mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* llama : sync gguf-llama.cpp with latest llama.cpp * minor : indentation + assert * llama : refactor gguf_buffer and gguf_ctx_buffer * llama : minor
		
			
				
	
	
		
			438 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			438 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "ggml.h"
 | 
						|
#include "gguf-util.h"
 | 
						|
#include "gguf-llama.h"
 | 
						|
 | 
						|
#include <cstdio>
 | 
						|
#include <cinttypes>
 | 
						|
#include <string>
 | 
						|
#include <sstream>
 | 
						|
#include <fstream>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#undef MIN
 | 
						|
#undef MAX
 | 
						|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
 | 
						|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static std::string to_string(const T & val) {
 | 
						|
    std::stringstream ss;
 | 
						|
    ss << val;
 | 
						|
    return ss.str();
 | 
						|
}
 | 
						|
 | 
						|
void gguf_ex_write_str(std::ofstream & fout, const std::string & val) {
 | 
						|
    const int32_t n = val.size();
 | 
						|
    fout.write((const char *) &n, sizeof(n));
 | 
						|
    fout.write(val.c_str(), n);
 | 
						|
}
 | 
						|
 | 
						|
void gguf_ex_write_i32(std::ofstream & fout, int32_t val) {
 | 
						|
    fout.write((const char *) &val, sizeof(val));
 | 
						|
}
 | 
						|
 | 
						|
void gguf_ex_write_u64(std::ofstream & fout, size_t val) {
 | 
						|
    fout.write((const char *) &val, sizeof(val));
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
void gguf_ex_write_val(std::ofstream & fout, const std::string & key, enum gguf_type type, const T & val) {
 | 
						|
    gguf_ex_write_str(fout, key);
 | 
						|
    fout.write((const char *) &type, sizeof(type));
 | 
						|
    fout.write((const char *) &val,  sizeof(val));
 | 
						|
 | 
						|
    fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), to_string(val).c_str());
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
void gguf_ex_write_val<std::string>(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::string & val) {
 | 
						|
    gguf_ex_write_str(fout, key);
 | 
						|
    fout.write((const char *) &type, sizeof(type));
 | 
						|
 | 
						|
    const int32_t n = val.size();
 | 
						|
    fout.write((const char *) &n, sizeof(n));
 | 
						|
    fout.write(val.c_str(), n);
 | 
						|
 | 
						|
    fprintf(stdout, "%s: write param: %s = %s\n", __func__, key.c_str(), val.c_str());
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
void gguf_ex_write_arr(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector<T> & val) {
 | 
						|
    gguf_ex_write_str(fout, key);
 | 
						|
    {
 | 
						|
        const enum gguf_type tarr = GGUF_TYPE_ARRAY;
 | 
						|
        fout.write((const char *) &tarr, sizeof(tarr));
 | 
						|
    }
 | 
						|
 | 
						|
    const int32_t n = val.size();
 | 
						|
    fout.write((const char *) &type, sizeof(type));
 | 
						|
    fout.write((const char *) &n,    sizeof(n));
 | 
						|
    fout.write((const char *) val.data(), n * sizeof(T));
 | 
						|
 | 
						|
    fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str());
 | 
						|
    for (int i = 0; i < n; ++i) {
 | 
						|
        fprintf(stdout, "%s", to_string(val[i]).c_str());
 | 
						|
        if (i < n - 1) {
 | 
						|
            fprintf(stdout, ", ");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    fprintf(stdout, "]\n");
 | 
						|
}
 | 
						|
 | 
						|
template<>
 | 
						|
void gguf_ex_write_arr<std::string>(std::ofstream & fout, const std::string & key, enum gguf_type type, const std::vector<std::string> & val) {
 | 
						|
    gguf_ex_write_str(fout, key);
 | 
						|
    {
 | 
						|
        const enum gguf_type tarr = GGUF_TYPE_ARRAY;
 | 
						|
        fout.write((const char *) &tarr, sizeof(tarr));
 | 
						|
    }
 | 
						|
 | 
						|
    const int32_t n = val.size();
 | 
						|
    fout.write((const char *) &type, sizeof(type));
 | 
						|
    fout.write((const char *) &n,    sizeof(n));
 | 
						|
    for (int i = 0; i < n; ++i) {
 | 
						|
        const int32_t nstr = val[i].size();
 | 
						|
        fout.write((const char *) &nstr, sizeof(nstr));
 | 
						|
        fout.write(val[i].c_str(), nstr);
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stdout, "%s: write param: %s = [", __func__, key.c_str());
 | 
						|
    for (int i = 0; i < n; ++i) {
 | 
						|
        fprintf(stdout, "%s", val[i].c_str());
 | 
						|
        if (i < n - 1) {
 | 
						|
            fprintf(stdout, ", ");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    fprintf(stdout, "]\n");
 | 
						|
}
 | 
						|
 | 
						|
bool gguf_ex_write(const std::string & fname) {
 | 
						|
    std::ofstream fout(fname.c_str(), std::ios::binary);
 | 
						|
 | 
						|
    {
 | 
						|
        const int32_t magic = GGUF_MAGIC;
 | 
						|
        fout.write((const char *) &magic, sizeof(magic));
 | 
						|
    }
 | 
						|
 | 
						|
    {
 | 
						|
        const int32_t version = GGUF_VERSION;
 | 
						|
        fout.write((const char *) &version, sizeof(version));
 | 
						|
    }
 | 
						|
 | 
						|
    // NOTE: these have to match the output below!
 | 
						|
    const int n_tensors = 10;
 | 
						|
    const int n_kv      = 12;
 | 
						|
 | 
						|
    fout.write((const char*) &n_tensors, sizeof(n_tensors));
 | 
						|
    fout.write((const char*) &n_kv, sizeof(n_kv));
 | 
						|
 | 
						|
    fprintf(stdout, "%s: write header\n", __func__);
 | 
						|
 | 
						|
    // kv data
 | 
						|
    {
 | 
						|
        gguf_ex_write_val< uint8_t>(fout, "some.parameter.uint8",   GGUF_TYPE_UINT8,   0x12);
 | 
						|
        gguf_ex_write_val<  int8_t>(fout, "some.parameter.int8",    GGUF_TYPE_INT8,   -0x13);
 | 
						|
        gguf_ex_write_val<uint16_t>(fout, "some.parameter.uint16",  GGUF_TYPE_UINT16,  0x1234);
 | 
						|
        gguf_ex_write_val< int16_t>(fout, "some.parameter.int16",   GGUF_TYPE_INT16,  -0x1235);
 | 
						|
        gguf_ex_write_val<uint32_t>(fout, "some.parameter.uint32",  GGUF_TYPE_UINT32,  0x12345678);
 | 
						|
        gguf_ex_write_val< int32_t>(fout, "some.parameter.int32",   GGUF_TYPE_INT32,  -0x12345679);
 | 
						|
 | 
						|
        gguf_ex_write_val<float>   (fout, "some.parameter.float32", GGUF_TYPE_FLOAT32, 0.123456789f);
 | 
						|
        gguf_ex_write_val<bool>    (fout, "some.parameter.bool",    GGUF_TYPE_BOOL,    true);
 | 
						|
 | 
						|
        gguf_ex_write_val<std::string>(fout, "some.parameter.string",  GGUF_TYPE_STRING,  "hello world");
 | 
						|
 | 
						|
        gguf_ex_write_arr<int16_t>    (fout, "some.parameter.arr.i16", GGUF_TYPE_INT16,   { 1, 2, 3, 4, });
 | 
						|
        gguf_ex_write_arr<float>      (fout, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, { 3.145f, 2.718f, 1.414f, });
 | 
						|
        gguf_ex_write_arr<std::string>(fout, "some.parameter.arr.str", GGUF_TYPE_STRING,  { "hello", "world", "!" });
 | 
						|
    }
 | 
						|
 | 
						|
    uint64_t offset_tensor = 0;
 | 
						|
 | 
						|
    struct ggml_init_params params = {
 | 
						|
        /*.mem_size   =*/ 128ull*1024ull*1024ull,
 | 
						|
        /*.mem_buffer =*/ NULL,
 | 
						|
        /*.no_alloc   =*/ false,
 | 
						|
    };
 | 
						|
 | 
						|
    struct ggml_context * ctx_data = ggml_init(params);
 | 
						|
 | 
						|
    // tensor infos
 | 
						|
    for (int i = 0; i < n_tensors; ++i) {
 | 
						|
        const std::string name = "tensor_" + to_string(i);
 | 
						|
 | 
						|
        int64_t ne[GGML_MAX_DIMS] = { 1 };
 | 
						|
        int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
 | 
						|
 | 
						|
        for (int j = 0; j < n_dims; ++j) {
 | 
						|
            ne[j] = rand() % 10 + 1;
 | 
						|
        }
 | 
						|
 | 
						|
        struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
 | 
						|
        ggml_set_name(cur, name.c_str());
 | 
						|
 | 
						|
        {
 | 
						|
            float * data = (float *) cur->data;
 | 
						|
            for (int j = 0; j < ggml_nelements(cur); ++j) {
 | 
						|
                data[j] = 100 + i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        fprintf(stdout, "%s: tensor: %s, %d dims, ne = [", __func__, name.c_str(), n_dims);
 | 
						|
        for (int j = 0; j < 4; ++j) {
 | 
						|
            fprintf(stdout, "%s%3d", j == 0 ? "" : ", ", (int) cur->ne[j]);
 | 
						|
        }
 | 
						|
        fprintf(stdout, "], offset_tensor = %6" PRIu64 "\n", offset_tensor);
 | 
						|
 | 
						|
        gguf_ex_write_str(fout, name);
 | 
						|
        gguf_ex_write_i32(fout, n_dims);
 | 
						|
        for (int j = 0; j < n_dims; ++j) {
 | 
						|
            gguf_ex_write_i32(fout, cur->ne[j]);
 | 
						|
        }
 | 
						|
        gguf_ex_write_i32(fout, cur->type);
 | 
						|
        gguf_ex_write_u64(fout, offset_tensor);
 | 
						|
 | 
						|
        offset_tensor += GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT);
 | 
						|
    }
 | 
						|
 | 
						|
    const uint64_t offset_data = GGML_PAD((uint64_t) fout.tellp(), GGUF_DEFAULT_ALIGNMENT);
 | 
						|
 | 
						|
    fprintf(stdout, "%s: data offset = %" PRIu64 "\n", __func__, offset_data);
 | 
						|
 | 
						|
    {
 | 
						|
        const size_t pad = offset_data - fout.tellp();
 | 
						|
 | 
						|
        for (size_t j = 0; j < pad; ++j) {
 | 
						|
            fout.put(0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = 0; i < n_tensors; ++i) {
 | 
						|
        fprintf(stdout, "%s: writing tensor %d data\n", __func__, i);
 | 
						|
 | 
						|
        const std::string name = "tensor_" + to_string(i);
 | 
						|
 | 
						|
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
 | 
						|
 | 
						|
        fout.write((const char *) cur->data, ggml_nbytes(cur));
 | 
						|
 | 
						|
        {
 | 
						|
            const size_t pad = GGML_PAD(ggml_nbytes(cur), GGUF_DEFAULT_ALIGNMENT) - ggml_nbytes(cur);
 | 
						|
 | 
						|
            for (size_t j = 0; j < pad; ++j) {
 | 
						|
                fout.put(0);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fout.close();
 | 
						|
 | 
						|
    fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str());
 | 
						|
 | 
						|
    ggml_free(ctx_data);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
// just read tensor info
 | 
						|
bool gguf_ex_read_0(const std::string & fname) {
 | 
						|
    struct gguf_init_params params = {
 | 
						|
        /*.no_alloc = */ false,
 | 
						|
        /*.ctx      = */ NULL,
 | 
						|
    };
 | 
						|
 | 
						|
    struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
 | 
						|
 | 
						|
    fprintf(stdout, "%s: version:      %d\n", __func__, gguf_get_version(ctx));
 | 
						|
    fprintf(stdout, "%s: alignment:   %zu\n", __func__, gguf_get_alignment(ctx));
 | 
						|
    fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
 | 
						|
 | 
						|
    // kv
 | 
						|
    {
 | 
						|
        const int n_kv = gguf_get_n_kv(ctx);
 | 
						|
 | 
						|
        fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
 | 
						|
 | 
						|
        for (int i = 0; i < n_kv; ++i) {
 | 
						|
            const char * key = gguf_get_key(ctx, i);
 | 
						|
 | 
						|
            fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // find kv string
 | 
						|
    {
 | 
						|
        const char * findkey = "some.parameter.string";
 | 
						|
 | 
						|
        const int keyidx = gguf_find_key(ctx, findkey);
 | 
						|
        if (keyidx == -1) {
 | 
						|
            fprintf(stdout, "%s: find key: %s not found.\n", __func__, findkey);
 | 
						|
        } else {
 | 
						|
            const char * key_value = gguf_get_val_str(ctx, keyidx);
 | 
						|
            fprintf(stdout, "%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // tensor info
 | 
						|
    {
 | 
						|
        const int n_tensors = gguf_get_n_tensors(ctx);
 | 
						|
 | 
						|
        fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
 | 
						|
 | 
						|
        for (int i = 0; i < n_tensors; ++i) {
 | 
						|
            const char * name   = gguf_get_tensor_name  (ctx, i);
 | 
						|
            const size_t offset = gguf_get_tensor_offset(ctx, i);
 | 
						|
 | 
						|
            fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    gguf_free(ctx);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
// read and create ggml_context containing the tensors and their data
 | 
						|
bool gguf_ex_read_1(const std::string & fname) {
 | 
						|
    struct ggml_context * ctx_data = NULL;
 | 
						|
 | 
						|
    struct gguf_init_params params = {
 | 
						|
        /*.no_alloc = */ false,
 | 
						|
        /*.ctx      = */ &ctx_data,
 | 
						|
    };
 | 
						|
 | 
						|
    struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
 | 
						|
 | 
						|
    fprintf(stdout, "%s: version:      %d\n", __func__, gguf_get_version(ctx));
 | 
						|
    fprintf(stdout, "%s: alignment:   %zu\n", __func__, gguf_get_alignment(ctx));
 | 
						|
    fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
 | 
						|
 | 
						|
    // kv
 | 
						|
    {
 | 
						|
        const int n_kv = gguf_get_n_kv(ctx);
 | 
						|
 | 
						|
        fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
 | 
						|
 | 
						|
        for (int i = 0; i < n_kv; ++i) {
 | 
						|
            const char * key = gguf_get_key(ctx, i);
 | 
						|
 | 
						|
            fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // tensor info
 | 
						|
    {
 | 
						|
        const int n_tensors = gguf_get_n_tensors(ctx);
 | 
						|
 | 
						|
        fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
 | 
						|
 | 
						|
        for (int i = 0; i < n_tensors; ++i) {
 | 
						|
            const char * name   = gguf_get_tensor_name  (ctx, i);
 | 
						|
            const size_t offset = gguf_get_tensor_offset(ctx, i);
 | 
						|
 | 
						|
            fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // data
 | 
						|
    {
 | 
						|
        const int n_tensors = gguf_get_n_tensors(ctx);
 | 
						|
 | 
						|
        for (int i = 0; i < n_tensors; ++i) {
 | 
						|
            fprintf(stdout, "%s: reading tensor %d data\n", __func__, i);
 | 
						|
 | 
						|
            const char * name = gguf_get_tensor_name(ctx, i);
 | 
						|
 | 
						|
            struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
 | 
						|
 | 
						|
            fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n",
 | 
						|
                    __func__, i, cur->n_dims, cur->name, cur->data);
 | 
						|
 | 
						|
            // check data
 | 
						|
            {
 | 
						|
                const float * data = (const float *) cur->data;
 | 
						|
                for (int j = 0; j < ggml_nelements(cur); ++j) {
 | 
						|
                    if (data[j] != 100 + i) {
 | 
						|
                        fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
 | 
						|
                        return false;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
 | 
						|
 | 
						|
    ggml_free(ctx_data);
 | 
						|
    gguf_free(ctx);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
// read just the tensor info and mmap the data in user code
 | 
						|
bool gguf_ex_read_2(const std::string & fname) {
 | 
						|
    struct ggml_context * ctx_data = NULL;
 | 
						|
 | 
						|
    struct gguf_init_params params = {
 | 
						|
        /*.no_alloc = */ true,
 | 
						|
        /*.ctx      = */ &ctx_data,
 | 
						|
    };
 | 
						|
 | 
						|
    struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
 | 
						|
 | 
						|
    struct gguf_file file(fname.c_str(), "rb");
 | 
						|
    gguf_mmap data_mmap(&file, 0, false);
 | 
						|
 | 
						|
    const int n_tensors = gguf_get_n_tensors(ctx);
 | 
						|
 | 
						|
    for (int i = 0; i < n_tensors; ++i) {
 | 
						|
        const char * name   = gguf_get_tensor_name(ctx, i);
 | 
						|
        const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
 | 
						|
 | 
						|
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
 | 
						|
 | 
						|
        cur->data = static_cast<char *>(data_mmap.addr) + offset;
 | 
						|
 | 
						|
        // print first 10 elements
 | 
						|
        const float * data = (const float *) cur->data;
 | 
						|
 | 
						|
        printf("%s data[:10] : ", name);
 | 
						|
        for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
 | 
						|
            printf("%f ", data[j]);
 | 
						|
        }
 | 
						|
        printf("\n\n");
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
 | 
						|
 | 
						|
    ggml_free(ctx_data);
 | 
						|
    gguf_free(ctx);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char ** argv) {
 | 
						|
    if (argc < 3) {
 | 
						|
        fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    const std::string fname(argv[1]);
 | 
						|
    const std::string mode (argv[2]);
 | 
						|
 | 
						|
    GGML_ASSERT((mode == "r" || mode == "w" || mode == "q") && "mode must be r, w or q");
 | 
						|
 | 
						|
    if (mode == "w") {
 | 
						|
        GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
 | 
						|
    } else if (mode == "r") {
 | 
						|
        GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
 | 
						|
        GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file");
 | 
						|
        GGML_ASSERT(gguf_ex_read_2(fname) && "failed to read gguf file");
 | 
						|
    } else if (mode == "q") {
 | 
						|
        llama_model_quantize_params params = llama_model_quantize_default_params();
 | 
						|
        llama_model_quantize(fname.c_str(), "quant.gguf", ¶ms);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |