mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* tests : write a Python tokenizer test (wip) * llama : prefix input text for tokenization with whitespace * llama : distinguish pieces from decoded text + fix detokenization * common : add comments * examples : no longer manually add leading space when tokenizing * tests : use Python to generate tokenizer tests for C++ * tests : add option to tokenize text files ggml-ci * tests : add test-tokenizer-1.py * llama.cpp : fix LF token * hellaswag : move the concat space for clarity * tests : add falcon tests (py + cpp, currently do not pass Unicode) ggml-ci * common : temporary separate llama_detokenize calls for SPM and BPE --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
		
			
				
	
	
		
			1605 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1605 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "common.h"
 | 
						|
#include "llama.h"
 | 
						|
#include "build-info.h"
 | 
						|
#include "grammar-parser.h"
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
// crash the server in debug mode, otherwise send an http 500 error
 | 
						|
#define CPPHTTPLIB_NO_EXCEPTIONS 1
 | 
						|
#endif
 | 
						|
 | 
						|
#include "httplib.h"
 | 
						|
#include "json.hpp"
 | 
						|
 | 
						|
// auto generated files (update with ./deps.sh)
 | 
						|
#include "index.html.hpp"
 | 
						|
#include "index.js.hpp"
 | 
						|
#include "completion.js.hpp"
 | 
						|
#include "json-schema-to-grammar.mjs.hpp"
 | 
						|
 | 
						|
#ifndef SERVER_VERBOSE
 | 
						|
#define SERVER_VERBOSE 1
 | 
						|
#endif
 | 
						|
 | 
						|
using namespace httplib;
 | 
						|
using json = nlohmann::json;
 | 
						|
 | 
						|
struct server_params
 | 
						|
{
 | 
						|
    std::string hostname = "127.0.0.1";
 | 
						|
    std::string public_path = "examples/server/public";
 | 
						|
    int32_t port = 8080;
 | 
						|
    int32_t read_timeout = 600;
 | 
						|
    int32_t write_timeout = 600;
 | 
						|
};
 | 
						|
 | 
						|
// completion token output with probabilities
 | 
						|
struct completion_token_output
 | 
						|
{
 | 
						|
    struct token_prob
 | 
						|
    {
 | 
						|
        llama_token tok;
 | 
						|
        float prob;
 | 
						|
    };
 | 
						|
 | 
						|
    std::vector<token_prob> probs;
 | 
						|
    llama_token tok;
 | 
						|
};
 | 
						|
 | 
						|
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
 | 
						|
{
 | 
						|
    size_t i;
 | 
						|
    for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
 | 
						|
    {
 | 
						|
    }
 | 
						|
    return i;
 | 
						|
}
 | 
						|
 | 
						|
enum stop_type
 | 
						|
{
 | 
						|
    STOP_FULL,
 | 
						|
    STOP_PARTIAL,
 | 
						|
};
 | 
						|
 | 
						|
static bool ends_with(const std::string &str, const std::string &suffix)
 | 
						|
{
 | 
						|
    return str.size() >= suffix.size() &&
 | 
						|
           0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
 | 
						|
}
 | 
						|
 | 
						|
static size_t find_partial_stop_string(const std::string &stop,
 | 
						|
                                       const std::string &text)
 | 
						|
{
 | 
						|
    if (!text.empty() && !stop.empty())
 | 
						|
    {
 | 
						|
        const char text_last_char = text.back();
 | 
						|
        for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
 | 
						|
        {
 | 
						|
            if (stop[char_index] == text_last_char)
 | 
						|
            {
 | 
						|
                const std::string current_partial = stop.substr(0, char_index + 1);
 | 
						|
                if (ends_with(text, current_partial))
 | 
						|
                {
 | 
						|
                    return text.size() - char_index - 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return std::string::npos;
 | 
						|
}
 | 
						|
 | 
						|
template <class Iter>
 | 
						|
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
 | 
						|
{
 | 
						|
    std::string ret;
 | 
						|
    for (; begin != end; ++begin)
 | 
						|
    {
 | 
						|
        ret += llama_token_to_piece(ctx, *begin);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void server_log(const char *level, const char *function, int line,
 | 
						|
                       const char *message, const nlohmann::ordered_json &extra)
 | 
						|
{
 | 
						|
    nlohmann::ordered_json log{
 | 
						|
        {"timestamp", time(nullptr)},
 | 
						|
        {"level", level},
 | 
						|
        {"function", function},
 | 
						|
        {"line", line},
 | 
						|
        {"message", message},
 | 
						|
    };
 | 
						|
 | 
						|
    if (!extra.empty())
 | 
						|
    {
 | 
						|
        log.merge_patch(extra);
 | 
						|
    }
 | 
						|
 | 
						|
    const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
 | 
						|
    fprintf(stdout, "%.*s\n", (int)str.size(), str.data());
 | 
						|
    fflush(stdout);
 | 
						|
}
 | 
						|
 | 
						|
// format incomplete utf-8 multibyte character for output
 | 
						|
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
 | 
						|
{
 | 
						|
    std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
 | 
						|
    // if the size is 1 and first bit is 1, meaning it's a partial character
 | 
						|
    //   (size > 1 meaning it's already a known token)
 | 
						|
    if (out.size() == 1 && (out[0] & 0x80) == 0x80)
 | 
						|
    {
 | 
						|
        std::stringstream ss;
 | 
						|
        ss << std::hex << (out[0] & 0xff);
 | 
						|
        std::string res(ss.str());
 | 
						|
        out = "byte: \\x" + res;
 | 
						|
    }
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
// convert a vector of completion_token_output to json
 | 
						|
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> probs)
 | 
						|
{
 | 
						|
    json out = json::array();
 | 
						|
    for (const auto &prob : probs)
 | 
						|
    {
 | 
						|
        json probs_for_token = json::array();
 | 
						|
        for (const auto &p : prob.probs)
 | 
						|
        {
 | 
						|
            std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
 | 
						|
            probs_for_token.push_back(json{
 | 
						|
                {"tok_str", tok_str},
 | 
						|
                {"prob", p.prob},
 | 
						|
            });
 | 
						|
        }
 | 
						|
        std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
 | 
						|
        out.push_back(json{
 | 
						|
            {"content", tok_str},
 | 
						|
            {"probs", probs_for_token},
 | 
						|
        });
 | 
						|
    }
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
static bool server_verbose = false;
 | 
						|
 | 
						|
#if SERVER_VERBOSE != 1
 | 
						|
#define LOG_VERBOSE(MSG, ...)
 | 
						|
#else
 | 
						|
#define LOG_VERBOSE(MSG, ...)                                            \
 | 
						|
    do                                                                   \
 | 
						|
    {                                                                    \
 | 
						|
        if (server_verbose)                                              \
 | 
						|
        {                                                                \
 | 
						|
            server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
 | 
						|
        }                                                                \
 | 
						|
    } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
 | 
						|
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
 | 
						|
#define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
 | 
						|
 | 
						|
struct llama_server_context
 | 
						|
{
 | 
						|
    bool stream = false;
 | 
						|
    bool has_next_token = false;
 | 
						|
    std::string generated_text;
 | 
						|
    std::vector<completion_token_output> generated_token_probs;
 | 
						|
 | 
						|
    size_t num_prompt_tokens = 0;
 | 
						|
    size_t num_tokens_predicted = 0;
 | 
						|
    size_t n_past = 0;
 | 
						|
    size_t n_remain = 0;
 | 
						|
 | 
						|
    json prompt;
 | 
						|
    std::vector<llama_token> embd;
 | 
						|
    std::vector<llama_token> last_n_tokens;
 | 
						|
 | 
						|
    llama_model *model = nullptr;
 | 
						|
    llama_context *ctx = nullptr;
 | 
						|
    gpt_params params;
 | 
						|
 | 
						|
    grammar_parser::parse_state parsed_grammar;
 | 
						|
    llama_grammar *grammar = nullptr;
 | 
						|
 | 
						|
    bool truncated = false;
 | 
						|
    bool stopped_eos = false;
 | 
						|
    bool stopped_word = false;
 | 
						|
    bool stopped_limit = false;
 | 
						|
    std::string stopping_word;
 | 
						|
    int32_t multibyte_pending = 0;
 | 
						|
 | 
						|
    std::mutex mutex;
 | 
						|
 | 
						|
    std::unique_lock<std::mutex> lock()
 | 
						|
    {
 | 
						|
        return std::unique_lock<std::mutex>(mutex);
 | 
						|
    }
 | 
						|
 | 
						|
    ~llama_server_context()
 | 
						|
    {
 | 
						|
        if (ctx)
 | 
						|
        {
 | 
						|
            llama_free(ctx);
 | 
						|
            ctx = nullptr;
 | 
						|
        }
 | 
						|
        if (model)
 | 
						|
        {
 | 
						|
            llama_free_model(model);
 | 
						|
            model = nullptr;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    void rewind()
 | 
						|
    {
 | 
						|
        params.antiprompt.clear();
 | 
						|
        params.grammar.clear();
 | 
						|
        num_prompt_tokens = 0;
 | 
						|
        num_tokens_predicted = 0;
 | 
						|
        generated_text = "";
 | 
						|
        generated_text.reserve(params.n_ctx);
 | 
						|
        generated_token_probs.clear();
 | 
						|
        truncated = false;
 | 
						|
        stopped_eos = false;
 | 
						|
        stopped_word = false;
 | 
						|
        stopped_limit = false;
 | 
						|
        stopping_word = "";
 | 
						|
        multibyte_pending = 0;
 | 
						|
        n_remain = 0;
 | 
						|
        n_past = 0;
 | 
						|
 | 
						|
        if (grammar != nullptr) {
 | 
						|
            llama_grammar_free(grammar);
 | 
						|
            grammar = nullptr;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    bool loadModel(const gpt_params ¶ms_)
 | 
						|
    {
 | 
						|
        params = params_;
 | 
						|
        std::tie(model, ctx) = llama_init_from_gpt_params(params);
 | 
						|
        if (model == nullptr)
 | 
						|
        {
 | 
						|
            LOG_ERROR("unable to load model", {{"model", params_.model}});
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        last_n_tokens.resize(params.n_ctx);
 | 
						|
        std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<llama_token> tokenize(json json_prompt, bool add_bos)
 | 
						|
    {
 | 
						|
        // If `add_bos` is true, we only add BOS, when json_prompt is a string,
 | 
						|
        // or the first element of the json_prompt array is a string.
 | 
						|
        std::vector<llama_token> prompt_tokens;
 | 
						|
 | 
						|
        if (json_prompt.is_array())
 | 
						|
        {
 | 
						|
            bool first = true;
 | 
						|
            for (const auto& p : json_prompt)
 | 
						|
            {
 | 
						|
                if (p.is_string())
 | 
						|
                {
 | 
						|
                    auto s = p.template get<std::string>();
 | 
						|
                    std::vector<llama_token> p;
 | 
						|
                    if (first)
 | 
						|
                    {
 | 
						|
                        p = ::llama_tokenize(ctx, s, add_bos);
 | 
						|
                        first = false;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        p = ::llama_tokenize(ctx, s, false);
 | 
						|
                    }
 | 
						|
                    prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    if (first)
 | 
						|
                    {
 | 
						|
                        first = false;
 | 
						|
                    }
 | 
						|
                    prompt_tokens.push_back(p.template get<llama_token>());
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            auto s = json_prompt.template get<std::string>();
 | 
						|
            prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
 | 
						|
        }
 | 
						|
 | 
						|
        return prompt_tokens;
 | 
						|
    }
 | 
						|
 | 
						|
    bool loadGrammar()
 | 
						|
    {
 | 
						|
        if (!params.grammar.empty()) {
 | 
						|
            parsed_grammar = grammar_parser::parse(params.grammar.c_str());
 | 
						|
            // will be empty (default) if there are parse errors
 | 
						|
            if (parsed_grammar.rules.empty()) {
 | 
						|
                LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            grammar_parser::print_grammar(stderr, parsed_grammar);
 | 
						|
 | 
						|
            {
 | 
						|
                auto it = params.logit_bias.find(llama_token_eos(ctx));
 | 
						|
                if (it != params.logit_bias.end() && it->second == -INFINITY) {
 | 
						|
                    LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
 | 
						|
            grammar = llama_grammar_init(
 | 
						|
                grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
 | 
						|
        }
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    void loadPrompt()
 | 
						|
    {
 | 
						|
        auto prompt_tokens = tokenize(prompt, true);  // always add BOS
 | 
						|
 | 
						|
        num_prompt_tokens = prompt_tokens.size();
 | 
						|
 | 
						|
        if (params.n_keep < 0)
 | 
						|
        {
 | 
						|
            params.n_keep = (int)num_prompt_tokens;
 | 
						|
        }
 | 
						|
        params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
 | 
						|
 | 
						|
        // if input prompt is too big, truncate like normal
 | 
						|
        if (num_prompt_tokens >= (size_t)params.n_ctx)
 | 
						|
        {
 | 
						|
            const int n_left = (params.n_ctx - params.n_keep) / 2;
 | 
						|
            std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
 | 
						|
            const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
 | 
						|
            new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
 | 
						|
            std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
 | 
						|
 | 
						|
            LOG_VERBOSE("input truncated", {
 | 
						|
                                               {"n_ctx", params.n_ctx},
 | 
						|
                                               {"n_keep", params.n_keep},
 | 
						|
                                               {"n_left", n_left},
 | 
						|
                                               {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
 | 
						|
                                           });
 | 
						|
 | 
						|
            truncated = true;
 | 
						|
            prompt_tokens = new_tokens;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            const size_t ps = num_prompt_tokens;
 | 
						|
            std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
 | 
						|
            std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
 | 
						|
        }
 | 
						|
 | 
						|
        // compare the evaluated prompt with the new prompt
 | 
						|
        n_past = common_part(embd, prompt_tokens);
 | 
						|
        embd = prompt_tokens;
 | 
						|
        if (n_past == num_prompt_tokens)
 | 
						|
        {
 | 
						|
            // we have to evaluate at least 1 token to generate logits.
 | 
						|
            n_past--;
 | 
						|
        }
 | 
						|
 | 
						|
        LOG_VERBOSE("prompt ingested", {
 | 
						|
                                           {"n_past", n_past},
 | 
						|
                                           {"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
 | 
						|
                                           {"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
 | 
						|
                                       });
 | 
						|
 | 
						|
        has_next_token = true;
 | 
						|
    }
 | 
						|
 | 
						|
    void beginCompletion()
 | 
						|
    {
 | 
						|
        // number of tokens to keep when resetting context
 | 
						|
        n_remain = params.n_predict;
 | 
						|
        llama_set_rng_seed(ctx, params.seed);
 | 
						|
    }
 | 
						|
 | 
						|
    completion_token_output nextToken()
 | 
						|
    {
 | 
						|
        completion_token_output result;
 | 
						|
        result.tok = -1;
 | 
						|
 | 
						|
        if (embd.size() >= (size_t)params.n_ctx)
 | 
						|
        {
 | 
						|
            // Reset context
 | 
						|
            const int n_left = (params.n_ctx - params.n_keep) / 2;
 | 
						|
 | 
						|
            std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep);
 | 
						|
            new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end());
 | 
						|
            embd = new_tokens;
 | 
						|
            n_past = params.n_keep;
 | 
						|
            truncated = true;
 | 
						|
            LOG_VERBOSE("input truncated", {
 | 
						|
                                               {"n_ctx", params.n_ctx},
 | 
						|
                                               {"n_keep", params.n_keep},
 | 
						|
                                               {"n_left", n_left},
 | 
						|
                                               {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
 | 
						|
                                           });
 | 
						|
        }
 | 
						|
 | 
						|
        while (n_past < embd.size())
 | 
						|
        {
 | 
						|
            int n_eval = (int)embd.size() - n_past;
 | 
						|
            if (n_eval > params.n_batch)
 | 
						|
            {
 | 
						|
                n_eval = params.n_batch;
 | 
						|
            }
 | 
						|
            if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads))
 | 
						|
            {
 | 
						|
                LOG_ERROR("failed to eval", {
 | 
						|
                                                {"n_eval", n_eval},
 | 
						|
                                                {"n_past", n_past},
 | 
						|
                                                {"n_threads", params.n_threads},
 | 
						|
                                                {"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
 | 
						|
                                            });
 | 
						|
                has_next_token = false;
 | 
						|
                return result;
 | 
						|
            }
 | 
						|
            n_past += n_eval;
 | 
						|
        }
 | 
						|
 | 
						|
        if (params.n_predict == 0)
 | 
						|
        {
 | 
						|
            has_next_token = false;
 | 
						|
            result.tok = llama_token_eos(ctx);
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
 | 
						|
        // out of user input, sample next token
 | 
						|
        const float temp = params.temp;
 | 
						|
        const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
 | 
						|
        const float top_p = params.top_p;
 | 
						|
        const float tfs_z = params.tfs_z;
 | 
						|
        const float typical_p = params.typical_p;
 | 
						|
        const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
 | 
						|
        const float repeat_penalty = params.repeat_penalty;
 | 
						|
        const float alpha_presence = params.presence_penalty;
 | 
						|
        const float alpha_frequency = params.frequency_penalty;
 | 
						|
        const int mirostat = params.mirostat;
 | 
						|
        const float mirostat_tau = params.mirostat_tau;
 | 
						|
        const float mirostat_eta = params.mirostat_eta;
 | 
						|
        const bool penalize_nl = params.penalize_nl;
 | 
						|
        const int32_t n_probs = params.n_probs;
 | 
						|
 | 
						|
        {
 | 
						|
            auto *logits = llama_get_logits(ctx);
 | 
						|
            auto n_vocab = llama_n_vocab(ctx);
 | 
						|
 | 
						|
            // Apply params.logit_bias map
 | 
						|
            for (const auto &it : params.logit_bias)
 | 
						|
            {
 | 
						|
                logits[it.first] += it.second;
 | 
						|
            }
 | 
						|
 | 
						|
            std::vector<llama_token_data> candidates;
 | 
						|
            candidates.reserve(n_vocab);
 | 
						|
            for (llama_token token_id = 0; token_id < n_vocab; token_id++)
 | 
						|
            {
 | 
						|
                candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
 | 
						|
            }
 | 
						|
 | 
						|
            llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
 | 
						|
 | 
						|
            // Apply penalties
 | 
						|
            float nl_logit = logits[llama_token_nl(ctx)];
 | 
						|
            auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
 | 
						|
            llama_sample_repetition_penalty(ctx, &candidates_p,
 | 
						|
                                            last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | 
						|
                                            last_n_repeat, repeat_penalty);
 | 
						|
            llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
 | 
						|
                                                          last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
 | 
						|
                                                          last_n_repeat, alpha_frequency, alpha_presence);
 | 
						|
            if (!penalize_nl)
 | 
						|
            {
 | 
						|
                logits[llama_token_nl(ctx)] = nl_logit;
 | 
						|
            }
 | 
						|
 | 
						|
            if (grammar != nullptr) {
 | 
						|
                llama_sample_grammar(ctx, &candidates_p, grammar);
 | 
						|
            }
 | 
						|
 | 
						|
            if (temp <= 0)
 | 
						|
            {
 | 
						|
                // Greedy sampling
 | 
						|
                result.tok = llama_sample_token_greedy(ctx, &candidates_p);
 | 
						|
                if (n_probs > 0)
 | 
						|
                {
 | 
						|
                    llama_sample_softmax(ctx, &candidates_p);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                if (mirostat == 1)
 | 
						|
                {
 | 
						|
                    static float mirostat_mu = 2.0f * mirostat_tau;
 | 
						|
                    const int mirostat_m = 100;
 | 
						|
                    llama_sample_temperature(ctx, &candidates_p, temp);
 | 
						|
                    result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
 | 
						|
                }
 | 
						|
                else if (mirostat == 2)
 | 
						|
                {
 | 
						|
                    static float mirostat_mu = 2.0f * mirostat_tau;
 | 
						|
                    llama_sample_temperature(ctx, &candidates_p, temp);
 | 
						|
                    result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    // Temperature sampling
 | 
						|
                    size_t min_keep = std::max(1, n_probs);
 | 
						|
                    llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
 | 
						|
                    llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
 | 
						|
                    llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
 | 
						|
                    llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
 | 
						|
                    llama_sample_temperature(ctx, &candidates_p, temp);
 | 
						|
                    result.tok = llama_sample_token(ctx, &candidates_p);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (grammar != nullptr) {
 | 
						|
                llama_grammar_accept_token(ctx, grammar, result.tok);
 | 
						|
            }
 | 
						|
 | 
						|
            for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
 | 
						|
            {
 | 
						|
                result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
 | 
						|
            }
 | 
						|
 | 
						|
            last_n_tokens.erase(last_n_tokens.begin());
 | 
						|
            last_n_tokens.push_back(result.tok);
 | 
						|
            num_tokens_predicted++;
 | 
						|
        }
 | 
						|
 | 
						|
        // add it to the context
 | 
						|
        embd.push_back(result.tok);
 | 
						|
        // decrement remaining sampling budget
 | 
						|
        --n_remain;
 | 
						|
 | 
						|
        if (!embd.empty() && embd.back() == llama_token_eos(ctx))
 | 
						|
        {
 | 
						|
            // stopping_word = llama_token_to_piece(ctx, embd.back());
 | 
						|
            has_next_token = false;
 | 
						|
            stopped_eos = true;
 | 
						|
            LOG_VERBOSE("eos token found", {});
 | 
						|
            return result;
 | 
						|
        }
 | 
						|
 | 
						|
        has_next_token = params.n_predict == -1 || n_remain != 0;
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
 | 
						|
                               const stop_type type)
 | 
						|
    {
 | 
						|
        size_t stop_pos = std::string::npos;
 | 
						|
        for (const std::string &word : params.antiprompt)
 | 
						|
        {
 | 
						|
            size_t pos;
 | 
						|
            if (type == STOP_FULL)
 | 
						|
            {
 | 
						|
                const size_t tmp = word.size() + last_token_size;
 | 
						|
                const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
 | 
						|
                pos = text.find(word, from_pos);
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                pos = find_partial_stop_string(word, text);
 | 
						|
            }
 | 
						|
            if (pos != std::string::npos &&
 | 
						|
                (stop_pos == std::string::npos || pos < stop_pos))
 | 
						|
            {
 | 
						|
                if (type == STOP_FULL)
 | 
						|
                {
 | 
						|
                    stopping_word = word;
 | 
						|
                    stopped_word = true;
 | 
						|
                    has_next_token = false;
 | 
						|
                }
 | 
						|
                stop_pos = pos;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return stop_pos;
 | 
						|
    }
 | 
						|
 | 
						|
    completion_token_output doCompletion()
 | 
						|
    {
 | 
						|
        const completion_token_output token_with_probs = nextToken();
 | 
						|
 | 
						|
        const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
 | 
						|
        generated_text += token_text;
 | 
						|
 | 
						|
        if (params.n_probs > 0)
 | 
						|
        {
 | 
						|
            generated_token_probs.push_back(token_with_probs);
 | 
						|
        }
 | 
						|
 | 
						|
        if (multibyte_pending > 0)
 | 
						|
        {
 | 
						|
            multibyte_pending -= token_text.size();
 | 
						|
        }
 | 
						|
        else if (token_text.size() == 1)
 | 
						|
        {
 | 
						|
            const char c = token_text[0];
 | 
						|
            // 2-byte characters: 110xxxxx 10xxxxxx
 | 
						|
            if ((c & 0xE0) == 0xC0)
 | 
						|
            {
 | 
						|
                multibyte_pending = 1;
 | 
						|
                // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
 | 
						|
            }
 | 
						|
            else if ((c & 0xF0) == 0xE0)
 | 
						|
            {
 | 
						|
                multibyte_pending = 2;
 | 
						|
                // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
 | 
						|
            }
 | 
						|
            else if ((c & 0xF8) == 0xF0)
 | 
						|
            {
 | 
						|
                multibyte_pending = 3;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                multibyte_pending = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (multibyte_pending > 0 && !has_next_token)
 | 
						|
        {
 | 
						|
            has_next_token = true;
 | 
						|
            n_remain++;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!has_next_token && n_remain == 0)
 | 
						|
        {
 | 
						|
            stopped_limit = true;
 | 
						|
        }
 | 
						|
 | 
						|
        LOG_VERBOSE("next token", {
 | 
						|
                                      {"token", token_with_probs.tok},
 | 
						|
                                      {"token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok)},
 | 
						|
                                      {"has_next_token", has_next_token},
 | 
						|
                                      {"n_remain", n_remain},
 | 
						|
                                      {"num_tokens_predicted", num_tokens_predicted},
 | 
						|
                                      {"stopped_eos", stopped_eos},
 | 
						|
                                      {"stopped_word", stopped_word},
 | 
						|
                                      {"stopped_limit", stopped_limit},
 | 
						|
                                      {"stopping_word", stopping_word},
 | 
						|
                                  });
 | 
						|
 | 
						|
        return token_with_probs;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<float> getEmbedding()
 | 
						|
    {
 | 
						|
        static const int n_embd = llama_n_embd(ctx);
 | 
						|
        if (!params.embedding)
 | 
						|
        {
 | 
						|
            LOG_WARNING("embedding disabled", {
 | 
						|
                                                  {"params.embedding", params.embedding},
 | 
						|
                                              });
 | 
						|
            return std::vector<float>(n_embd, 0.0f);
 | 
						|
        }
 | 
						|
        const float *data = llama_get_embeddings(ctx);
 | 
						|
        std::vector<float> embedding(data, data + n_embd);
 | 
						|
        return embedding;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
static void server_print_usage(const char *argv0, const gpt_params ¶ms,
 | 
						|
                               const server_params &sparams)
 | 
						|
{
 | 
						|
    fprintf(stdout, "usage: %s [options]\n", argv0);
 | 
						|
    fprintf(stdout, "\n");
 | 
						|
    fprintf(stdout, "options:\n");
 | 
						|
    fprintf(stdout, "  -h, --help            show this help message and exit\n");
 | 
						|
    fprintf(stdout, "  -v, --verbose         verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
 | 
						|
    fprintf(stdout, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
 | 
						|
    fprintf(stdout, "  -c N, --ctx-size N    size of the prompt context (default: %d)\n", params.n_ctx);
 | 
						|
    fprintf(stdout, "  --rope-freq-base N    RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
 | 
						|
    fprintf(stdout, "  --rope-freq-scale N   RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
 | 
						|
    fprintf(stdout, "  -b N, --batch-size N  batch size for prompt processing (default: %d)\n", params.n_batch);
 | 
						|
    fprintf(stdout, "  --memory-f32          use f32 instead of f16 for memory key+value (default: disabled)\n");
 | 
						|
    fprintf(stdout, "                        not recommended: doubles context memory required and no measurable increase in quality\n");
 | 
						|
    if (llama_mlock_supported())
 | 
						|
    {
 | 
						|
        fprintf(stdout, "  --mlock               force system to keep model in RAM rather than swapping or compressing\n");
 | 
						|
    }
 | 
						|
    if (llama_mmap_supported())
 | 
						|
    {
 | 
						|
        fprintf(stdout, "  --no-mmap             do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
 | 
						|
    }
 | 
						|
    fprintf(stdout, "  --numa                attempt optimizations that help on some NUMA systems\n");
 | 
						|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
 | 
						|
    fprintf(stdout, "  -ngl N, --n-gpu-layers N\n");
 | 
						|
    fprintf(stdout, "                        number of layers to store in VRAM\n");
 | 
						|
    fprintf(stdout, "  -ts SPLIT --tensor-split SPLIT\n");
 | 
						|
    fprintf(stdout, "                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
 | 
						|
    fprintf(stdout, "  -mg i, --main-gpu i   the GPU to use for scratch and small tensors\n");
 | 
						|
    fprintf(stdout, "  -lv, --low-vram don't allocate VRAM scratch buffer\n");
 | 
						|
    fprintf(stdout, "  -nommq, --no-mul-mat-q\n");
 | 
						|
    fprintf(stdout, "                        use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
 | 
						|
    fprintf(stdout, "                        Not recommended since this is both slower and uses more VRAM.\n");
 | 
						|
#endif
 | 
						|
    fprintf(stdout, "  -m FNAME, --model FNAME\n");
 | 
						|
    fprintf(stdout, "                        model path (default: %s)\n", params.model.c_str());
 | 
						|
    fprintf(stdout, "  -a ALIAS, --alias ALIAS\n");
 | 
						|
    fprintf(stdout, "                        set an alias for the model, will be added as `model` field in completion response\n");
 | 
						|
    fprintf(stdout, "  --lora FNAME          apply LoRA adapter (implies --no-mmap)\n");
 | 
						|
    fprintf(stdout, "  --lora-base FNAME     optional model to use as a base for the layers modified by the LoRA adapter\n");
 | 
						|
    fprintf(stdout, "  --host                ip address to listen (default  (default: %s)\n", sparams.hostname.c_str());
 | 
						|
    fprintf(stdout, "  --port PORT           port to listen (default  (default: %d)\n", sparams.port);
 | 
						|
    fprintf(stdout, "  --path PUBLIC_PATH    path from which to serve static files (default %s)\n", sparams.public_path.c_str());
 | 
						|
    fprintf(stdout, "  -to N, --timeout N    server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
 | 
						|
    fprintf(stdout, "  --embedding           enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
 | 
						|
    fprintf(stdout, "\n");
 | 
						|
}
 | 
						|
 | 
						|
static void server_params_parse(int argc, char **argv, server_params &sparams,
 | 
						|
                                gpt_params ¶ms)
 | 
						|
{
 | 
						|
    gpt_params default_params;
 | 
						|
    server_params default_sparams;
 | 
						|
    std::string arg;
 | 
						|
    bool invalid_param = false;
 | 
						|
 | 
						|
    for (int i = 1; i < argc; i++)
 | 
						|
    {
 | 
						|
        arg = argv[i];
 | 
						|
        if (arg == "--port")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            sparams.port = std::stoi(argv[i]);
 | 
						|
        }
 | 
						|
        else if (arg == "--host")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            sparams.hostname = argv[i];
 | 
						|
        }
 | 
						|
        else if (arg == "--path")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            sparams.public_path = argv[i];
 | 
						|
        }
 | 
						|
        else if (arg == "--timeout" || arg == "-to")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            sparams.read_timeout = std::stoi(argv[i]);
 | 
						|
            sparams.write_timeout = std::stoi(argv[i]);
 | 
						|
        }
 | 
						|
        else if (arg == "-m" || arg == "--model")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params.model = argv[i];
 | 
						|
        }
 | 
						|
        else if (arg == "-a" || arg == "--alias")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params.model_alias = argv[i];
 | 
						|
        }
 | 
						|
        else if (arg == "-h" || arg == "--help")
 | 
						|
        {
 | 
						|
            server_print_usage(argv[0], default_params, default_sparams);
 | 
						|
            exit(0);
 | 
						|
        }
 | 
						|
        else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params.n_ctx = std::stoi(argv[i]);
 | 
						|
        }
 | 
						|
        else if (arg == "--rope-freq-base")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params.rope_freq_base = std::stof(argv[i]);
 | 
						|
        }
 | 
						|
        else if (arg == "--rope-freq-scale")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params.rope_freq_scale = std::stof(argv[i]);
 | 
						|
        }
 | 
						|
        else if (arg == "--memory-f32" || arg == "--memory_f32")
 | 
						|
        {
 | 
						|
            params.memory_f16 = false;
 | 
						|
        }
 | 
						|
        else if (arg == "--threads" || arg == "-t")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params.n_threads = std::stoi(argv[i]);
 | 
						|
        }
 | 
						|
        else if (arg == "-b" || arg == "--batch-size")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params.n_batch = std::stoi(argv[i]);
 | 
						|
            params.n_batch = std::min(512, params.n_batch);
 | 
						|
        }
 | 
						|
        else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
 | 
						|
            params.n_gpu_layers = std::stoi(argv[i]);
 | 
						|
#else
 | 
						|
            LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
 | 
						|
                        "See main README.md for information on enabling GPU BLAS support",
 | 
						|
                        {{"n_gpu_layers", params.n_gpu_layers}});
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        else if (arg == "--tensor-split" || arg == "-ts")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
#ifdef GGML_USE_CUBLAS
 | 
						|
            std::string arg_next = argv[i];
 | 
						|
 | 
						|
            // split string by , and /
 | 
						|
            const std::regex regex{R"([,/]+)"};
 | 
						|
            std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
 | 
						|
            std::vector<std::string> split_arg{it, {}};
 | 
						|
            GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
 | 
						|
 | 
						|
            for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
 | 
						|
            {
 | 
						|
                if (i_device < split_arg.size())
 | 
						|
                {
 | 
						|
                    params.tensor_split[i_device] = std::stof(split_arg[i_device]);
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    params.tensor_split[i_device] = 0.0f;
 | 
						|
                }
 | 
						|
            }
 | 
						|
#else
 | 
						|
            LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
 | 
						|
#endif // GGML_USE_CUBLAS
 | 
						|
        }
 | 
						|
        else if (arg == "--low-vram" || arg == "-lv")
 | 
						|
        {
 | 
						|
#ifdef GGML_USE_CUBLAS
 | 
						|
            params.low_vram = true;
 | 
						|
#else
 | 
						|
            LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {});
 | 
						|
#endif // GGML_USE_CUBLAS
 | 
						|
        }
 | 
						|
        else if (arg == "--no-mul-mat-q" || arg == "-nommq")
 | 
						|
        {
 | 
						|
#ifdef GGML_USE_CUBLAS
 | 
						|
            params.mul_mat_q = false;
 | 
						|
#else
 | 
						|
            LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
 | 
						|
#endif // GGML_USE_CUBLAS
 | 
						|
        }
 | 
						|
        else if (arg == "--main-gpu" || arg == "-mg")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
#ifdef GGML_USE_CUBLAS
 | 
						|
            params.main_gpu = std::stoi(argv[i]);
 | 
						|
#else
 | 
						|
            LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        else if (arg == "--lora")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params.lora_adapter = argv[i];
 | 
						|
            params.use_mmap = false;
 | 
						|
        }
 | 
						|
        else if (arg == "--lora-base")
 | 
						|
        {
 | 
						|
            if (++i >= argc)
 | 
						|
            {
 | 
						|
                invalid_param = true;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            params.lora_base = argv[i];
 | 
						|
        }
 | 
						|
        else if (arg == "-v" || arg == "--verbose")
 | 
						|
        {
 | 
						|
#if SERVER_VERBOSE != 1
 | 
						|
            LOG_WARNING("server.cpp is not built with verbose logging.", {});
 | 
						|
#else
 | 
						|
            server_verbose = true;
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        else if (arg == "--mlock")
 | 
						|
        {
 | 
						|
            params.use_mlock = true;
 | 
						|
        }
 | 
						|
        else if (arg == "--no-mmap")
 | 
						|
        {
 | 
						|
            params.use_mmap = false;
 | 
						|
        }
 | 
						|
        else if (arg == "--numa")
 | 
						|
        {
 | 
						|
            params.numa = true;
 | 
						|
        }
 | 
						|
        else if (arg == "--embedding")
 | 
						|
        {
 | 
						|
            params.embedding = true;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
 | 
						|
            server_print_usage(argv[0], default_params, default_sparams);
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (invalid_param)
 | 
						|
    {
 | 
						|
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
 | 
						|
        server_print_usage(argv[0], default_params, default_sparams);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static json format_generation_settings(llama_server_context &llama)
 | 
						|
{
 | 
						|
    const auto eos_bias = llama.params.logit_bias.find(llama_token_eos(llama.ctx));
 | 
						|
    const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
 | 
						|
                            eos_bias->second < 0.0f && std::isinf(eos_bias->second);
 | 
						|
 | 
						|
    return json{
 | 
						|
        {"n_ctx", llama.params.n_ctx},
 | 
						|
        {"model", llama.params.model_alias},
 | 
						|
        {"seed", llama.params.seed},
 | 
						|
        {"temp", llama.params.temp},
 | 
						|
        {"top_k", llama.params.top_k},
 | 
						|
        {"top_p", llama.params.top_p},
 | 
						|
        {"tfs_z", llama.params.tfs_z},
 | 
						|
        {"typical_p", llama.params.typical_p},
 | 
						|
        {"repeat_last_n", llama.params.repeat_last_n},
 | 
						|
        {"repeat_penalty", llama.params.repeat_penalty},
 | 
						|
        {"presence_penalty", llama.params.presence_penalty},
 | 
						|
        {"frequency_penalty", llama.params.frequency_penalty},
 | 
						|
        {"mirostat", llama.params.mirostat},
 | 
						|
        {"mirostat_tau", llama.params.mirostat_tau},
 | 
						|
        {"mirostat_eta", llama.params.mirostat_eta},
 | 
						|
        {"penalize_nl", llama.params.penalize_nl},
 | 
						|
        {"stop", llama.params.antiprompt},
 | 
						|
        {"n_predict", llama.params.n_predict},
 | 
						|
        {"n_keep", llama.params.n_keep},
 | 
						|
        {"ignore_eos", ignore_eos},
 | 
						|
        {"stream", llama.stream},
 | 
						|
        {"logit_bias", llama.params.logit_bias},
 | 
						|
        {"n_probs", llama.params.n_probs},
 | 
						|
        {"grammar", llama.params.grammar},
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
static json format_embedding_response(llama_server_context &llama)
 | 
						|
{
 | 
						|
    return json{
 | 
						|
        {"embedding", llama.getEmbedding()},
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
static json format_timings(llama_server_context &llama)
 | 
						|
{
 | 
						|
    const auto timings = llama_get_timings(llama.ctx);
 | 
						|
 | 
						|
    assert(timings.n_eval == llama.num_tokens_predicted);
 | 
						|
 | 
						|
    return json{
 | 
						|
        {"prompt_n", timings.n_p_eval},
 | 
						|
        {"prompt_ms", timings.t_p_eval_ms},
 | 
						|
        {"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
 | 
						|
        {"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
 | 
						|
 | 
						|
        {"predicted_n", timings.n_eval},
 | 
						|
        {"predicted_ms", timings.t_eval_ms},
 | 
						|
        {"predicted_per_token_ms", timings.t_eval_ms / timings.n_eval},
 | 
						|
        {"predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval},
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
static json format_final_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
 | 
						|
{
 | 
						|
 | 
						|
    json res = json{
 | 
						|
        {"content", content},
 | 
						|
        {"stop", true},
 | 
						|
        {"model", llama.params.model_alias},
 | 
						|
        {"tokens_predicted", llama.num_tokens_predicted},
 | 
						|
        {"tokens_evaluated", llama.num_prompt_tokens},
 | 
						|
        {"generation_settings", format_generation_settings(llama)},
 | 
						|
        {"prompt", llama.prompt},
 | 
						|
        {"truncated", llama.truncated},
 | 
						|
        {"stopped_eos", llama.stopped_eos},
 | 
						|
        {"stopped_word", llama.stopped_word},
 | 
						|
        {"stopped_limit", llama.stopped_limit},
 | 
						|
        {"stopping_word", llama.stopping_word},
 | 
						|
        {"tokens_cached", llama.n_past},
 | 
						|
        {"timings", format_timings(llama)},
 | 
						|
    };
 | 
						|
 | 
						|
    if (llama.params.n_probs > 0)
 | 
						|
    {
 | 
						|
        res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static json format_partial_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
 | 
						|
{
 | 
						|
    json res = json{
 | 
						|
        {"content", content},
 | 
						|
        {"stop", false},
 | 
						|
    };
 | 
						|
 | 
						|
    if (llama.params.n_probs > 0)
 | 
						|
    {
 | 
						|
        res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
 | 
						|
{
 | 
						|
    return json{
 | 
						|
        {"tokens", tokens}};
 | 
						|
}
 | 
						|
 | 
						|
static json format_detokenized_response(std::string content)
 | 
						|
{
 | 
						|
    return json{
 | 
						|
        {"content", content}};
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static T json_value(const json &body, const std::string &key, const T &default_value)
 | 
						|
{
 | 
						|
    // Fallback null to default value
 | 
						|
    return body.contains(key) && !body.at(key).is_null()
 | 
						|
        ? body.value(key, default_value)
 | 
						|
        : default_value;
 | 
						|
}
 | 
						|
 | 
						|
static void parse_options_completion(const json &body, llama_server_context &llama)
 | 
						|
{
 | 
						|
    gpt_params default_params;
 | 
						|
 | 
						|
    llama.stream = json_value(body, "stream", false);
 | 
						|
    llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict);
 | 
						|
    llama.params.top_k = json_value(body, "top_k", default_params.top_k);
 | 
						|
    llama.params.top_p = json_value(body, "top_p", default_params.top_p);
 | 
						|
    llama.params.tfs_z = json_value(body, "tfs_z", default_params.tfs_z);
 | 
						|
    llama.params.typical_p = json_value(body, "typical_p", default_params.typical_p);
 | 
						|
    llama.params.repeat_last_n = json_value(body, "repeat_last_n", default_params.repeat_last_n);
 | 
						|
    llama.params.temp = json_value(body, "temperature", default_params.temp);
 | 
						|
    llama.params.repeat_penalty = json_value(body, "repeat_penalty", default_params.repeat_penalty);
 | 
						|
    llama.params.presence_penalty = json_value(body, "presence_penalty", default_params.presence_penalty);
 | 
						|
    llama.params.frequency_penalty = json_value(body, "frequency_penalty", default_params.frequency_penalty);
 | 
						|
    llama.params.mirostat = json_value(body, "mirostat", default_params.mirostat);
 | 
						|
    llama.params.mirostat_tau = json_value(body, "mirostat_tau", default_params.mirostat_tau);
 | 
						|
    llama.params.mirostat_eta = json_value(body, "mirostat_eta", default_params.mirostat_eta);
 | 
						|
    llama.params.penalize_nl = json_value(body, "penalize_nl", default_params.penalize_nl);
 | 
						|
    llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep);
 | 
						|
    llama.params.seed = json_value(body, "seed", default_params.seed);
 | 
						|
    llama.params.grammar = json_value(body, "grammar", default_params.grammar);
 | 
						|
    llama.params.n_probs = json_value(body, "n_probs", default_params.n_probs);
 | 
						|
 | 
						|
    if (body.count("prompt") != 0)
 | 
						|
    {
 | 
						|
        llama.prompt = body["prompt"];
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        llama.prompt = "";
 | 
						|
    }
 | 
						|
 | 
						|
    llama.params.logit_bias.clear();
 | 
						|
    if (json_value(body, "ignore_eos", false))
 | 
						|
    {
 | 
						|
        llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
 | 
						|
    }
 | 
						|
 | 
						|
    const auto &logit_bias = body.find("logit_bias");
 | 
						|
    if (logit_bias != body.end() && logit_bias->is_array())
 | 
						|
    {
 | 
						|
        const int n_vocab = llama_n_vocab(llama.ctx);
 | 
						|
        for (const auto &el : *logit_bias)
 | 
						|
        {
 | 
						|
            if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
 | 
						|
            {
 | 
						|
                llama_token tok = el[0].get<llama_token>();
 | 
						|
                if (tok >= 0 && tok < n_vocab)
 | 
						|
                {
 | 
						|
                    if (el[1].is_number())
 | 
						|
                    {
 | 
						|
                        llama.params.logit_bias[tok] = el[1].get<float>();
 | 
						|
                    }
 | 
						|
                    else if (el[1].is_boolean() && !el[1].get<bool>())
 | 
						|
                    {
 | 
						|
                        llama.params.logit_bias[tok] = -INFINITY;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    llama.params.antiprompt.clear();
 | 
						|
    const auto &stop = body.find("stop");
 | 
						|
    if (stop != body.end() && stop->is_array())
 | 
						|
    {
 | 
						|
        for (const auto &word : *stop)
 | 
						|
        {
 | 
						|
            if (!word.empty())
 | 
						|
            {
 | 
						|
                llama.params.antiprompt.push_back(word);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
 | 
						|
}
 | 
						|
 | 
						|
static void log_server_request(const Request &req, const Response &res)
 | 
						|
{
 | 
						|
    LOG_INFO("request", {
 | 
						|
                            {"remote_addr", req.remote_addr},
 | 
						|
                            {"remote_port", req.remote_port},
 | 
						|
                            {"status", res.status},
 | 
						|
                            {"method", req.method},
 | 
						|
                            {"path", req.path},
 | 
						|
                            {"params", req.params},
 | 
						|
                        });
 | 
						|
 | 
						|
    LOG_VERBOSE("request", {
 | 
						|
                               {"request", req.body},
 | 
						|
                               {"response", res.body},
 | 
						|
                           });
 | 
						|
}
 | 
						|
 | 
						|
bool is_at_eob(llama_server_context & server_context, const llama_token * tokens, const size_t n_tokens) {
 | 
						|
    return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx);
 | 
						|
}
 | 
						|
 | 
						|
// Function matching type llama_beam_search_callback_fn_t.
 | 
						|
// Custom callback example is called each time the beams lengths increase:
 | 
						|
//  * Show progress by printing ',' following by number of convergent beam tokens if any.
 | 
						|
//  * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
 | 
						|
//    This is also called when the stop condition is met.
 | 
						|
//    Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
 | 
						|
void beam_search_callback(void * callback_data, llama_beams_state beams_state) {
 | 
						|
    auto & llama = *static_cast<llama_server_context*>(callback_data);
 | 
						|
    // Mark beams as EOS as needed.
 | 
						|
    for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
 | 
						|
        llama_beam_view& beam_view = beams_state.beam_views[i];
 | 
						|
        if (!beam_view.eob && is_at_eob(llama, beam_view.tokens, beam_view.n_tokens)) {
 | 
						|
            beam_view.eob = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    printf(",");  // Show progress
 | 
						|
    if (const size_t n = beams_state.common_prefix_length) {
 | 
						|
        llama.generated_token_probs.resize(llama.generated_token_probs.size() + n);
 | 
						|
        assert(0u < beams_state.n_beams);
 | 
						|
        const llama_token * tokens = beams_state.beam_views[0].tokens;
 | 
						|
        const auto map = [](llama_token tok) { return completion_token_output{{},tok}; };
 | 
						|
        std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
 | 
						|
        printf("%lu", n);
 | 
						|
    }
 | 
						|
    fflush(stdout);
 | 
						|
#if 0 // DEBUG: print current beams for this iteration
 | 
						|
    std::cout << "\n\nCurrent beams:\n";
 | 
						|
    for (size_t i=0 ; i < beams_state.n_beams ; ++i) {
 | 
						|
        std::cout << "beams["<<i<<"]: " << ostream_beam_view{state.ctx,beams_state.beam_views[i]} << std::endl;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
struct token_translator {
 | 
						|
    llama_context * ctx;
 | 
						|
    std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
 | 
						|
    std::string operator()(completion_token_output cto) const { return (*this)(cto.tok); }
 | 
						|
};
 | 
						|
 | 
						|
void append_to_generated_text_from_generated_token_probs(llama_server_context & llama) {
 | 
						|
    auto & gtps = llama.generated_token_probs;
 | 
						|
    auto translator = token_translator{llama.ctx};
 | 
						|
    auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
 | 
						|
    const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
 | 
						|
    if (llama.generated_text.capacity() < llama.generated_text.size() + len) {
 | 
						|
        llama.generated_text.reserve(llama.generated_text.size() + len);
 | 
						|
    }
 | 
						|
    for (const completion_token_output & cto : gtps) {
 | 
						|
        llama.generated_text += translator(cto);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char **argv)
 | 
						|
{
 | 
						|
    // own arguments required by this example
 | 
						|
    gpt_params params;
 | 
						|
    server_params sparams;
 | 
						|
 | 
						|
    // struct that contains llama context and inference
 | 
						|
    llama_server_context llama;
 | 
						|
 | 
						|
    server_params_parse(argc, argv, sparams, params);
 | 
						|
 | 
						|
    if (params.model_alias == "unknown")
 | 
						|
    {
 | 
						|
        params.model_alias = params.model;
 | 
						|
    }
 | 
						|
 | 
						|
    llama_backend_init(params.numa);
 | 
						|
 | 
						|
    LOG_INFO("build info", {{"build", BUILD_NUMBER},
 | 
						|
                            {"commit", BUILD_COMMIT}});
 | 
						|
    LOG_INFO("system info", {
 | 
						|
                                {"n_threads", params.n_threads},
 | 
						|
                                {"total_threads", std::thread::hardware_concurrency()},
 | 
						|
                                {"system_info", llama_print_system_info()},
 | 
						|
                            });
 | 
						|
 | 
						|
    // load the model
 | 
						|
    if (!llama.loadModel(params))
 | 
						|
    {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    Server svr;
 | 
						|
 | 
						|
    svr.set_default_headers({{"Server", "llama.cpp"},
 | 
						|
                             {"Access-Control-Allow-Origin", "*"},
 | 
						|
                             {"Access-Control-Allow-Headers", "content-type"}});
 | 
						|
 | 
						|
    // this is only called if no index.html is found in the public --path
 | 
						|
    svr.Get("/", [](const Request &, Response &res)
 | 
						|
            {
 | 
						|
        res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
 | 
						|
        return false; });
 | 
						|
 | 
						|
    // this is only called if no index.js is found in the public --path
 | 
						|
    svr.Get("/index.js", [](const Request &, Response &res)
 | 
						|
            {
 | 
						|
        res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
 | 
						|
        return false; });
 | 
						|
 | 
						|
    // this is only called if no index.html is found in the public --path
 | 
						|
    svr.Get("/completion.js", [](const Request &, Response &res)
 | 
						|
            {
 | 
						|
        res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
 | 
						|
        return false; });
 | 
						|
 | 
						|
    // this is only called if no index.html is found in the public --path
 | 
						|
    svr.Get("/json-schema-to-grammar.mjs", [](const Request &, Response &res)
 | 
						|
            {
 | 
						|
        res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
 | 
						|
        return false; });
 | 
						|
 | 
						|
    svr.Post("/completion", [&llama](const Request &req, Response &res)
 | 
						|
             {
 | 
						|
        auto lock = llama.lock();
 | 
						|
 | 
						|
        llama.rewind();
 | 
						|
 | 
						|
        llama_reset_timings(llama.ctx);
 | 
						|
 | 
						|
        parse_options_completion(json::parse(req.body), llama);
 | 
						|
 | 
						|
        if (!llama.loadGrammar())
 | 
						|
        {
 | 
						|
            res.status = 400;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        llama.loadPrompt();
 | 
						|
        llama.beginCompletion();
 | 
						|
 | 
						|
        if (!llama.stream) {
 | 
						|
            if (llama.params.n_beams) {
 | 
						|
                // Fill llama.generated_token_probs vector with final beam.
 | 
						|
                llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams,
 | 
						|
                                  llama.n_past, llama.n_remain, llama.params.n_threads);
 | 
						|
                // Translate llama.generated_token_probs to llama.generated_text.
 | 
						|
                append_to_generated_text_from_generated_token_probs(llama);
 | 
						|
            } else {
 | 
						|
                size_t stop_pos = std::string::npos;
 | 
						|
 | 
						|
                while (llama.has_next_token) {
 | 
						|
                    const completion_token_output token_with_probs = llama.doCompletion();
 | 
						|
                    const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(llama.ctx, token_with_probs.tok);
 | 
						|
 | 
						|
                    stop_pos = llama.findStoppingStrings(llama.generated_text,
 | 
						|
                        token_text.size(), STOP_FULL);
 | 
						|
                }
 | 
						|
 | 
						|
                if (stop_pos == std::string::npos) {
 | 
						|
                    stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
 | 
						|
                }
 | 
						|
                if (stop_pos != std::string::npos) {
 | 
						|
                    llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
 | 
						|
                        llama.generated_text.end());
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
 | 
						|
 | 
						|
            llama_print_timings(llama.ctx);
 | 
						|
 | 
						|
            res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
 | 
						|
                            "application/json");
 | 
						|
        } else {
 | 
						|
            const auto chunked_content_provider = [&](size_t, DataSink & sink) {
 | 
						|
                size_t sent_count = 0;
 | 
						|
                size_t sent_token_probs_index = 0;
 | 
						|
 | 
						|
                while (llama.has_next_token) {
 | 
						|
                    const completion_token_output token_with_probs = llama.doCompletion();
 | 
						|
                    if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                    const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
 | 
						|
 | 
						|
                    size_t pos = std::min(sent_count, llama.generated_text.size());
 | 
						|
 | 
						|
                    const std::string str_test = llama.generated_text.substr(pos);
 | 
						|
                    bool is_stop_full = false;
 | 
						|
                    size_t stop_pos =
 | 
						|
                        llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
 | 
						|
                    if (stop_pos != std::string::npos) {
 | 
						|
                        is_stop_full = true;
 | 
						|
                        llama.generated_text.erase(
 | 
						|
                            llama.generated_text.begin() + pos + stop_pos,
 | 
						|
                            llama.generated_text.end());
 | 
						|
                        pos = std::min(sent_count, llama.generated_text.size());
 | 
						|
                    } else {
 | 
						|
                        is_stop_full = false;
 | 
						|
                        stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
 | 
						|
                            STOP_PARTIAL);
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (
 | 
						|
                        stop_pos == std::string::npos ||
 | 
						|
                        // Send rest of the text if we are at the end of the generation
 | 
						|
                        (!llama.has_next_token && !is_stop_full && stop_pos > 0)
 | 
						|
                    ) {
 | 
						|
                        const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
 | 
						|
 | 
						|
                        sent_count += to_send.size();
 | 
						|
 | 
						|
                        std::vector<completion_token_output> probs_output = {};
 | 
						|
 | 
						|
                        if (llama.params.n_probs > 0) {
 | 
						|
                            const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
 | 
						|
                            size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
 | 
						|
                            size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
 | 
						|
                            if (probs_pos < probs_stop_pos) {
 | 
						|
                                probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
 | 
						|
                            }
 | 
						|
                            sent_token_probs_index = probs_stop_pos;
 | 
						|
                        }
 | 
						|
 | 
						|
                        const json data = format_partial_response(llama, to_send, probs_output);
 | 
						|
 | 
						|
                        const std::string str =
 | 
						|
                            "data: " +
 | 
						|
                            data.dump(-1, ' ', false, json::error_handler_t::replace) +
 | 
						|
                            "\n\n";
 | 
						|
 | 
						|
                        LOG_VERBOSE("data stream", {
 | 
						|
                            { "to_send", str }
 | 
						|
                        });
 | 
						|
 | 
						|
                        if (!sink.write(str.data(), str.size())) {
 | 
						|
                            LOG_VERBOSE("stream closed", {});
 | 
						|
                            llama_print_timings(llama.ctx);
 | 
						|
                            return false;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (!llama.has_next_token) {
 | 
						|
                        // Generation is done, send extra information.
 | 
						|
                        const json data = format_final_response(llama, "", llama.generated_token_probs);
 | 
						|
 | 
						|
                        const std::string str =
 | 
						|
                            "data: " +
 | 
						|
                            data.dump(-1, ' ', false, json::error_handler_t::replace) +
 | 
						|
                            "\n\n";
 | 
						|
 | 
						|
                        LOG_VERBOSE("data stream", {
 | 
						|
                            { "to_send", str }
 | 
						|
                        });
 | 
						|
 | 
						|
                        if (!sink.write(str.data(), str.size())) {
 | 
						|
                            LOG_VERBOSE("stream closed", {});
 | 
						|
                            llama_print_timings(llama.ctx);
 | 
						|
                            return false;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                llama_print_timings(llama.ctx);
 | 
						|
                sink.done();
 | 
						|
                return true;
 | 
						|
            };
 | 
						|
            const auto on_complete = [&](bool) {
 | 
						|
                llama.mutex.unlock();
 | 
						|
            };
 | 
						|
            lock.release();
 | 
						|
            res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
 | 
						|
        } });
 | 
						|
 | 
						|
    svr.Get("/model.json", [&llama](const Request &, Response &res)
 | 
						|
            {
 | 
						|
        const json data = format_generation_settings(llama);
 | 
						|
        return res.set_content(data.dump(), "application/json"); });
 | 
						|
 | 
						|
    svr.Options(R"(/.*)", [](const Request &, Response &res)
 | 
						|
                { return res.set_content("", "application/json"); });
 | 
						|
 | 
						|
    svr.Post("/tokenize", [&llama](const Request &req, Response &res)
 | 
						|
             {
 | 
						|
        auto lock = llama.lock();
 | 
						|
 | 
						|
        const json body = json::parse(req.body);
 | 
						|
        std::vector<llama_token> tokens;
 | 
						|
        if (body.count("content") != 0)
 | 
						|
        {
 | 
						|
            tokens = llama.tokenize(body["content"], false);
 | 
						|
        }
 | 
						|
        const json data = format_tokenizer_response(tokens);
 | 
						|
        return res.set_content(data.dump(), "application/json"); });
 | 
						|
 | 
						|
    svr.Post("/detokenize", [&llama](const Request &req, Response &res)
 | 
						|
             {
 | 
						|
        auto lock = llama.lock();
 | 
						|
 | 
						|
        const json body = json::parse(req.body);
 | 
						|
        std::string content;
 | 
						|
        if (body.count("tokens") != 0)
 | 
						|
        {
 | 
						|
            const std::vector<llama_token> tokens = body["tokens"];
 | 
						|
            content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
 | 
						|
        }
 | 
						|
 | 
						|
        const json data = format_detokenized_response(content);
 | 
						|
        return res.set_content(data.dump(), "application/json"); });
 | 
						|
 | 
						|
    svr.Post("/embedding", [&llama](const Request &req, Response &res)
 | 
						|
             {
 | 
						|
        auto lock = llama.lock();
 | 
						|
 | 
						|
        const json body = json::parse(req.body);
 | 
						|
 | 
						|
        llama.rewind();
 | 
						|
        llama_reset_timings(llama.ctx);
 | 
						|
        if (body.count("content") != 0)
 | 
						|
        {
 | 
						|
            llama.prompt = body["content"];
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            llama.prompt = "";
 | 
						|
        }
 | 
						|
        llama.params.n_predict = 0;
 | 
						|
        llama.loadPrompt();
 | 
						|
        llama.beginCompletion();
 | 
						|
        llama.doCompletion();
 | 
						|
 | 
						|
        const json data = format_embedding_response(llama);
 | 
						|
        return res.set_content(data.dump(), "application/json"); });
 | 
						|
 | 
						|
    svr.set_logger(log_server_request);
 | 
						|
 | 
						|
    svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep)
 | 
						|
                              {
 | 
						|
        const auto * fmt = "500 Internal Server Error\n%s";
 | 
						|
        char buf[BUFSIZ];
 | 
						|
        try {
 | 
						|
            std::rethrow_exception(std::move(ep));
 | 
						|
        } catch (std::exception & e) {
 | 
						|
            snprintf(buf, sizeof(buf), fmt, e.what());
 | 
						|
        } catch (...) {
 | 
						|
            snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
 | 
						|
        }
 | 
						|
        res.set_content(buf, "text/plain");
 | 
						|
        res.status = 500; });
 | 
						|
 | 
						|
    svr.set_error_handler([](const Request &, Response &res)
 | 
						|
                          {
 | 
						|
        if (res.status == 400) {
 | 
						|
            res.set_content("Invalid request", "text/plain");
 | 
						|
        } else if (res.status != 500) {
 | 
						|
            res.set_content("File Not Found", "text/plain");
 | 
						|
            res.status = 404;
 | 
						|
        } });
 | 
						|
 | 
						|
    // set timeouts and change hostname and port
 | 
						|
    svr.set_read_timeout(sparams.read_timeout);
 | 
						|
    svr.set_write_timeout(sparams.write_timeout);
 | 
						|
 | 
						|
    if (!svr.bind_to_port(sparams.hostname, sparams.port))
 | 
						|
    {
 | 
						|
        fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Set the base directory for serving static files
 | 
						|
    svr.set_base_dir(sparams.public_path);
 | 
						|
 | 
						|
    // to make it ctrl+clickable:
 | 
						|
    fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
 | 
						|
 | 
						|
    LOG_INFO("HTTP server listening", {
 | 
						|
                                          {"hostname", sparams.hostname},
 | 
						|
                                          {"port", sparams.port},
 | 
						|
                                      });
 | 
						|
 | 
						|
    if (!svr.listen_after_bind())
 | 
						|
    {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (llama.grammar != nullptr) {
 | 
						|
        llama_grammar_free(llama.grammar);
 | 
						|
    }
 | 
						|
    llama_backend_free();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |