|     int n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false);
 | |
|     if (n_tokens < 0) {
 | |
|         out.resize(-n_tokens);
 | |
|         n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false);
 | |
|     }
 | |
|     GGML_ASSERT(n_tokens >= 0);
 | |
|     out.resize(n_tokens);
 | |
| 
 | |
|     bool verify = false;
 | |
|     if (verify) {
 | |
|         const char * in  = buf.data();
 | |
|         const char * end = buf.data() + buf.size();
 | |
|         for (int i = 0; i < (int) out.size(); ++i) {
 | |
|             std::string s = llama_token_to_piece(lctx, out[i]);
 | |
|             int len = s.length();
 | |
|             if (in >= end) {
 | |
|                 printf("%s: unexpected end of original text.\n", __func__);
 | |
|                 break;
 | |
|             }
 | |
|             const bool matches = (strncmp(in, s.c_str(), len) == 0);
 | |
|             if (matches) {
 | |
|                 in += len;
 | |
|             } else {
 | |
|                 printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return n_tokens;
 | |
| }
 | |
| 
 | |
| void shuffle_ints(int * begin, int * end) {
 | |
|     if (end <= begin) return;
 | |
|     int max=begin[0];
 | |
|     for (int i=1; i<end-begin; ++i) {
 | |
|         if (begin[i] > max) {
 | |
|             max = begin[i];
 | |
|         }
 | |
|     }
 | |
|     std::vector<float> vals;
 | |
|     vals.resize(max+1);
 | |
|     for (int i=0; i<max+1; ++i) {
 | |
|        vals[i] = frand();
 | |
|     }
 | |
|     std::sort(begin, end, [&vals](int a, int b){
 | |
|        return vals.at(a) < vals.at(b);
 | |
|     });
 | |
| }
 | |
| 
 | |
| #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
 | |
| { \
 | |
|     const std::string skey(key); \
 | |
|     const int kid = gguf_find_key(ctx, skey.c_str()); \
 | |
|     if (kid >= 0) { \
 | |
|         enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
 | |
|         if (ktype != (type)) { \
 | |
|             die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
 | |
|         } \
 | |
|         (dst) = func(ctx, kid); \
 | |
|     } else if (req) { \
 | |
|         die_fmt("key not found in model: %s", skey.c_str()); \
 | |
|     } \
 | |
| }
 | |
| 
 | |
| 
 | |
| bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) {
 | |
|     GGML_ASSERT(a != NULL);
 | |
|     GGML_ASSERT(b != NULL);
 | |
|     GGML_ASSERT(a->type == b->type);
 | |
|     GGML_ASSERT(ggml_are_same_shape(a, b));
 | |
|     GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b));
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void read_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) {
 | |
|     if (dst == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     struct ggml_tensor * t  = ggml_get_tensor(ctx, name);
 | |
|     GGML_ASSERT(are_same_layout(dst, t));
 | |
|     memcpy(dst->data, t->data, ggml_nbytes(t));
 | |
| 
 | |
|     if (strlen(ggml_get_name(dst)) == 0) {
 | |
|         ggml_set_name(dst, name);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) {
 | |
|     // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
 | |
| 
 | |
|     uint32_t file_version;
 | |
|     GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION);
 | |
|     GGML_ASSERT(file_version == 0);
 | |
| 
 | |
|     GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT);
 | |
|     GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT);
 | |
|     GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED);
 | |
| 
 | |
|     uint64_t nx;
 | |
|     GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT);
 | |
|     opt->nx = (size_t) nx;
 | |
| 
 | |
|     // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know
 | |
| 
 | |
|     std::string opt_type;
 | |
|     GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
 | |
|     if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
 | |
|         opt->params.type = GGML_OPT_ADAM;
 | |
| 
 | |
|         GGUF_GET_KEY(fctx, opt->adam.fx_best,          gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
 | |
|         GGUF_GET_KEY(fctx, opt->adam.fx_prev,          gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
 | |
|         GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32,  true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT);
 | |
| 
 | |
|         GGML_ASSERT(opt->ctx != NULL);
 | |
|         ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);
 | |
| 
 | |
|         read_tensor_by_name(opt->adam.m,  f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
 | |
|         read_tensor_by_name(opt->adam.v,  f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
 | |
|         read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
 | |
|     } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
 | |
|         opt->params.type = GGML_OPT_LBFGS;
 | |
| 
 | |
|         GGUF_GET_KEY(fctx, opt->params.lbfgs.m,         gguf_get_val_u32, GGUF_TYPE_UINT32,  true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
 | |
|         GGUF_GET_KEY(fctx, opt->lbfgs.fx_best,          gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
 | |
|         GGUF_GET_KEY(fctx, opt->lbfgs.step,             gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP);
 | |
|         GGUF_GET_KEY(fctx, opt->lbfgs.j,                gguf_get_val_i32, GGUF_TYPE_INT32,   true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J);
 | |
|         GGUF_GET_KEY(fctx, opt->lbfgs.k,                gguf_get_val_i32, GGUF_TYPE_INT32,   true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K);
 | |
|         GGUF_GET_KEY(fctx, opt->lbfgs.end,              gguf_get_val_i32, GGUF_TYPE_INT32,   true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END);
 | |
|         GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32,  true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT);
 | |
| 
 | |
|         GGML_ASSERT(opt->ctx != NULL);
 | |
|         ggml_opt_init(opt->ctx, opt, opt->params, opt->nx);
 | |
| 
 | |
|         read_tensor_by_name(opt->lbfgs.x,    f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
 | |
|         read_tensor_by_name(opt->lbfgs.xp,   f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
 | |
|         read_tensor_by_name(opt->lbfgs.g,    f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
 | |
|         read_tensor_by_name(opt->lbfgs.gp,   f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
 | |
|         read_tensor_by_name(opt->lbfgs.d,    f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
 | |
|         read_tensor_by_name(opt->lbfgs.pf,   f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
 | |
|         read_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
 | |
|         read_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
 | |
|         read_tensor_by_name(opt->lbfgs.lms,  f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
 | |
|         read_tensor_by_name(opt->lbfgs.lmy,  f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
 | |
|     } else {
 | |
|         die("unknown optimizer type");
 | |
|     }
 | |
| }
 | |
| 
 | |
| void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) {
 | |
|     gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0);
 | |
|     gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past);
 | |
|     gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx);
 | |
|     gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter);
 | |
|     gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
 | |
| 
 | |
|     switch (opt->params.type) {
 | |
|         case GGML_OPT_ADAM:
 | |
|             {
 | |
|                 gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
 | |
|                 gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS,            opt->adam.fx_best);
 | |
|                 gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS,        opt->adam.fx_prev);
 | |
|                 gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement);
 | |
| 
 | |
|                 ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS);
 | |
|                 ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
 | |
|                 if (opt->adam.pf) {
 | |
|                     ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
 | |
|                 }
 | |
| 
 | |
|                 gguf_add_tensor(fctx, opt->adam.m);
 | |
|                 gguf_add_tensor(fctx, opt->adam.v);
 | |
|                 if (opt->adam.pf) {
 | |
|                     gguf_add_tensor(fctx, opt->adam.pf);
 | |
|                 }
 | |
|             } break;
 | |
|         case GGML_OPT_LBFGS:
 | |
|             {
 | |
|                 gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
 | |
|                 gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
 | |
|                 gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS,            opt->lbfgs.fx_best);
 | |
|                 gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP,     opt->lbfgs.step);
 | |
|                 gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J,        opt->lbfgs.j);
 | |
|                 gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K,        opt->lbfgs.k);
 | |
|                 gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END,      opt->lbfgs.end);
 | |
|                 gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement);
 | |
| 
 | |
|                 ggml_set_name(opt->lbfgs.x,    LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS);
 | |
|                 ggml_set_name(opt->lbfgs.xp,   LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS);
 | |
|                 ggml_set_name(opt->lbfgs.g,    LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS);
 | |
|                 ggml_set_name(opt->lbfgs.gp,   LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS);
 | |
|                 ggml_set_name(opt->lbfgs.d,    LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION);
 | |
|                 if (opt->lbfgs.pf) {
 | |
|                     ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES);
 | |
|                 }
 | |
|                 ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA);
 | |
|                 ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS);
 | |
|                 ggml_set_name(opt->lbfgs.lms,  LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
 | |
|                 ggml_set_name(opt->lbfgs.lmy,  LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
 | |
| 
 | |
|                 gguf_add_tensor(fctx, opt->lbfgs.x);
 | |
|                 gguf_add_tensor(fctx, opt->lbfgs.xp);
 | |
|                 gguf_add_tensor(fctx, opt->lbfgs.g);
 | |
|                 gguf_add_tensor(fctx, opt->lbfgs.gp);
 | |
|                 gguf_add_tensor(fctx, opt->lbfgs.d);
 | |
|                 if (opt->lbfgs.pf) {
 | |
|                     gguf_add_tensor(fctx, opt->lbfgs.pf);
 | |
|                 }
 | |
|                 gguf_add_tensor(fctx, opt->lbfgs.lmal);
 | |
|                 gguf_add_tensor(fctx, opt->lbfgs.lmys);
 | |
|                 gguf_add_tensor(fctx, opt->lbfgs.lms);
 | |
|                 gguf_add_tensor(fctx, opt->lbfgs.lmy);
 | |
|             } break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
 | |
|     // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
 | |
|     std::string arch;
 | |
| 
 | |
|     std::vector<char> keybuf;
 | |
|     keybuf.resize(512);
 | |
|     auto kv = [&arch, &keybuf](const char * key) -> const char * {
 | |
|         snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
 | |
|         return keybuf.data();
 | |
|     };
 | |
| 
 | |
|     std::vector<char> tn_buf;
 | |
|     tn_buf.resize(GGML_MAX_NAME);
 | |
|     auto tn = [&tn_buf](const char * key) -> const char * {
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
 | |
|         return tn_buf.data();
 | |
|     };
 | |
|     auto tni = [&tn_buf](const char * key, int bid) -> const char * {
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), key, bid);
 | |
|         std::string s = tn_buf.data();
 | |
|         snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
 | |
|         return tn_buf.data();
 | |
|     };
 | |
| 
 | |
|     GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
 | |
|     GGML_ASSERT(arch == "llama");
 | |
| 
 | |
|     uint32_t ftype_u;
 | |
|     GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
 | |
|     GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
 | |
| 
 | |
|     // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_ctx,   gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
 | |
| 
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_embd,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_ff,    gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_head,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
 | |
| 
 | |
|     model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
 | |
|     GGUF_GET_KEY(fctx, model->hparams.n_rot,   gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
 | |
| 
 | |
|     float rope_freq_scale = 1.0f;
 | |
|     GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
 | |
|     GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
 | |
|     GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
 | |
|     if (rope_freq_scale != 1.0f) {
 | |
|         model->hparams.rope_freq_scale = 1.0f / rope_freq_scale;
 | |
|     }
 | |
| 
 | |
|     init_model(model);
 | |
| 
 | |
|     read_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
 | |
|     read_tensor_by_name(model->norm,           f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
 | |
|     read_tensor_by_name(model->output,         f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
 | |
| 
 | |
|     for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
|         read_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
 | |
|         read_tensor_by_name(layer.wq,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
 | |
|         read_tensor_by_name(layer.wk,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
 | |
|         read_tensor_by_name(layer.wv,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
 | |
|         read_tensor_by_name(layer.wo,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
 | |
|         read_tensor_by_name(layer.ffn_norm,       f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
 | |
|         read_tensor_by_name(layer.w1,             f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
 | |
|         read_tensor_by_name(layer.w2,             f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
 | |
|         read_tensor_by_name(layer.w3,             f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
 | |
|     const char * arch = "llama";
 | |
|     enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
 | |
| 
 | |
|     std::vector<char> keybuf;
 | |
|     keybuf.resize(512);
 | |
|     auto kv = [arch, &keybuf](const char * key) -> const char * {
 | |
|         snprintf(keybuf.data(), keybuf.size(), key, arch);
 | |
|         return keybuf.data();
 | |
|     };
 | |
| 
 | |
|     // set arch
 | |
|     gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
 | |
|     gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
 | |
| 
 | |
|     // set hparams
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH),              model->hparams.n_ctx                  );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH),            model->hparams.n_embd                 );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH),         model->hparams.n_ff                   );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT),        model->hparams.n_head                 );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT),                 model->hparams.n_layer                );
 | |
|     gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT),        model->hparams.n_rot                  );
 | |
| 
 | |
|     gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps         );
 | |
|     gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE),              model->hparams.rope_freq_base         ); // TODO load in llama.cpp
 | |
|     gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR),           1.0f / model->hparams.rope_freq_scale );
 | |
| 
 | |
|     // set vocab by copying from vocab_model gguf file
 | |
|     {
 | |
|         struct gguf_init_params params = {
 | |
|             /*.no_alloc = */ false,
 | |
|             /*.ctx      = */ NULL,
 | |
|         };
 | |
|         struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params);
 | |
| 
 | |
|         const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
 | |
|         if (token_idx == -1) {
 | |
|             die("cannot find tokenizer vocab in model file");
 | |
|         }
 | |
|         const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
 | |
| 
 | |
|         const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
 | |
|         if (score_idx == -1) {
 | |
|             die("cannot find tokenizer scores in model file");
 | |
|         }
 | |
| 
 | |
|         const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
 | |
| 
 | |
|         const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
 | |
|         if (toktype_idx == -1) {
 | |
|             die("cannot find token type list in GGUF file");
 | |
|         }
 | |
| 
 | |
|         const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
 | |
| 
 | |
|         std::string tokenizer_name;
 | |
|         GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
 | |
| 
 | |
|         gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str());
 | |
|         gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab);
 | |
|         gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab);
 | |
| 
 | |
|         int32_t special_bos_id = 1;
 | |
|         int32_t special_eos_id = 2;
 | |
|         int32_t special_unk_id = 0;
 | |
|         int32_t special_sep_id = -1;
 | |
|         int32_t special_pad_id = -1;
 | |
|         if (tokenizer_name == "llama") {
 | |
|             // default special tokens
 | |
|             special_bos_id = 1;
 | |
|             special_eos_id = 2;
 | |
|             special_unk_id = 0;
 | |
|             special_sep_id = -1;
 | |
|             special_pad_id = -1;
 | |
|         } else if (tokenizer_name == "gpt2") {
 | |
|             // read and copy bpe merges
 | |
|             const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
 | |
|             if (merges_keyidx == -1) {
 | |
|                 die("cannot find tokenizer merges in model file");
 | |
|             }
 | |
| 
 | |
|             const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
 | |
| 
 | |
|             std::vector<const char*> merges;
 | |
|             merges.resize(n_merges);
 | |
|             for (int i = 0; i < n_merges; i++) {
 | |
|                 merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i);
 | |
|             }
 | |
|             gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges);
 | |
| 
 | |
|             // default special tokens
 | |
|             special_bos_id = 11;
 | |
|             special_eos_id = 11;
 | |
|             special_unk_id = -1;
 | |
|             special_sep_id = -1;
 | |
|             special_pad_id = -1;
 | |
|         } else {
 | |
|             fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
 | |
|             fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__);
 | |
|         }
 | |
| 
 | |
|         std::vector<const char*> tokens;
 | |
|         tokens.resize(n_vocab);
 | |
|         for (uint32_t i = 0; i < n_vocab; i++) {
 | |
|             tokens[i] = gguf_get_arr_str(vctx, token_idx, i);
 | |
|         }
 | |
|         gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab);
 | |
| 
 | |
|         GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
 | |
|         GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
 | |
|         GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
 | |
|         GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
 | |
|         GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
 | |
| 
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id);
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id);
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id);
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id);
 | |
|         gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id);
 | |
| 
 | |
|         gguf_free(vctx);
 | |
|     }
 | |
| 
 | |
|     // add tensors
 | |
|     gguf_add_tensor(fctx, model->tok_embeddings);
 | |
|     gguf_add_tensor(fctx, model->norm);
 | |
|     gguf_add_tensor(fctx, model->output);
 | |
|     for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
 | |
|         auto & layer = model->layers[i];
 | |
| 
 | |
| 
 | |
|         gguf_add_tensor(fctx, layer.attention_norm);
 | |
|         gguf_add_tensor(fctx, layer.wq);
 | |
|         gguf_add_tensor(fctx, layer.wk);
 | |
|         gguf_add_tensor(fctx, layer.wv);
 | |
|         gguf_add_tensor(fctx, layer.wo);
 | |
|         gguf_add_tensor(fctx, layer.ffn_norm);
 | |
|         gguf_add_tensor(fctx, layer.w1);
 | |
|         gguf_add_tensor(fctx, layer.w2);
 | |
|         gguf_add_tensor(fctx, layer.w3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
 | |
|     struct gguf_context * fctx = gguf_init_empty();
 | |
| 
 | |
|     save_llama_model_gguf(fctx, fn_vocab_model, model);
 | |
| 
 | |
|     // write file
 | |
|     const bool only_meta = false;
 | |
|     gguf_write_to_file(fctx, filename, only_meta);
 | |
|     gguf_free(fctx);
 | |
| }
 | |
| 
 | |
| void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct ggml_opt_context * opt) {
 | |
|     load_llama_model_gguf(fctx, f_ggml_ctx, model);
 | |
| 
 | |
|     uint32_t file_version;
 | |
|     GGUF_GET_KEY(fctx, file_version,         gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION);
 | |
|     GGML_ASSERT(file_version == 0);
 | |
| 
 | |
|     GGUF_GET_KEY(fctx, model->train_its,     gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT);
 | |
|     GGUF_GET_KEY(fctx, model->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT);
 | |
|     GGUF_GET_KEY(fctx, model->train_tokens,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT);
 | |
| 
 | |
|     load_opt_context_gguf(fctx, f_ggml_ctx, opt);
 | |
| }
 | |
| 
 | |
| void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) {
 | |
|     save_llama_model_gguf(fctx, fn_vocab_model, model);
 | |
| 
 | |
|     gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION,    0);
 | |
|     gguf_set_val_u32(fctx, LLM_KV_TRAINING_ITERATION_COUNT, model->train_its);
 | |
|     gguf_set_val_u32(fctx, LLM_KV_TRAINING_SAMPLE_COUNT,    model->train_samples);
 | |
|     gguf_set_val_u32(fctx, LLM_KV_TRAINING_TOKEN_COUNT,     model->train_tokens);
 | |
| 
 | |
|     save_opt_context_gguf(fctx, opt);
 | |
| }
 | |
| 
 | |
| bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct ggml_opt_context * opt) {
 | |
|     struct ggml_context * f_ggml_ctx;
 | |
|     struct gguf_init_params params;
 | |
|     params.no_alloc = false;
 | |
|     params.ctx = &f_ggml_ctx;
 | |
|     struct gguf_context * fctx = gguf_init_from_file(filename, params);
 | |
|     if (fctx == NULL) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     load_checkpoint_gguf(fctx, f_ggml_ctx, model, opt);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) {
 | |
|     struct gguf_context * fctx = gguf_init_empty();
 | |
| 
 | |
|     save_checkpoint_gguf(fctx, fn_vocab_model, model, opt);
 | |
| 
 | |
|     // write file
 | |
|     const bool only_meta = false;
 | |
|     gguf_write_to_file(fctx, filename, only_meta);
 | |
|     gguf_free(fctx);
 | |
| }
 | |
| 
 | |
| float cosine_decay(const int decay_steps, const float minimum, int step) {
 | |
|     if (step > decay_steps) {
 | |
|         step = decay_steps;
 | |
|     }
 | |
|     const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps));
 | |
|     const float decay = (1 - minimum)*cosine_decay + minimum;
 | |
|     return decay;
 | |
| }
 | |
| 
 | |
| float cosine_decay_restart(int decay_steps, const float minimum, int step, float restart_step_mult, bool enable_restart) {
 | |
|     if (enable_restart) {
 | |
|         while (step > decay_steps) {
 | |
|             step -= decay_steps;
 | |
|             decay_steps = (int) restart_step_mult * decay_steps;
 | |
|         }
 | |
|     }
 | |
|     return cosine_decay(decay_steps, minimum, step);
 | |
| }
 | |
| 
 | |
| struct train_params {
 | |
|     const char * fn_vocab_model;
 | |
|     const char * fn_train_data;
 | |
|     const char * fn_checkpoint_in;
 | |
|     const char * fn_checkpoint_out;
 | |
|     const char * fn_model_out;
 | |
| 
 | |
|     uint32_t seed;
 | |
| 
 | |
|     int n_ctx;
 | |
|     int n_embd;
 | |
|     int n_head;
 | |
|     int n_layer;
 | |
|     int n_ff;
 | |
| 
 | |
|     int n_threads;
 | |
|     int n_batch;
 | |
|     int n_examples;
 | |
| 
 | |
|     float f_norm_rms_eps;
 | |
|     float rope_freq_base;
 | |
|     float rope_freq_scale;
 | |
| 
 | |
|     int print_info_interval;
 | |
| 
 | |
|     bool samples_start_after_nl;
 | |
|     bool use_adam;
 | |
|     bool use_flash;
 | |
|     bool use_checkpointing;
 | |
|     bool use_alloc;
 | |
| 
 | |
|     // only adam
 | |
|     int   warmup;
 | |
|     int   cos_decay_steps;
 | |
|     float cos_decay_restart;
 | |
|     float cos_decay_min;
 | |
|     bool  enable_restart;
 | |
| 
 | |
|     int   opt_past;
 | |
|     float opt_delta;
 | |
|     int   opt_max_no_improvement;
 | |
| 
 | |
|     int   lbfgs_n_iter;
 | |
|     int   adam_n_iter;
 | |
|     float adam_alpha;
 | |
|     float adam_min_alpha;
 | |
|     float adam_decay;
 | |
|     int   adam_decay_min_ndim;
 | |
|     float adam_beta1;
 | |
|     float adam_beta2;
 | |
|     float adam_gclip;
 | |
|     float adam_eps_f;
 | |
| 
 | |
|     int mem_model_gb;
 | |
|     int mem_compute_gb;
 | |
|     int mem_compute0_gb;
 | |
| };
 | |
| 
 | |
| struct train_params get_default_train_params() {
 | |
|     struct train_params params;
 | |
|     params.fn_vocab_model    = "ggml-vic7b-uncensored-q4_0.bin";
 | |
|     params.fn_train_data     = "shakespeare.txt";
 | |
|     params.fn_checkpoint_in  = "checkpoint.bin";
 | |
|     params.fn_checkpoint_out = "checkpoint.bin";
 | |
|     params.fn_model_out      = "ggml-checkpoint-f32.bin";
 | |
| 
 | |
|     params.seed       =   -1;
 | |
| 
 | |
|     params.n_ctx      =  128;
 | |
|     params.n_embd     =  256;
 | |
|     params.n_head     =    8;
 | |
|     params.n_layer    =   16;
 | |
|     params.n_ff       =  768;
 | |
| 
 | |
|     params.n_threads  =    6;
 | |
|     params.n_batch    =    8;
 | |
|     params.n_examples =    1;
 | |
| 
 | |
|     params.f_norm_rms_eps  = 1e-5;
 | |
|     params.rope_freq_base  = 10000.0f;
 | |
|     params.rope_freq_scale = 1.0f;
 | |
| 
 | |
|     params.print_info_interval    = 1;
 | |
| 
 | |
|     params.samples_start_after_nl = false;
 | |
|     params.use_adam               = true;
 | |
|     params.use_flash              = true;
 | |
|     params.use_checkpointing      = true;
 | |
|     params.use_alloc              = true;
 | |
| 
 | |
|     params.opt_past               = 0;
 | |
|     params.opt_delta              = 1e-5f;
 | |
|     params.opt_max_no_improvement = 0;
 | |
| 
 | |
|     // only adam
 | |
|     params.warmup            =  100;
 | |
|     params.cos_decay_steps   = 1000;
 | |
|     params.cos_decay_restart = 1.1f;
 | |
|     params.cos_decay_min     = 0.1f;
 | |
|     params.enable_restart    = false;
 | |
| 
 | |
|     params.lbfgs_n_iter        = 256;
 | |
|     params.adam_n_iter         = 256;
 | |
|     params.adam_alpha          = 1e-3f;
 | |
|     params.adam_min_alpha      = 0;
 | |
|     params.adam_decay          = 1e-1f;
 | |
|     params.adam_decay_min_ndim = 2;
 | |
|     params.adam_beta1          = 0.9f;
 | |
|     params.adam_beta2          = 0.999f;
 | |
|     params.adam_gclip          = 1.0f;
 | |
|     params.adam_eps_f          = 0.0f;
 | |
| 
 | |
|     params.mem_model_gb   =  2;
 | |
|     params.mem_compute_gb = 24;
 | |
|     params.mem_compute0_gb = 8;
 | |
|     return params;
 | |
| }
 | |
| 
 | |
| void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
 | |
|     fprintf(stderr, "usage: %s [options]\n", argv[0]);
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "options:\n");
 | |
|     fprintf(stderr, "  -h, --help                 show this help message and exit\n");
 | |
|     fprintf(stderr, "  --vocab-model FNAME        model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
 | |
|     fprintf(stderr, "  --train-data FNAME         path from which to load training data (default '%s')\n", params->fn_train_data);
 | |
|     fprintf(stderr, "  --checkpoint-in FNAME      path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in);
 | |
|     fprintf(stderr, "  --checkpoint-out FNAME     path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out);
 | |
|     fprintf(stderr, "  --model-out FNAME          path to save ggml model (default '%s')\n", params->fn_model_out);
 | |
|     fprintf(stderr, "  -s SEED, --seed SEED       RNG seed (default: -1, use random seed for -1)\n");
 | |
|     fprintf(stderr, "  -c N, --ctx N              Context size used during training (default %d)\n", params->n_ctx);
 | |
|     fprintf(stderr, "  --embd N                   Embedding size used for new models (default %d)\n", params->n_embd);
 | |
|     fprintf(stderr, "  --ff N                     Feedforward size used for new models. (default %d)\n", params->n_ff);
 | |
|     fprintf(stderr, "  --head N                   Number of heads for new models (default %d)\n", params->n_head);
 | |
|     fprintf(stderr, "  --layer N                  Number of layers for new models (default %d)\n", params->n_layer);
 | |
|     fprintf(stderr, "  --norm-rms-eps F           RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
 | |
|     fprintf(stderr, "  --rope-freq-base F         Frequency base for ROPE (default %f)\n", params->rope_freq_base);
 | |
|     fprintf(stderr, "  --rope-freq-scale F        Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
 | |
|     fprintf(stderr, "  -t N, --threads N          Number of threads (default %d)\n", params->n_threads);
 | |
|     fprintf(stderr, "  -b N, --batch N            Parallel batch size (default %d)\n", params->n_batch);
 | |
|     fprintf(stderr, "  -n N, --examples N         Number of examples to train (default %d)\n", params->n_examples);
 | |
|     fprintf(stderr, "  --print-info-interval N    Print infos during training each N examples (default %d)\n", params->print_info_interval);
 | |
|     fprintf(stderr, "  --samples-after-nl         Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off");
 | |
|     fprintf(stderr, "  --use-lbfgs                Use LBFGS optimizer instead of default Adam\n");
 | |
|     fprintf(stderr, "  --use-adam                 Use Adam optimizer (default)\n");
 | |
|     fprintf(stderr, "  --no-flash                 Don't use flash attention \n");
 | |
|     fprintf(stderr, "  --use-flash                Use flash attention (default)\n");
 | |
|     fprintf(stderr, "  --no-checkpointing         Don't use gradient checkpointing\n");
 | |
|     fprintf(stderr, "  --use-checkpointing        Use gradient checkpointing (default)\n");
 | |
|     fprintf(stderr, "  --no-alloc                 Don't use allocator\n");
 | |
|     fprintf(stderr, "  --use-alloc                Use allocator (default)\n");
 | |
|     fprintf(stderr, "  --warmup N                 Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup);
 | |
|     fprintf(stderr, "  --cos-decay-steps N        Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps);
 | |
|     fprintf(stderr, "  --cos-decay-restart N      Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart);
 | |
|     fprintf(stderr, "  --cos-decay-min N          Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min);
 | |
|     fprintf(stderr, "  --enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : "");
 | |
|     fprintf(stderr, "  --disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : "");
 | |
|     fprintf(stderr, "  --opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past);
 | |
|     fprintf(stderr, "  --opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta);
 | |
|     fprintf(stderr, "  --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement);
 | |
|     fprintf(stderr, "  --adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
 | |
|     fprintf(stderr, "  --adam-iter N              Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter);
 | |
|     fprintf(stderr, "  --adam-alpha N             Adam learning rate alpha (default %f)\n", params->adam_alpha);
 | |
|     fprintf(stderr, "  --adam-min-alpha N         Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha);
 | |
|     fprintf(stderr, "  --adam-decay N             AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay);
 | |
|     fprintf(stderr, "  --adam-decay-min-ndim N    Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim);
 | |
|     fprintf(stderr, "  --adam-beta1 N             AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1);
 | |
|     fprintf(stderr, "  --adam-beta2 N             AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
 | |
|     fprintf(stderr, "  --adam-gclip N             AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
 | |
|     fprintf(stderr, "  --lbfgs-iter N             Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter);
 | |
|     fprintf(stderr, "  --mem-model N              Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb);
 | |
|     fprintf(stderr, "  --mem-compute N            Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb);
 | |
|     fprintf(stderr, "  --mem-compute0 N           Memory to allocate for automatic memory allocator in gigabytes. (default %d)\n", params->mem_compute0_gb);
 | |
|     fprintf(stderr, "\n");
 | |
| }
 | |
| 
 | |
| bool train_params_parse(int argc, char ** argv, struct train_params * params) {
 | |
|     bool invalid_param = false;
 | |
|     std::string arg;
 | |
|     struct train_params default_params = get_default_train_params();
 | |
|     const std::string arg_prefix = "--";
 | |
| 
 | |
|     for (int i = 1; i < argc; i++) {
 | |
|         arg = argv[i];
 | |
|         if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
 | |
|             std::replace(arg.begin(), arg.end(), '_', '-');
 | |
|         }
 | |
| 
 | |
|         if (arg == "--vocab-model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_vocab_model = argv[i];
 | |
|         } else if (arg == "--train-data") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_train_data = argv[i];
 | |
|         } else if (arg == "--checkpoint-in") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_checkpoint_in = argv[i];
 | |
|         } else if (arg == "--checkpoint-out") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_checkpoint_out = argv[i];
 | |
|         } else if (arg == "--model-out") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->fn_model_out = argv[i];
 | |
|         } else if (arg == "-s" || arg == "--seed") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->seed = std::stoi(argv[i]);
 | |
|         } else if (arg == "-c" || arg == "--ctx") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_ctx = std::stoi(argv[i]);
 | |
|         } else if (arg == "--embd") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_embd = std::stoi(argv[i]);
 | |
|         } else if (arg == "--ff") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_ff = std::stoi(argv[i]);
 | |
|         } else if (arg == "--head") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_head = std::stoi(argv[i]);
 | |
|         } else if (arg == "--layer") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_layer = std::stoi(argv[i]);
 | |
|         } else if (arg == "--norm-rms-eps") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->f_norm_rms_eps = std::stof(argv[i]);
 | |
|         } else if (arg == "--rope-freq-base") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->rope_freq_base = std::stof(argv[i]);
 | |
|         } else if (arg == "--rope-freq-scale") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->rope_freq_scale = std::stof(argv[i]);
 | |
|         } else if (arg == "-t" || arg == "--threads") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_threads = std::stoi(argv[i]);
 | |
|         } else if (arg == "-b" || arg == "--batch") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_batch = std::stoi(argv[i]);
 | |
|         } else if (arg == "-n" || arg == "--examples") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->n_examples = std::stoi(argv[i]);
 | |
|         } else if (arg == "--print-info-interval") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->print_info_interval = std::stoi(argv[i]);
 | |
|         } else if (arg == "--samples-after-nl") {
 | |
|             params->samples_start_after_nl = true;
 | |
|         } else if (arg == "--use-lbfgs") {
 | |
|             params->use_adam = false;
 | |
|         } else if (arg == "--use-adam") {
 | |
|             params->use_adam = true;
 | |
|         } else if (arg == "--no-flash") {
 | |
|             params->use_flash = false;
 | |
|         } else if (arg == "--use-flash") {
 | |
|             params->use_flash = true;
 | |
|         } else if (arg == "--no-checkpointing") {
 | |
|             params->use_checkpointing = false;
 | |
|         } else if (arg == "--use-checkpointing") {
 | |
|             params->use_checkpointing = true;
 | |
|         } else if (arg == "--no-alloc") {
 | |
|             params->use_alloc = false;
 | |
|         } else if (arg == "--use-alloc") {
 | |
|             params->use_alloc = true;
 | |
|         } else if (arg == "--warmup") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->warmup = std::stoi(argv[i]);
 | |
|         } else if (arg == "--cos-decay-steps") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->cos_decay_steps = std::stof(argv[i]);
 | |
|         } else if (arg == "--cos-decay-restart") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->cos_decay_restart = std::stof(argv[i]);
 | |
|         } else if (arg == "--cos-decay-min") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->cos_decay_min = std::stof(argv[i]);
 | |
|         } else if (arg == "--enable-restart") {
 | |
|             params->enable_restart = true;
 | |
|         } else if (arg == "--disable-restart") {
 | |
|             params->enable_restart = false;
 | |
|         } else if (arg == "--opt-past") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->opt_past = std::stoi(argv[i]);
 | |
|         } else if (arg == "--opt-delta") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->opt_delta = std::stof(argv[i]);
 | |
|         } else if (arg == "--opt-max-no-improvement") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->opt_max_no_improvement = std::stoi(argv[i]);
 | |
|         } else if (arg == "--adam-epsf") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->adam_eps_f = std::stof(argv[i]);
 | |
|         } else if (arg == "--adam-iter") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->adam_n_iter = std::stoi(argv[i]);
 | |
|         } else if (arg == "--adam-alpha") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->adam_alpha = std::stof(argv[i]);
 | |
|         } else if (arg == "--adam-min-alpha") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->adam_min_alpha = std::stof(argv[i]);
 | |
|         } else if (arg == "--adam-decay") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->adam_decay = std::stof(argv[i]);
 | |
|         } else if (arg == "--adam-decay-min-ndim") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->adam_decay_min_ndim = std::stoi(argv[i]);
 | |
|         } else if (arg == "--adam-beta1") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->adam_beta1 = std::stof(argv[i]);
 | |
|         } else if (arg == "--adam-beta2") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->adam_beta2 = std::stof(argv[i]);
 | |
|         } else if (arg == "--adam-gclip") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->adam_gclip = std::stof(argv[i]);
 | |
|         } else if (arg == "--lbfgs-iter") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->lbfgs_n_iter = std::stoi(argv[i]);
 | |
|         } else if (arg == "--mem-model") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->mem_model_gb = std::stoi(argv[i]);
 | |
|         } else if (arg == "--mem-compute") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->mem_compute_gb = std::stoi(argv[i]);
 | |
|         } else if (arg == "--mem-compute0") {
 | |
|             if (++i >= argc) {
 | |
|                 invalid_param = true;
 | |
|                 break;
 | |
|             }
 | |
|             params->mem_compute0_gb = std::stoi(argv[i]);
 | |
|         } else if (arg == "-h" || arg == "--help") {
 | |
|             train_print_usage(argc, argv, &default_params);
 | |
|             exit(0);
 | |
|         } else {
 | |
|             fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | |
|             train_print_usage(argc, argv, &default_params);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
|     if (invalid_param) {
 | |
|         fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | |
|         train_print_usage(argc, argv, &default_params);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| struct opt_callback_data {
 | |
|     struct train_params *     params;
 | |
|     struct ggml_opt_context * opt;
 | |
|     struct llama_context *    lctx;
 | |
|     llama_token *             tokens_data;
 | |
|     size_t                    tokens_size;
 | |
|     int *                     samples_data;
 | |
|     size_t                    samples_size;
 | |
|     int                       shuffle_countdown;
 | |
|     struct ggml_tensor *      tokens_input;
 | |
|     struct ggml_tensor *      target_logits;
 | |
|     struct ggml_tensor *      target_probs;
 | |
| };
 | |
| 
 | |
| void opt_callback(void * vdata, float * sched) {
 | |
|     struct opt_callback_data * data = (struct opt_callback_data *) vdata;
 | |
|     struct train_params * params    = data->params;
 | |
|     struct ggml_opt_context * opt   = data->opt;
 | |
|     int n_batch = params->n_batch;
 | |
| 
 | |
|     *sched = (opt->iter < params->warmup)
 | |
|                 ? (float) opt->iter / (float) params->warmup
 | |
|                 : cosine_decay_restart(
 | |
|                     params->cos_decay_steps,
 | |
|                     params->cos_decay_min,
 | |
|                     opt->iter - params->warmup,
 | |
|                     params->cos_decay_restart,
 | |
|                     params->enable_restart);
 | |
|     float min_sched = params->adam_min_alpha / params->adam_alpha;
 | |
|     *sched = min_sched + *sched * (1.0f - min_sched);
 | |
| 
 | |
|     int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f);
 | |
|     printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0);
 | |
| 
 | |
|     if (data->shuffle_countdown < n_batch) {
 | |
|         printf("%s: reshuffle samples\n", __func__);
 | |
|         shuffle_ints(data->samples_data, data->samples_data + data->samples_size);
 | |
|         for (int i = 0; i < (int) data->samples_size; ++i) {
 | |
|             GGML_ASSERT(data->samples_data[i]+params->n_ctx-1 < (int) data->tokens_size);
 | |
|         }
 | |
|         data->shuffle_countdown = data->samples_size;
 | |
|     }
 | |
| 
 | |
|     get_example_targets_batch(
 | |
|         data->lctx,
 | |
|         data->samples_data,
 | |
|         data->samples_size,
 | |
|         data->tokens_data,
 | |
|         data->tokens_size,
 | |
|         opt->iter,
 | |
|         data->tokens_input,
 | |
|         data->target_logits,
 | |
|         data->target_probs);
 | |
| 
 | |
|     data->shuffle_countdown -= n_batch;
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     struct train_params params = get_default_train_params();
 | |
| 
 | |
|     if (!train_params_parse(argc, argv, ¶ms)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (params.seed == LLAMA_DEFAULT_SEED) {
 | |
|         params.seed = time(NULL);
 | |
|     }
 | |
|     printf("%s: seed: %u\n", __func__, params.seed);
 | |
|     srand(params.seed);
 | |
| 
 | |
|     struct llama_context_params llama_params = llama_context_default_params();
 | |
|     llama_params.vocab_only = true;
 | |
| 
 | |
|     struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params);
 | |
|     struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
 | |
| 
 | |
|     printf("%s: tokenize training data\n", __func__);
 | |
|     std::vector<llama_token> train_tokens;
 | |
|     if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) {
 | |
|         fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data);
 | |
|     }
 | |
|     printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size());
 | |
| 
 | |
|     struct my_llama_model model;
 | |
|     model.hparams.n_vocab = llama_n_vocab(lctx);
 | |
|     model.hparams.n_ctx   = params.n_ctx;
 | |
|     model.hparams.n_embd  = params.n_embd;
 | |
|     model.hparams.n_head  = params.n_head;
 | |
|     model.hparams.n_layer = params.n_layer;
 | |
|     model.hparams.n_ff    = params.n_ff;
 | |
|     // llama.cpp requires n_rot to be exactly n_embd / n_head
 | |
|     model.hparams.n_rot   = model.hparams.n_embd / model.hparams.n_head;
 | |
|     model.hparams.f_norm_rms_eps  = params.f_norm_rms_eps;
 | |
|     model.hparams.rope_freq_base  = params.rope_freq_base;
 | |
|     model.hparams.rope_freq_scale = params.rope_freq_scale;
 | |
| 
 | |
|     print_params(&model.hparams);
 | |
| 
 | |
|     std::vector<size_t> token_noccurs;
 | |
|     std::vector<bool>   token_notavail;
 | |
|     token_noccurs.resize(model.hparams.n_vocab, 0);
 | |
|     token_notavail.resize(model.hparams.n_vocab, true);
 | |
|     for (int i = 0; i < (int) train_tokens.size(); ++i) {
 | |
|         ++token_noccurs[train_tokens[i]];
 | |
|         token_notavail[train_tokens[i]] = false;
 | |
|     }
 | |
| 
 | |
|     std::vector<float> token_freq;
 | |
|     token_freq.resize(model.hparams.n_vocab, 0);
 | |
|     int n_unique_tokens = 0;
 | |
|     for (int i = 0; i < (int) token_noccurs.size(); ++i) {
 | |
|         token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size();
 | |
|         n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0;
 | |
|     }
 | |
|     printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens);
 | |
| 
 | |
|     struct ggml_init_params lcparams;
 | |
|     lcparams.mem_size   = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
 | |
|     lcparams.mem_buffer = NULL;
 | |
|     lcparams.no_alloc   = false;
 | |
| 
 | |
|     model.ctx = ggml_init(lcparams);
 | |
| 
 | |
|     int n_tokens = model.hparams.n_ctx;
 | |
|     int n_vocab  = model.hparams.n_vocab;
 | |
|     int n_batch  = params.n_batch;
 | |
| 
 | |
|     struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
 | |
|     memset(opt, 0, sizeof(struct ggml_opt_context));
 | |
| 
 | |
|     struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
 | |
|     struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
 | |
|     opt_params_adam.print_forward_graph  = false;
 | |
|     opt_params_adam.print_backward_graph = false;
 | |
|     opt_params_adam.n_threads            = params.n_threads;
 | |
|     opt_params_adam.past                 = params.opt_past;
 | |
|     opt_params_adam.delta                = params.opt_delta;
 | |
|     opt_params_adam.max_no_improvement   = params.opt_max_no_improvement;
 | |
|     opt_params_adam.adam.n_iter          = params.adam_n_iter;
 | |
|     opt_params_adam.adam.sched           = 1.0f;
 | |
|     opt_params_adam.adam.alpha           = params.adam_alpha;
 | |
|     opt_params_adam.adam.decay           = params.adam_decay;
 | |
|     opt_params_adam.adam.decay_min_ndim  = params.adam_decay_min_ndim;
 | |
|     opt_params_adam.adam.beta1           = params.adam_beta1;
 | |
|     opt_params_adam.adam.beta2           = params.adam_beta2;
 | |
|     opt_params_adam.adam.gclip           = params.adam_gclip;
 | |
|     opt_params_adam.adam.eps_f           = params.adam_eps_f;
 | |
| 
 | |
|     opt_params_lbfgs.print_forward_graph  = false;
 | |
|     opt_params_lbfgs.print_backward_graph = false;
 | |
|     opt_params_lbfgs.n_threads            = params.n_threads;
 | |
|     opt_params_adam.past                  = params.opt_past;
 | |
|     opt_params_adam.delta                 = params.opt_delta;
 | |
|     opt_params_adam.max_no_improvement    = params.opt_max_no_improvement;
 | |
|     opt_params_lbfgs.lbfgs.n_iter         = params.lbfgs_n_iter;
 | |
| 
 | |
|     opt->ctx = model.ctx;
 | |
|     opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs;
 | |
| 
 | |
|     printf("%s: init model\n", __func__);
 | |
|     bool existed = load_checkpoint_file(params.fn_checkpoint_in, &model, opt);
 | |
|     if (!existed) {
 | |
|         init_model(&model);
 | |
|     }
 | |
|     set_param_model(&model);
 | |
| 
 | |
|     opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs;
 | |
| 
 | |
|     opt->iter = model.train_its;
 | |
|     printf("%s: opt iter %d\n", __func__, opt->iter);
 | |
| 
 | |
|     bool from_scratch = !existed;
 | |
|     if (from_scratch) {
 | |
|         randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f);
 | |
|     }
 | |
| 
 | |
|     printf("used_mem model: %zu bytes\n", ggml_used_mem(model.ctx));
 | |
|     // ggml_print_tensor_objects(model.ctx);
 | |
| 
 | |
|     // TODO: use std::vector<uint8_t> intead of "new"
 | |
|     size_t    compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb);
 | |
|     uint8_t * compute_addr = new uint8_t[compute_size];
 | |
| 
 | |
|     size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb);
 | |
|     uint8_t * compute_buf_0 = new uint8_t[size_buf_0];
 | |
| 
 | |
|     ggml_allocr * alloc = NULL;
 | |
|     if (params.use_alloc) {
 | |
|         static const size_t tensor_alignment = 32;
 | |
|         alloc = ggml_allocr_new(compute_buf_0, size_buf_0, tensor_alignment);
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(n_tokens < (int) train_tokens.size());
 | |
|     std::vector<int> train_samples;
 | |
|     train_samples.push_back(0);
 | |
|     for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) {
 | |
|         if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) {
 | |
|             train_samples.push_back(i);
 | |
|         }
 | |
|     }
 | |
|     shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size());
 | |
|     for (int i = 0; i < (int) train_samples.size(); ++i) {
 | |
|         GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size());
 | |
|     }
 | |
| 
 | |
|     printf("%s: begin training\n", __func__);
 | |
| 
 | |
|     struct opt_callback_data opt_cb_data;
 | |
|     opt_cb_data.params = ¶ms;
 | |
|     opt_cb_data.opt = opt;
 | |
|     opt_cb_data.lctx = lctx;
 | |
|     opt_cb_data.tokens_data = train_tokens.data();
 | |
|     opt_cb_data.tokens_size = train_tokens.size();
 | |
|     opt_cb_data.samples_data = train_samples.data();
 | |
|     opt_cb_data.samples_size = train_samples.size();
 | |
|     opt_cb_data.shuffle_countdown = train_samples.size();
 | |
|     opt_cb_data.tokens_input  = NULL;
 | |
|     opt_cb_data.target_logits = NULL;
 | |
|     opt_cb_data.target_probs  = NULL;
 | |
| 
 | |
|     int64_t t0 = ggml_time_ms();
 | |
| 
 | |
|     for (int ex = 0; ex < params.n_examples; ++ex) {
 | |
|         if (ex*n_batch >= (int) train_samples.size()) {
 | |
|             shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size());
 | |
|             for (int i = 0; i < (int) train_samples.size(); ++i) {
 | |
|                 GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size());
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         struct ggml_init_params cparams = {
 | |
|             compute_size, // mem_size
 | |
|             compute_addr, // mem_buffer
 | |
|             false,        // no_alloc
 | |
|         };
 | |
|         struct ggml_context * ctx0 = ggml_init(cparams);
 | |
| 
 | |
|         ggml_set_no_alloc(ctx0, false);
 | |
| 
 | |
|         // don't use alloc for input tensors, so we can safely fill them with data
 | |
|         //struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
 | |
|         //struct ggml_tensor * after_opt_probs        = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab,  n_tokens, n_batch);
 | |
|         struct ggml_tensor * tokens_input           = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
 | |
|         struct ggml_tensor * target_logits          = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab,  n_tokens, n_batch);
 | |
|         struct ggml_tensor * target_probs           = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab,  n_tokens, n_batch);
 | |
| 
 | |
|         ggml_set_no_alloc(ctx0, (alloc != NULL));
 | |
| 
 | |
|         if (alloc) {
 | |
|             ggml_allocr_reset(alloc);
 | |
|         }
 | |
| 
 | |
|         opt_cb_data.tokens_input  = tokens_input;
 | |
|         opt_cb_data.target_logits = target_logits;
 | |
|         opt_cb_data.target_probs  = target_probs;
 | |
| 
 | |
|         int n_past = 0;
 | |
| 
 | |
|         struct ggml_cgraph * gf = ggml_new_graph(ctx0);
 | |
|         struct ggml_cgraph * gb = ggml_new_graph(ctx0);
 | |
|         struct ggml_cgraph * gb_tmp = params.use_checkpointing
 | |
|             ? ggml_new_graph(ctx0)
 | |
|             : NULL;
 | |
| 
 | |
|         GGML_ASSERT(n_past == 0);
 | |
| 
 | |
|         struct ggml_tensor * loss   = NULL;
 | |
|         struct ggml_tensor * logits = NULL;
 | |
| 
 | |
|         loss = llama_build_train_graphs(
 | |
|             &model, alloc, ctx0,
 | |
|             gf, gb, gb_tmp,
 | |
|             &logits, tokens_input, target_probs,
 | |
|             n_tokens, n_batch,
 | |
|             params.use_flash,
 | |
|             params.use_checkpointing
 | |
|         );
 | |
| 
 | |
|         size_t used_mem_before_opt = ggml_used_mem(ctx0);
 | |
| 
 | |
|         opt->params.adam.sched = (opt->iter < params.warmup)
 | |
|             ? (float) opt->iter / (float) params.warmup
 | |
|             : cosine_decay_restart(
 | |
|                 params.cos_decay_steps,
 | |
|                 params.cos_decay_min,
 | |
|                 opt->iter - params.warmup,
 | |
|                 params.cos_decay_restart,
 | |
|                 params.enable_restart);
 | |
| 
 | |
|         float min_sched = params.adam_min_alpha / params.adam_alpha;
 | |
|         opt->params.adam.sched = min_sched + opt->params.adam.sched * (1.0f - min_sched);
 | |
| 
 | |
|         printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched);
 | |
| 
 | |
|         ggml_opt_resume_g(ctx0, opt, loss, gf, gb, &opt_callback, (void *) &opt_cb_data);
 | |
| 
 | |
|         size_t used_mem_after_opt = ggml_used_mem(ctx0);
 | |
| 
 | |
|         int n_iter = params.use_adam ? params.adam_n_iter : params.lbfgs_n_iter;
 | |
|         model.train_its = opt->iter;
 | |
|         model.train_samples += n_batch * n_iter;
 | |
|         model.train_tokens  += n_batch * n_tokens * n_iter;
 | |
| 
 | |
|         if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) {
 | |
|             printf("Example %d, opt iter %d\n", ex, opt->iter);
 | |
|             printf("error_before_opt: %.6f\n", opt->loss_before);
 | |
|             printf("error_after_opt:  %.6f\n", opt->loss_after);
 | |
|             printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt);
 | |
|             printf("used_mem_after_opt:  %zu bytes\n", used_mem_after_opt);
 | |
|         }
 | |
| 
 | |
|         ggml_free(ctx0);
 | |
|     }
 | |
| 
 | |
|     int64_t t1 = ggml_time_ms();
 | |
|     int64_t d  = t1-t0;
 | |
|     double  dd = (double) d * 1e-3;
 | |
|     printf("%s: total training time=%f seconds\n", __func__, dd);
 | |
| 
 | |
|     if (params.n_examples > 0) {
 | |
|         save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt);
 | |
|     }
 | |
| 
 | |
|     if (strlen(params.fn_model_out) > 0) {
 | |
|         save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model);
 | |
|     }
 | |
| 
 | |
|     if (alloc) {
 | |
|         ggml_allocr_free(alloc);
 | |
|     }
 | |
| 
 | |
|     delete[] compute_addr;
 | |
|     delete[] compute_buf_0;
 | |
|     ggml_free(model.ctx);
 | |
|     llama_free(lctx);
 | |
|     llama_free_model(lmodel);
 | |
|     return 0;
 | |
| }
 |