mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-28 08:31:25 +00:00 
			
		
		
		
	 58b367c2d7
			
		
	
	58b367c2d7
	
	
	
		
			
			* cuBLAS: refactor, convert fp16 to fp32 on device * cuBLAS: use multiple streams, choose smartly between mul_mat_q and mul_mat_f16 * fix build * cuBLAS: update block_q5_1
		
			
				
	
	
		
			717 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			717 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <atomic>
 | |
| 
 | |
| #include <cuda_runtime.h>
 | |
| #include <cublas_v2.h>
 | |
| #include <cuda_fp16.h>
 | |
| 
 | |
| #include "ggml-cuda.h"
 | |
| #include "ggml.h"
 | |
| 
 | |
| static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
 | |
| 
 | |
| #define CUDA_CHECK(err)                                                                 \
 | |
|     do {                                                                                \
 | |
|         cudaError_t err_ = (err);                                                       \
 | |
|         if (err_ != cudaSuccess) {                                                      \
 | |
|             fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__,   \
 | |
|                 cudaGetErrorString(err_));                                              \
 | |
|             exit(1);                                                                    \
 | |
|         }                                                                               \
 | |
|     } while (0)
 | |
| 
 | |
| #define CUBLAS_CHECK(err)                                                               \
 | |
|     do {                                                                                \
 | |
|         cublasStatus_t err_ = (err);                                                    \
 | |
|         if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
 | |
|             fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__);    \
 | |
|             exit(1);                                                                    \
 | |
|         }                                                                               \
 | |
|     } while (0)
 | |
| 
 | |
| typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
 | |
| 
 | |
| #define QK4_0 32
 | |
| typedef struct {
 | |
|     float   d;              // delta
 | |
|     uint8_t qs[QK4_0 / 2];  // nibbles / quants
 | |
| } block_q4_0;
 | |
| static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
 | |
| 
 | |
| #define QK4_1 32
 | |
| typedef struct {
 | |
|     float   d;              // delta
 | |
|     float   m;              // min
 | |
|     uint8_t qs[QK4_1 / 2];  // nibbles / quants
 | |
| } block_q4_1;
 | |
| static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
 | |
| 
 | |
| #define QK4_2 16
 | |
| typedef struct {
 | |
|     half  d;                // delta
 | |
|     uint8_t qs[QK4_2 / 2];  // nibbles / quants
 | |
| } block_q4_2;
 | |
| static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
 | |
| 
 | |
| #define QK5_0 32
 | |
| typedef struct {
 | |
|     half d;                 // delta
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_0 / 2];  // nibbles / quants
 | |
| } block_q5_0;
 | |
| static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
 | |
| 
 | |
| #define QK5_1 32
 | |
| typedef struct {
 | |
|     half d;                 // delta
 | |
|     half m;                 // min
 | |
|     uint8_t qh[4];          // 5-th bit of quants
 | |
|     uint8_t qs[QK5_1 / 2];  // nibbles / quants
 | |
| } block_q5_1;
 | |
| static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
 | |
| 
 | |
| #define QK8_0 32
 | |
| typedef struct {
 | |
|     float   d;              // delta
 | |
|     int8_t  qs[QK8_0];      // quants
 | |
| } block_q8_0;
 | |
| static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
 | |
| 
 | |
| static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
 | |
|     const block_q4_0 * x = (const block_q4_0 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     for (int l = 0; l < QK4_0; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vi0 = vi & 0xf;
 | |
|         const int8_t vi1 = vi >> 4;
 | |
| 
 | |
|         const float v0 = (vi0 - 8)*d;
 | |
|         const float v1 = (vi1 - 8)*d;
 | |
| 
 | |
|         y[i*QK4_0 + l + 0] = v0;
 | |
|         y[i*QK4_0 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q4_1(const void * vx, float * y) {
 | |
|     const block_q4_1 * x = (const block_q4_1 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
|     const float m = x[i].m;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     for (int l = 0; l < QK4_1; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vi0 = vi & 0xf;
 | |
|         const int8_t vi1 = vi >> 4;
 | |
| 
 | |
|         const float v0 = vi0*d + m;
 | |
|         const float v1 = vi1*d + m;
 | |
| 
 | |
|         y[i*QK4_1 + l + 0] = v0;
 | |
|         y[i*QK4_1 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q4_2(const void * vx, float * y) {
 | |
|     const block_q4_2 * x = (const block_q4_2 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     for (int l = 0; l < QK4_2; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vi0 = vi & 0xf;
 | |
|         const int8_t vi1 = vi >> 4;
 | |
| 
 | |
|         const float v0 = (vi0 - 8)*d;
 | |
|         const float v1 = (vi1 - 8)*d;
 | |
| 
 | |
|         y[i*QK4_2 + l + 0] = v0;
 | |
|         y[i*QK4_2 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
 | |
|     const block_q5_0 * x = (const block_q5_0 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|     for (int l = 0; l < QK5_0; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
 | |
|         const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
 | |
| 
 | |
|         const int8_t vi0 = ((vi & 0xf) | vh0);
 | |
|         const int8_t vi1 = ((vi >>  4) | vh1);
 | |
| 
 | |
|         const float v0 = (vi0 - 16)*d;
 | |
|         const float v1 = (vi1 - 16)*d;
 | |
| 
 | |
|         y[i*QK5_0 + l + 0] = v0;
 | |
|         y[i*QK5_0 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
 | |
|     const block_q5_1 * x = (const block_q5_1 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
|     const float m = x[i].m;
 | |
| 
 | |
|     const uint8_t * pp = x[i].qs;
 | |
| 
 | |
|     uint32_t qh;
 | |
|     memcpy(&qh, x[i].qh, sizeof(qh));
 | |
| 
 | |
|     for (int l = 0; l < QK5_1; l += 2) {
 | |
|         const uint8_t vi = pp[l/2];
 | |
| 
 | |
|         const int8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
 | |
|         const int8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
 | |
| 
 | |
|         const int8_t vi0 = (vi & 0xf) | vh0;
 | |
|         const int8_t vi1 = (vi >>  4) | vh1;
 | |
| 
 | |
|         const float v0 = vi0*d + m;
 | |
|         const float v1 = vi1*d + m;
 | |
| 
 | |
|         y[i*QK5_1 + l + 0] = v0;
 | |
|         y[i*QK5_1 + l + 1] = v1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
 | |
|     const block_q8_0 * x = (const block_q8_0 *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     const float d = x[i].d;
 | |
| 
 | |
|     const int8_t * pp = x[i].qs;
 | |
| 
 | |
|     for (int l = 0; l < QK8_0; l++) {
 | |
|         const int8_t vi = pp[l];
 | |
| 
 | |
|         y[i*QK8_0 + l] = vi*d;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK4_0;
 | |
|     dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK4_1;
 | |
|     dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK4_2;
 | |
|     dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK5_0;
 | |
|     dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK5_1;
 | |
|     dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
 | |
|     const int nb = k / QK8_0;
 | |
|     dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
 | |
| }
 | |
| 
 | |
| // TODO: optimize
 | |
| static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
 | |
|     const half * x = (const half *) vx;
 | |
| 
 | |
|     const int i = blockIdx.x;
 | |
| 
 | |
|     y[i] = __half2float(x[i]);
 | |
| }
 | |
| 
 | |
| static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
 | |
|     convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
 | |
| }
 | |
| 
 | |
| static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
 | |
|     switch (type) {
 | |
|         case GGML_TYPE_Q4_0:
 | |
|             return dequantize_row_q4_0_cuda;
 | |
|         case GGML_TYPE_Q4_1:
 | |
|             return dequantize_row_q4_1_cuda;
 | |
|         case GGML_TYPE_Q4_2:
 | |
|             return dequantize_row_q4_2_cuda;
 | |
|         case GGML_TYPE_Q5_0:
 | |
|             return dequantize_row_q5_0_cuda;
 | |
|         case GGML_TYPE_Q5_1:
 | |
|             return dequantize_row_q5_1_cuda;
 | |
|         case GGML_TYPE_Q8_0:
 | |
|             return dequantize_row_q8_0_cuda;
 | |
|         case GGML_TYPE_F16:
 | |
|             return convert_fp16_to_fp32_cuda;
 | |
|         default:
 | |
|             return nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // buffer pool for cuda
 | |
| #define MAX_CUDA_BUFFERS 16
 | |
| 
 | |
| struct scoped_spin_lock {
 | |
|     std::atomic_flag& lock;
 | |
|     scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
 | |
|         while (lock.test_and_set(std::memory_order_acquire)) {
 | |
|             ; // spin
 | |
|         }
 | |
|     }
 | |
|     ~scoped_spin_lock() {
 | |
|         lock.clear(std::memory_order_release);
 | |
|     }
 | |
|     scoped_spin_lock(const scoped_spin_lock&) = delete;
 | |
|     scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
 | |
| };
 | |
| 
 | |
| struct cuda_buffer {
 | |
|     void * ptr = nullptr;
 | |
|     size_t size = 0;
 | |
| };
 | |
| 
 | |
| static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
 | |
| static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
 | |
| 
 | |
| static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
| 
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[i];
 | |
|         if (b.size >= size && b.ptr != nullptr) {
 | |
|             void * ptr = b.ptr;
 | |
|             *actual_size = b.size;
 | |
|             b.ptr = nullptr;
 | |
|             b.size = 0;
 | |
|             return ptr;
 | |
|         }
 | |
|     }
 | |
|     void * ptr;
 | |
|     CUDA_CHECK(cudaMalloc((void **) &ptr, size));
 | |
|     *actual_size = size;
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_pool_free(void * ptr, size_t size) {
 | |
|     scoped_spin_lock lock(g_cuda_pool_lock);
 | |
| 
 | |
|     for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
 | |
|         cuda_buffer& b = g_cuda_buffer_pool[i];
 | |
|         if (b.ptr == nullptr) {
 | |
|             b.ptr = ptr;
 | |
|             b.size = size;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
 | |
|     CUDA_CHECK(cudaFree(ptr));
 | |
| }
 | |
| 
 | |
| #define GGML_CUDA_MAX_STREAMS 8
 | |
| #define GGML_CUDA_MAX_EVENTS 64
 | |
| static cublasHandle_t g_cublasH = nullptr;
 | |
| static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
 | |
| static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
 | |
| static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
 | |
| 
 | |
| void ggml_init_cublas() {
 | |
|     if (g_cublasH == nullptr) {
 | |
|         // create streams
 | |
|         for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
 | |
|             CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
 | |
|             CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
 | |
|         }
 | |
|         // create events
 | |
|         for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
 | |
|             CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
 | |
|         }
 | |
| 
 | |
|         // create cublas handle
 | |
|         CUBLAS_CHECK(cublasCreate(&g_cublasH));
 | |
|         CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
 | |
| 
 | |
|         // configure logging to stdout
 | |
|         // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void * ggml_cuda_host_malloc(size_t size) {
 | |
|     if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     void * ptr = nullptr;
 | |
|     cudaError_t err = cudaMallocHost((void **) &ptr, size);
 | |
|     if (err != cudaSuccess) {
 | |
|         fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
 | |
|             size/1024.0/1024.0, cudaGetErrorString(err));
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_host_free(void * ptr) {
 | |
|     CUDA_CHECK(cudaFreeHost(ptr));
 | |
| }
 | |
| 
 | |
| static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
 | |
|     const uint64_t ne0 = src->ne[0];
 | |
|     const uint64_t ne1 = src->ne[1];
 | |
|     const uint64_t nb0 = src->nb[0];
 | |
|     const uint64_t nb1 = src->nb[1];
 | |
|     const uint64_t nb2 = src->nb[2];
 | |
|     const uint64_t nb3 = src->nb[3];
 | |
|     const enum ggml_type type = src->type;
 | |
|     const size_t ts = ggml_type_size(type);
 | |
|     const size_t bs = ggml_blck_size(type);
 | |
| 
 | |
|     const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
 | |
|     if (nb0 == ts && nb1 == ts*ne0/bs) {
 | |
|         return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
 | |
|     } else if (nb0 == ts) {
 | |
|         return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
 | |
|     } else {
 | |
|         for (uint64_t i1 = 0; i1 < ne1; i1++) {
 | |
|             const void * rx = (const void *) ((const char *) x + i1*nb1);
 | |
|             void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
 | |
|             // pretend the row is a matrix with cols=1
 | |
|             cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
 | |
|             if (r != cudaSuccess) return r;
 | |
|         }
 | |
|         return cudaSuccess;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
| 
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
| 
 | |
|     const float alpha = 1.0f;
 | |
|     const float beta = 0.0f;
 | |
|     const int x_ne = ne01 * ne00;
 | |
|     const int y_ne = ne11 * ne10;
 | |
|     const int d_ne = ne11 * ne01;
 | |
|     const int n_mm = ne03 * ne02;
 | |
| 
 | |
|     size_t x_size, y_size, d_size;
 | |
|     float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
 | |
|     float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             int i = i03*ne02 + i02;
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | |
| 
 | |
|             float * c_X = d_X + i * x_ne;
 | |
|             float * c_Y = d_Y + i * y_ne;
 | |
|             float * c_D = d_D + i * d_ne;
 | |
| 
 | |
|             // copy data to device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | |
| 
 | |
|             // compute
 | |
|             CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | |
|             CUBLAS_CHECK(
 | |
|                 cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                         ne01, ne11, ne10,
 | |
|                         &alpha, c_X, ne00,
 | |
|                                 c_Y, ne10,
 | |
|                         &beta,  c_D, ne01));
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     ggml_cuda_pool_free(d_X, x_size);
 | |
|     ggml_cuda_pool_free(d_Y, y_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
| 
 | |
|     const int nb10 = src1->nb[0];
 | |
|     const int nb11 = src1->nb[1];
 | |
|     const int nb12 = src1->nb[2];
 | |
|     const int nb13 = src1->nb[3];
 | |
| 
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
| 
 | |
|     const float alpha = 1.0f;
 | |
|     const float beta = 0.0f;
 | |
|     const int x_ne = ne01 * ne00;
 | |
|     const int y_ne = ne11 * ne10;
 | |
|     const int d_ne = ne11 * ne01;
 | |
|     const int n_mm = ne03 * ne02;
 | |
| 
 | |
|     size_t x_size, y_size, d_size;
 | |
|     half  * d_X =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
 | |
|     half  * d_Y =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | |
| 
 | |
|     bool src1_cont_rows = nb10 == sizeof(float);
 | |
|     bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             int i = i03*ne02 + i02;
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | |
| 
 | |
|             half  * c_X = d_X + i * x_ne;
 | |
|             half  * c_Y = d_Y + i * y_ne;
 | |
|             float * c_D = d_D + i * d_ne;
 | |
| 
 | |
|             // copy src0 to device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
 | |
| 
 | |
|             // convert src1 to fp16
 | |
|             // TODO: use multiple threads
 | |
|             ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
 | |
|             char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
 | |
|             if (src1_cont_rows) {
 | |
|                 if (src1_cont_cols) {
 | |
|                     ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
 | |
|                 }
 | |
|                 else {
 | |
|                     for (int64_t i01 = 0; i01 < ne11; i01++) {
 | |
|                         ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 for (int64_t i01 = 0; i01 < ne11; i01++) {
 | |
|                     for (int64_t i00 = 0; i00 < ne10; i00++) {
 | |
|                         // very slow due to no inlining
 | |
|                         tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // copy src1 to device
 | |
|             CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
 | |
| 
 | |
|             // compute
 | |
|             CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | |
|             CUBLAS_CHECK(
 | |
|                 cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                         ne01, ne11, ne10,
 | |
|                         &alpha, c_X, CUDA_R_16F, ne00,
 | |
|                                 c_Y, CUDA_R_16F, ne10,
 | |
|                         &beta,  c_D, CUDA_R_32F, ne01,
 | |
|                         CUBLAS_COMPUTE_32F_FAST_16F,
 | |
|                         CUBLAS_GEMM_DEFAULT));
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     ggml_cuda_pool_free(d_X, x_size);
 | |
|     ggml_cuda_pool_free(d_Y, y_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
| }
 | |
| 
 | |
| static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
 | |
|     const int64_t ne00 = src0->ne[0];
 | |
|     const int64_t ne01 = src0->ne[1];
 | |
|     const int64_t ne02 = src0->ne[2];
 | |
|     const int64_t ne03 = src0->ne[3];
 | |
| 
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
|     const int64_t ne11 = src1->ne[1];
 | |
| 
 | |
|     const int nb2  = dst->nb[2];
 | |
|     const int nb3  = dst->nb[3];
 | |
|     const ggml_type type = src0->type;
 | |
| 
 | |
|     const float alpha = 1.0f;
 | |
|     const float beta = 0.0f;
 | |
|     const int x_ne = ne01 * ne00;
 | |
|     const int y_ne = ne11 * ne10;
 | |
|     const int d_ne = ne11 * ne01;
 | |
|     const int n_mm = ne03 * ne02;
 | |
|     const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
 | |
| 
 | |
|     size_t x_size, y_size, d_size, q_size;
 | |
|     float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
 | |
|     float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
 | |
|     float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
 | |
|     char  * d_Q = (char  *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
 | |
| 
 | |
|     const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
 | |
|     GGML_ASSERT(to_fp32_cuda != nullptr);
 | |
| 
 | |
|     for (int64_t i03 = 0; i03 < ne03; i03++) {
 | |
|         for (int64_t i02 = 0; i02 < ne02; i02++) {
 | |
|             int i = i03*ne02 + i02;
 | |
|             cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
 | |
|             cudaEvent_t  cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
 | |
| 
 | |
|             float * c_X = d_X + i * x_ne;
 | |
|             float * c_Y = d_Y + i * y_ne;
 | |
|             float * c_D = d_D + i * d_ne;
 | |
|             char  * c_Q = d_Q + i * q_sz;
 | |
| 
 | |
|             // copy src0 and convert to fp32 on device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
 | |
|             to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
 | |
|             CUDA_CHECK(cudaGetLastError());
 | |
|             CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
 | |
| 
 | |
|             // copy src1 to device
 | |
|             CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
 | |
| 
 | |
|             // wait for conversion
 | |
|             CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
 | |
| 
 | |
|             // compute
 | |
|             CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
 | |
|             CUBLAS_CHECK(
 | |
|                 cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
 | |
|                         ne01, ne11, ne10,
 | |
|                         &alpha, c_X, ne00,
 | |
|                                 c_Y, ne10,
 | |
|                         &beta,  c_D, ne01));
 | |
| 
 | |
|             // copy dst to host
 | |
|             float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
 | |
|             CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CUDA_CHECK(cudaDeviceSynchronize());
 | |
|     ggml_cuda_pool_free(d_X, x_size);
 | |
|     ggml_cuda_pool_free(d_Y, y_size);
 | |
|     ggml_cuda_pool_free(d_D, d_size);
 | |
|     ggml_cuda_pool_free(d_Q, q_size);
 | |
| }
 | |
| 
 | |
| bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     const int64_t ne10 = src1->ne[0];
 | |
| 
 | |
|     const int64_t ne0 = dst->ne[0];
 | |
|     const int64_t ne1 = dst->ne[1];
 | |
| 
 | |
|     // TODO: find the optimal values for these
 | |
|     if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
 | |
|         src1->type == GGML_TYPE_F32 &&
 | |
|         dst->type == GGML_TYPE_F32 &&
 | |
|         (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
 | |
|     size_t src0_sz = ggml_nbytes(src0);
 | |
|     size_t src1_sz = ggml_nbytes(src1);
 | |
| 
 | |
|     // mul_mat_q: src0 is converted to fp32 on device
 | |
|     size_t mul_mat_q_transfer = src0_sz + src1_sz;
 | |
| 
 | |
|     // mul_mat_f16: src1 is converted to fp16 on cpu
 | |
|     size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
 | |
| 
 | |
|     // choose the smaller one to transfer to the device
 | |
|     // TODO: this is not always the best choice due to the overhead of converting to fp16
 | |
|     return mul_mat_f16_transfer < mul_mat_q_transfer;
 | |
| }
 | |
| 
 | |
| void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
 | |
|     GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
 | |
| 
 | |
|     if (src0->type == GGML_TYPE_F32) {
 | |
|         ggml_cuda_mul_mat_f32(src0, src1, dst);
 | |
|     }
 | |
|     else if (src0->type == GGML_TYPE_F16) {
 | |
|         if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
 | |
|             ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
 | |
|         }
 | |
|         else {
 | |
|             ggml_cuda_mul_mat_q_f32(src0, src1, dst);
 | |
|         }
 | |
|     }
 | |
|     else if (ggml_is_quantized(src0->type)) {
 | |
|         ggml_cuda_mul_mat_q_f32(src0, src1, dst);
 | |
|     }
 | |
|     else {
 | |
|         GGML_ASSERT(false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
 | |
|     if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
 | |
|         return ggml_nelements(src1) * sizeof(ggml_fp16_t);
 | |
|     }
 | |
|     else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 |