mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			266 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			266 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # 7b pth llama --> gguf conversion, GQA/70b not supported
 | |
| # Only models with a single datafile are supported, like 7B
 | |
| # HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
 | |
| 
 | |
| import gguf
 | |
| import os
 | |
| import sys
 | |
| import struct
 | |
| import json
 | |
| import numpy as np
 | |
| import torch
 | |
| 
 | |
| from typing import Any, List
 | |
| from pathlib import Path
 | |
| from sentencepiece import SentencePieceProcessor
 | |
| 
 | |
| #NDArray = np.ndarray[Any, Any]
 | |
| # compatible with python < 3.9
 | |
| NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | |
| 
 | |
| 
 | |
| def count_model_parts(dir_model: str) -> int:
 | |
|     num_parts = 0
 | |
|     for filename in os.listdir(dir_model):
 | |
|         if filename.startswith("consolidated."):
 | |
|             num_parts += 1
 | |
| 
 | |
|     if num_parts > 0:
 | |
|         print("gguf: found " + str(num_parts) + " model parts")
 | |
|     return num_parts
 | |
| 
 | |
| 
 | |
| if len(sys.argv) < 3:
 | |
|     print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
 | |
|     print("  ftype == 0 -> float32")
 | |
|     print("  ftype == 1 -> float16")
 | |
| 
 | |
|     sys.exit(1)
 | |
| 
 | |
| 
 | |
| # output in the same directory as the model
 | |
| dir_model = sys.argv[1]
 | |
| last_dir = os.path.basename(os.path.normpath(dir_model))
 | |
| 
 | |
| 
 | |
| # possible tensor data types
 | |
| #   ftype == 0 -> float32
 | |
| #   ftype == 1 -> float16
 | |
| 
 | |
| # map from ftype to string
 | |
| ftype_str = ["f32", "f16"]
 | |
| 
 | |
| ftype = 1
 | |
| if len(sys.argv) > 2:
 | |
|     ftype = int(sys.argv[2])
 | |
|     if ftype < 0 or ftype > 1:
 | |
|         print("Invalid ftype: " + str(ftype))
 | |
| 
 | |
|         sys.exit(1)
 | |
| 
 | |
| fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
 | |
| 
 | |
| print("gguf: loading model "+last_dir)
 | |
| 
 | |
| with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
 | |
|     hparams = json.load(f)
 | |
| 
 | |
| if hparams["architectures"][0] != "LlamaForCausalLM":
 | |
|     print("Model architecture not supported: " + hparams["architectures"][0])
 | |
|     sys.exit()
 | |
| 
 | |
| # get number of model parts
 | |
| num_parts = count_model_parts(dir_model)
 | |
| 
 | |
| if num_parts > 1:
 | |
|     print("gguf: Only models with a single datafile are supported.")
 | |
| 
 | |
|     sys.exit()
 | |
| llm_arch = "llama"
 | |
| gguf_writer = gguf.GGUFWriter(fname_out, arch=llm_arch)
 | |
| 
 | |
| 
 | |
| print("gguf: get model metadata")
 | |
| 
 | |
| block_count = hparams["num_hidden_layers"]
 | |
| head_count = hparams["num_attention_heads"]
 | |
| 
 | |
| if "num_key_value_heads" in hparams:
 | |
|     head_count_kv = hparams["num_key_value_heads"]
 | |
| else:
 | |
|     head_count_kv = head_count
 | |
| 
 | |
| if "_name_or_path" in hparams:
 | |
|     hf_repo = hparams["_name_or_path"]
 | |
| else:
 | |
|     hf_repo = ""
 | |
| 
 | |
| gguf_writer.add_architecture()
 | |
| gguf_writer.add_name(last_dir)
 | |
| gguf_writer.add_source_hf_repo(hf_repo)
 | |
| gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | |
| gguf_writer.add_context_length(hparams["max_position_embeddings"])
 | |
| gguf_writer.add_embedding_length(hparams["hidden_size"])
 | |
| gguf_writer.add_block_count(block_count)
 | |
| gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | |
| gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | |
| gguf_writer.add_head_count(head_count)
 | |
| gguf_writer.add_head_count_kv(head_count_kv)
 | |
| gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | |
| 
 | |
| 
 | |
| # TOKENIZATION
 | |
| 
 | |
| print("gguf: get tokenizer metadata")
 | |
| 
 | |
| tokens: List[bytes] = []
 | |
| scores: List[float] = []
 | |
| toktypes: List[int] = []
 | |
| 
 | |
| if Path(dir_model + "/tokenizer.model").is_file():
 | |
|     # vocab type sentencepiece
 | |
|     print("gguf: get sentencepiece tokenizer vocab and scores")
 | |
| 
 | |
|     tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
 | |
| 
 | |
|     for i in range(tokenizer.vocab_size()):
 | |
|         text: bytes
 | |
|         score: float
 | |
| 
 | |
|         piece = tokenizer.id_to_piece(i)
 | |
|         text = piece.encode("utf-8")
 | |
|         score = tokenizer.get_score(i)
 | |
| 
 | |
|         toktype = 1  # defualt to normal token type
 | |
|         if tokenizer.is_unknown(i):
 | |
|             toktype = 2
 | |
|         if tokenizer.is_control(i):
 | |
|             toktype = 3
 | |
| 
 | |
|         # TODO: How to determinate if a token is user defined?
 | |
|         # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
 | |
|         # if tokenizer.is_user_defined(i): toktype = 4
 | |
| 
 | |
|         if tokenizer.is_unused(i):
 | |
|             toktype = 5
 | |
|         if tokenizer.is_byte(i):
 | |
|             toktype = 6
 | |
| 
 | |
|         tokens.append(text)
 | |
|         scores.append(score)
 | |
|         toktypes.append(toktype)
 | |
| 
 | |
|     gguf_writer.add_tokenizer_model("llama")
 | |
|     gguf_writer.add_token_list(tokens)
 | |
|     gguf_writer.add_token_scores(scores)
 | |
|     gguf_writer.add_token_types(toktypes)
 | |
| 
 | |
| if Path(dir_model + "/tokenizer.json").is_file():
 | |
|     with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
 | |
|         tokenizer = json.load(f)
 | |
| 
 | |
|     if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
 | |
|         print("gguf: get special token ids")
 | |
| 
 | |
|         with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
 | |
|             tokenizer_config = json.load(f)
 | |
| 
 | |
|         # find special token ids
 | |
| 
 | |
|         if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["bos_token"]["content"]:
 | |
|                     gguf_writer.add_bos_token_id(key["id"])
 | |
| 
 | |
|         if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["eos_token"]["content"]:
 | |
|                     gguf_writer.add_eos_token_id(key["id"])
 | |
| 
 | |
|         if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["unk_token"]["content"]:
 | |
|                     gguf_writer.add_unk_token_id(key["id"])
 | |
| 
 | |
|         if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["sep_token"]["content"]:
 | |
|                     gguf_writer.add_sep_token_id(key["id"])
 | |
| 
 | |
|         if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
 | |
|             for key in tokenizer["added_tokens"]:
 | |
|                 if key["content"] == tokenizer_config["pad_token"]["content"]:
 | |
|                     gguf_writer.add_pad_token_id(key["id"])
 | |
| 
 | |
| 
 | |
| # TENSORS
 | |
| 
 | |
| tensor_map = gguf.get_tensor_name_map(block_count)
 | |
| 
 | |
| # tensor info
 | |
| print("gguf: get tensor metadata")
 | |
| 
 | |
| part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
 | |
| 
 | |
| for part_name in part_names:
 | |
|     print("gguf: loading model part '" + part_name + "'")
 | |
|     model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | |
| 
 | |
|     for name in model_part.keys():
 | |
|         data = model_part[name]
 | |
| 
 | |
|         # we don't need these
 | |
|         if name == "rope.freqs":
 | |
|             continue
 | |
| 
 | |
|         # convert any unsupported data types to float32
 | |
|         if data.dtype != torch.float16 and data.dtype != torch.float32:
 | |
|             data = data.to(torch.float32)
 | |
| 
 | |
|         data = data.squeeze().numpy()
 | |
| 
 | |
|         # map tensor names
 | |
|         if name.endswith(".weight") and name[:-7] in tensor_map:
 | |
|             name = tensor_map[name[:-7]] + ".weight"
 | |
|         elif name.endswith(".bias") and name[:-5] in tensor_map:
 | |
|             name = tensor_map[name[:-5]] + ".bias"
 | |
|         else:
 | |
|             print("Can not map tensor '" + name + "'")
 | |
|             sys.exit()
 | |
| 
 | |
|         n_dims = len(data.shape)
 | |
|         data_dtype = data.dtype
 | |
|         old_dtype = data_dtype
 | |
| 
 | |
|         # if f32 desired, convert any float16 to float32
 | |
|         if ftype == 0 and data.dtype == np.float16:
 | |
|             data_dtype = np.float32
 | |
| 
 | |
|         # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | |
|         if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | |
|             data_dtype = np.float32
 | |
| 
 | |
|         # if f16 desired, convert any float32 2-dim weight tensors to float16
 | |
|         if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | |
|             data_dtype = np.float16
 | |
| 
 | |
|         print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data_dtype))
 | |
| 
 | |
|         data = data.astype(data_dtype)
 | |
| 
 | |
|         gguf_writer.add_tensor(name, data)
 | |
| 
 | |
| 
 | |
| print("gguf: write header")
 | |
| gguf_writer.write_header_to_file()
 | |
| print("gguf: write metadata")
 | |
| gguf_writer.write_kv_data_to_file()
 | |
| print("gguf: write tensors")
 | |
| gguf_writer.write_tensors_to_file()
 | |
| 
 | |
| gguf_writer.close()
 | |
| 
 | |
| 
 | |
| print("gguf: model successfully exported to '" + fname_out + "'")
 | |
| print("")
 | 
