mirror of
https://github.com/ggml-org/llama.cpp.git
synced 2025-10-28 08:31:25 +00:00
* model: EmbeddingGemma sentence-transformers dense linear projections support * model: add support for EmbeddingGemma SentenceTransformers dense linear projections Adding support for the Dense modules used in EmbeddingGemma models. EmbeddingGemma is a SentenceTransformers model with additional modules beyond the base Transformer backbone. See: https://developers.googleblog.com/en/gemma-explained-embeddinggemma-architecture-and-recipe/ * model: add support for EmbeddingGemma SentenceTransformers dense linear projections - converting model with dense-layers is optional - introduced dense config params * Update convert_hf_to_gguf.py Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com> * fixed formatting issues * Update src/llama-graph.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * - removed pooling_type_opt, always allow overriding pooling_type - asserts checking dense features dims * fix python lint * fix ubuntu gcc build warning * - fixed thread-safety test - moved asserts to load_hparams * - tidying up code - simplifying graph-context expecting both dense weights * minor : add TODO --------- Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
266 lines
8.5 KiB
C++
266 lines
8.5 KiB
C++
#pragma once
|
|
|
|
#include "llama.h"
|
|
|
|
#include <array>
|
|
|
|
// bump if necessary
|
|
#define LLAMA_MAX_LAYERS 512
|
|
#define LLAMA_MAX_EXPERTS 384 // Kimi-K2
|
|
|
|
enum llama_expert_gating_func_type {
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT = 3, // applied to the router weights instead of the logits
|
|
};
|
|
|
|
enum llama_swa_type {
|
|
LLAMA_SWA_TYPE_NONE = 0,
|
|
LLAMA_SWA_TYPE_STANDARD = 1,
|
|
LLAMA_SWA_TYPE_CHUNKED = 2,
|
|
LLAMA_SWA_TYPE_SYMMETRIC = 3,
|
|
};
|
|
|
|
struct llama_hparams_posnet {
|
|
uint32_t n_embd;
|
|
uint32_t n_layer;
|
|
};
|
|
|
|
struct llama_hparams_convnext {
|
|
uint32_t n_embd;
|
|
uint32_t n_layer;
|
|
};
|
|
|
|
struct llama_hparams {
|
|
bool vocab_only;
|
|
bool rope_finetuned;
|
|
bool use_par_res;
|
|
bool swin_norm;
|
|
|
|
uint32_t n_ctx_train; // context size the model was trained on
|
|
uint32_t n_embd;
|
|
uint32_t n_embd_features = 0;
|
|
uint32_t n_layer;
|
|
int32_t n_layer_kv_from_start = -1; // if non-negative, the first n_layer_kv_from_start layers have KV cache
|
|
uint32_t n_rot;
|
|
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
|
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
|
uint32_t n_expert = 0;
|
|
uint32_t n_expert_used = 0;
|
|
uint32_t n_rel_attn_bkts = 0;
|
|
|
|
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
|
|
uint32_t n_embd_head_k_mla = 0;
|
|
uint32_t n_embd_head_v_mla = 0;
|
|
|
|
// for WavTokenizer
|
|
struct llama_hparams_posnet posnet;
|
|
struct llama_hparams_convnext convnext;
|
|
|
|
uint32_t n_shortconv_l_cache = 0;
|
|
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
uint32_t n_lora_kv = 0;
|
|
uint32_t n_ff_exp = 0;
|
|
uint32_t n_ff_shexp = 0;
|
|
uint32_t n_ff_chexp = 0;
|
|
uint32_t n_expert_shared = 0;
|
|
uint32_t n_norm_groups = 0;
|
|
uint32_t n_group_experts = 0;
|
|
|
|
float expert_group_scale = 0.05f;
|
|
float expert_weights_scale = 0.0f;
|
|
bool expert_weights_norm = false;
|
|
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
|
|
uint32_t moe_every_n_layers = 0;
|
|
uint32_t nextn_predict_layers = 0;
|
|
|
|
float f_norm_eps;
|
|
float f_norm_rms_eps;
|
|
float f_norm_group_eps;
|
|
|
|
float f_attn_logit_softcapping = 50.0f;
|
|
float f_router_logit_softcapping = 30.0f;
|
|
float f_final_logit_softcapping = 30.0f;
|
|
|
|
// for RWKV
|
|
uint32_t rescale_every_n_layers = 0;
|
|
uint32_t time_mix_extra_dim = 0;
|
|
uint32_t time_decay_extra_dim = 0;
|
|
uint32_t wkv_head_size = 0;
|
|
uint32_t token_shift_count = 2;
|
|
uint32_t n_lora_decay = 0;
|
|
uint32_t n_lora_iclr = 0;
|
|
uint32_t n_lora_value_res_mix = 0;
|
|
uint32_t n_lora_gate = 0;
|
|
|
|
float rope_attn_factor = 1.0f;
|
|
float rope_freq_base_train;
|
|
float rope_freq_base_train_swa;
|
|
float rope_freq_scale_train;
|
|
float rope_freq_scale_train_swa;
|
|
uint32_t n_ctx_orig_yarn;
|
|
float rope_yarn_log_mul = 0.0f;
|
|
|
|
float yarn_ext_factor = -1.0f;
|
|
float yarn_attn_factor = 1.0f;
|
|
float yarn_beta_fast = 32.0f;
|
|
float yarn_beta_slow = 1.0f;
|
|
|
|
std::array<int, 4> rope_sections;
|
|
|
|
// Sliding Window Attention (SWA)
|
|
llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
|
|
// the size of the sliding window (0 - no SWA)
|
|
uint32_t n_swa = 0;
|
|
// if swa_layers[il] == true, then layer il is SWA
|
|
// if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
|
|
// by default, all layers are dense
|
|
std::array<bool, LLAMA_MAX_LAYERS> swa_layers;
|
|
|
|
// for State Space Models
|
|
uint32_t ssm_d_conv = 0;
|
|
uint32_t ssm_d_inner = 0;
|
|
uint32_t ssm_d_state = 0;
|
|
uint32_t ssm_dt_rank = 0;
|
|
uint32_t ssm_n_group = 0;
|
|
|
|
// for hybrid state space models
|
|
std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;
|
|
|
|
bool ssm_dt_b_c_rms = false;
|
|
|
|
float f_clamp_kqv = 0.0f;
|
|
float f_max_alibi_bias = 0.0f;
|
|
float f_logit_scale = 0.0f;
|
|
|
|
// Additional scale factors (Granite/Granite MoE)
|
|
float f_residual_scale = 0.0f;
|
|
float f_embedding_scale = 0.0f;
|
|
float f_attention_scale = 0.0f;
|
|
|
|
// grok-2
|
|
float f_attn_out_scale = 0.0f;
|
|
uint32_t attn_temp_length = 0;
|
|
|
|
bool causal_attn = true;
|
|
bool use_alibi = false;
|
|
bool attn_soft_cap = false;
|
|
bool use_kq_norm = false;
|
|
|
|
// for Classifiers
|
|
uint32_t n_cls_out = 1;
|
|
|
|
// llama4 smallthinker
|
|
uint32_t n_moe_layer_step = 0;
|
|
uint32_t n_no_rope_layer_step = 4;
|
|
uint32_t n_attn_temp_floor_scale = 8192;
|
|
float f_attn_temp_scale = 0.1;
|
|
|
|
// gemma3n altup
|
|
uint32_t n_altup = 4; // altup_num_inputs
|
|
uint32_t i_altup_act = 0; // altup_active_idx
|
|
uint32_t laurel_rank = 64;
|
|
uint32_t n_embd_altup = 256;
|
|
|
|
// needed for sentence-transformers dense layers
|
|
uint32_t dense_2_feat_in = 0; // in_features of the 2_Dense
|
|
uint32_t dense_2_feat_out = 0; // out_features of the 2_Dense
|
|
uint32_t dense_3_feat_in = 0; // in_features of the 3_Dense
|
|
uint32_t dense_3_feat_out = 0; // out_features of the 3_Dense
|
|
|
|
// xIELU
|
|
std::array<float, LLAMA_MAX_LAYERS> xielu_alpha_n;
|
|
std::array<float, LLAMA_MAX_LAYERS> xielu_alpha_p;
|
|
std::array<float, LLAMA_MAX_LAYERS> xielu_beta;
|
|
std::array<float, LLAMA_MAX_LAYERS> xielu_eps;
|
|
|
|
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
|
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
|
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
|
|
uint32_t dec_n_layer = 0;
|
|
|
|
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
|
|
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
|
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
|
|
|
// this value n_pattern means that every nth layer is dense (i.e. non-SWA)
|
|
// dense_first means whether the pattern is start with a dense layer
|
|
// note that if n_pattern == 0, all layers are SWA
|
|
// if n_pattern == 1, all layers are dense
|
|
// example 1: n_pattern = 3, dense_first = false
|
|
// il == 0: swa
|
|
// il == 1: swa
|
|
// il == 2: dense
|
|
// il == 3: swa
|
|
// il == 4: swa
|
|
// il == 5: dense
|
|
// il == 6: swa
|
|
// etc ...
|
|
// example 2: n_pattern = 2, dense_first = true
|
|
// il == 0: dense
|
|
// il == 1: swa
|
|
// il == 2: dense
|
|
// il == 3: swa
|
|
// etc ...
|
|
void set_swa_pattern(uint32_t n_pattern, bool dense_first = false);
|
|
|
|
// return true if one of the layers is SWA
|
|
bool is_swa_any() const;
|
|
|
|
uint32_t n_head(uint32_t il = 0) const;
|
|
|
|
uint32_t n_head_kv(uint32_t il = 0) const;
|
|
|
|
uint32_t n_ff(uint32_t il = 0) const;
|
|
|
|
uint32_t n_gqa(uint32_t il = 0) const;
|
|
|
|
// dimension of key embeddings across all k-v heads
|
|
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
|
|
|
|
// dimension of value embeddings across all k-v heads
|
|
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
|
|
|
|
// true if any layer has a different n_embd_k_gqa/n_embd_v_gqa
|
|
bool is_n_embd_k_gqa_variable() const;
|
|
bool is_n_embd_v_gqa_variable() const;
|
|
|
|
// return the maximum n_embd_k_gqa/n_embd_v_gqa across all layers
|
|
uint32_t n_embd_k_gqa_max() const;
|
|
uint32_t n_embd_v_gqa_max() const;
|
|
|
|
// dimension of the rolling state embeddings
|
|
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
|
|
uint32_t n_embd_r() const;
|
|
|
|
// dimension of the recurrent state embeddings
|
|
uint32_t n_embd_s() const;
|
|
|
|
// whether or not the given layer is recurrent (for hybrid models)
|
|
bool is_recurrent(uint32_t il) const;
|
|
|
|
uint32_t n_pos_per_embd() const;
|
|
|
|
bool is_swa(uint32_t il) const;
|
|
|
|
bool has_kv(uint32_t il) const;
|
|
|
|
// number of layers for which has_kv() returns true
|
|
uint32_t n_layer_kv() const;
|
|
|
|
// note that this function uses different SWA parameters from those in the hparams
|
|
// TODO: think of a better place for this function
|
|
// TODO: pack the SWA params in a struct?
|
|
static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1);
|
|
};
|
|
|
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
|
|