mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	* llama : fix defrag bugs + enable by default ggml-ci * llama : add defrag_thold parameter ggml-ci * llama : cont * llama : disable log message ggml-ci * llama : fix graph size check during defrag
		
			
				
	
	
		
			262 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Various helper functions and utilities
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include "llama.h"
 | 
						|
 | 
						|
#include "sampling.h"
 | 
						|
 | 
						|
#define LOG_NO_FILE_LINE_FUNCTION
 | 
						|
#include "log.h"
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
#include <random>
 | 
						|
#include <thread>
 | 
						|
#include <unordered_map>
 | 
						|
#include <tuple>
 | 
						|
 | 
						|
#ifdef _WIN32
 | 
						|
#define DIRECTORY_SEPARATOR '\\'
 | 
						|
#else
 | 
						|
#define DIRECTORY_SEPARATOR '/'
 | 
						|
#endif // _WIN32
 | 
						|
 | 
						|
#define die(msg)          do { fputs("error: " msg "\n", stderr);                exit(1); } while (0)
 | 
						|
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
 | 
						|
 | 
						|
#define print_build_info() do {                                                                     \
 | 
						|
    fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);           \
 | 
						|
    fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);    \
 | 
						|
} while(0)
 | 
						|
 | 
						|
// build info
 | 
						|
extern int LLAMA_BUILD_NUMBER;
 | 
						|
extern char const *LLAMA_COMMIT;
 | 
						|
extern char const *LLAMA_COMPILER;
 | 
						|
extern char const *LLAMA_BUILD_TARGET;
 | 
						|
 | 
						|
//
 | 
						|
// CLI argument parsing
 | 
						|
//
 | 
						|
int32_t get_num_physical_cores();
 | 
						|
 | 
						|
struct gpt_params {
 | 
						|
    uint32_t seed                 = -1;    // RNG seed
 | 
						|
 | 
						|
    int32_t n_threads             = get_num_physical_cores();
 | 
						|
    int32_t n_threads_draft       = -1;
 | 
						|
    int32_t n_threads_batch       = -1;    // number of threads to use for batch processing (-1 = use n_threads)
 | 
						|
    int32_t n_threads_batch_draft = -1;
 | 
						|
    int32_t n_predict             = -1;    // new tokens to predict
 | 
						|
    int32_t n_ctx                 = 512;   // context size
 | 
						|
    int32_t n_batch               = 512;   // batch size for prompt processing (must be >=32 to use BLAS)
 | 
						|
    int32_t n_keep                = 0;     // number of tokens to keep from initial prompt
 | 
						|
    int32_t n_draft               = 8;     // number of tokens to draft during speculative decoding
 | 
						|
    int32_t n_chunks              = -1;    // max number of chunks to process (-1 = unlimited)
 | 
						|
    int32_t n_parallel            = 1;     // number of parallel sequences to decode
 | 
						|
    int32_t n_sequences           = 1;     // number of sequences to decode
 | 
						|
    float   p_accept              = 0.5f;  // speculative decoding accept probability
 | 
						|
    float   p_split               = 0.1f;  // speculative decoding split probability
 | 
						|
    int32_t n_gpu_layers          = -1;    // number of layers to store in VRAM (-1 - use default)
 | 
						|
    int32_t n_gpu_layers_draft    = -1;    // number of layers to store in VRAM for the draft model (-1 - use default)
 | 
						|
    llama_split_mode split_mode   = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
 | 
						|
    int32_t main_gpu              = 0;     // the GPU that is used for scratch and small tensors
 | 
						|
    float   tensor_split[128]     = {0};   // how split tensors should be distributed across GPUs
 | 
						|
    int32_t n_beams               = 0;     // if non-zero then use beam search of given width.
 | 
						|
    int32_t grp_attn_n            = 1;     // group-attention factor
 | 
						|
    int32_t grp_attn_w            = 512;   // group-attention width
 | 
						|
    int32_t n_print               = -1;    // print token count every n tokens (-1 = disabled)
 | 
						|
    float   rope_freq_base        = 0.0f;  // RoPE base frequency
 | 
						|
    float   rope_freq_scale       = 0.0f;  // RoPE frequency scaling factor
 | 
						|
    float   yarn_ext_factor       = -1.0f; // YaRN extrapolation mix factor
 | 
						|
    float   yarn_attn_factor      = 1.0f;  // YaRN magnitude scaling factor
 | 
						|
    float   yarn_beta_fast        = 32.0f; // YaRN low correction dim
 | 
						|
    float   yarn_beta_slow        = 1.0f;  // YaRN high correction dim
 | 
						|
    int32_t yarn_orig_ctx         = 0;     // YaRN original context length
 | 
						|
    float   defrag_thold          = -1.0f; // KV cache defragmentation threshold
 | 
						|
    int32_t rope_scaling_type     = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
 | 
						|
    ggml_numa_strategy numa       = GGML_NUMA_STRATEGY_DISABLED;
 | 
						|
 | 
						|
    // // sampling parameters
 | 
						|
    struct llama_sampling_params sparams;
 | 
						|
 | 
						|
    std::string model             = "models/7B/ggml-model-f16.gguf"; // model path
 | 
						|
    std::string model_draft       = "";                              // draft model for speculative decoding
 | 
						|
    std::string model_alias       = "unknown"; // model alias
 | 
						|
    std::string prompt            = "";
 | 
						|
    std::string prompt_file       = "";  // store the external prompt file name
 | 
						|
    std::string path_prompt_cache = "";  // path to file for saving/loading prompt eval state
 | 
						|
    std::string input_prefix      = "";  // string to prefix user inputs with
 | 
						|
    std::string input_suffix      = "";  // string to suffix user inputs with
 | 
						|
    std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
 | 
						|
    std::string logdir            = "";  // directory in which to save YAML log files
 | 
						|
    std::string logits_file       = "";  // file for saving *all* logits
 | 
						|
 | 
						|
    std::vector<llama_model_kv_override> kv_overrides;
 | 
						|
 | 
						|
    // TODO: avoid tuple, use struct
 | 
						|
    std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
 | 
						|
    std::string lora_base  = "";                              // base model path for the lora adapter
 | 
						|
 | 
						|
    int  ppl_stride        = 0;     // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
 | 
						|
    int  ppl_output_type   = 0;     // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
 | 
						|
                                    //                                       (which is more convenient to use for plotting)
 | 
						|
                                    //
 | 
						|
    bool   hellaswag       = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
 | 
						|
    size_t hellaswag_tasks = 400;   // number of tasks to use when computing the HellaSwag score
 | 
						|
 | 
						|
    bool   winogrande      = false; // compute Winogrande score over random tasks from datafile supplied in prompt
 | 
						|
    size_t winogrande_tasks= 0;     // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
 | 
						|
 | 
						|
    bool   multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
 | 
						|
    size_t multiple_choice_tasks = 0;     // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
 | 
						|
 | 
						|
    bool   kl_divergence   = false; // compute KL-divergence
 | 
						|
 | 
						|
    bool mul_mat_q         = true;  // if true, use mul_mat_q kernels instead of cuBLAS
 | 
						|
    bool random_prompt     = false; // do not randomize prompt if none provided
 | 
						|
    bool use_color         = false; // use color to distinguish generations and inputs
 | 
						|
    bool interactive       = false; // interactive mode
 | 
						|
    bool chatml            = false; // chatml mode (used for models trained on chatml syntax)
 | 
						|
    bool prompt_cache_all  = false; // save user input and generations to prompt cache
 | 
						|
    bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it
 | 
						|
 | 
						|
    bool embedding         = false; // get only sentence embedding
 | 
						|
    bool escape            = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
 | 
						|
    bool interactive_first = false; // wait for user input immediately
 | 
						|
    bool multiline_input   = false; // reverse the usage of `\`
 | 
						|
    bool simple_io         = false; // improves compatibility with subprocesses and limited consoles
 | 
						|
    bool cont_batching     = false; // insert new sequences for decoding on-the-fly
 | 
						|
 | 
						|
    bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix
 | 
						|
    bool ignore_eos        = false; // ignore generated EOS tokens
 | 
						|
    bool instruct          = false; // instruction mode (used for Alpaca models)
 | 
						|
    bool logits_all        = false; // return logits for all tokens in the batch
 | 
						|
    bool use_mmap          = true;  // use mmap for faster loads
 | 
						|
    bool use_mlock         = false; // use mlock to keep model in memory
 | 
						|
    bool verbose_prompt    = false; // print prompt tokens before generation
 | 
						|
    bool display_prompt    = true;  // print prompt before generation
 | 
						|
    bool infill            = false; // use infill mode
 | 
						|
    bool dump_kv_cache     = false; // dump the KV cache contents for debugging purposes
 | 
						|
    bool no_kv_offload     = false; // disable KV offloading
 | 
						|
 | 
						|
    std::string cache_type_k = "f16"; // KV cache data type for the K
 | 
						|
    std::string cache_type_v = "f16"; // KV cache data type for the V
 | 
						|
 | 
						|
    // multimodal models (see examples/llava)
 | 
						|
    std::string mmproj = ""; // path to multimodal projector
 | 
						|
    std::string image  = ""; // path to an image file
 | 
						|
};
 | 
						|
 | 
						|
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
 | 
						|
 | 
						|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 | 
						|
 | 
						|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
 | 
						|
 | 
						|
std::string get_system_info(const gpt_params & params);
 | 
						|
 | 
						|
std::string gpt_random_prompt(std::mt19937 & rng);
 | 
						|
 | 
						|
void process_escapes(std::string& input);
 | 
						|
 | 
						|
//
 | 
						|
// String utils
 | 
						|
//
 | 
						|
 | 
						|
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
 | 
						|
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
 | 
						|
std::vector<std::string> string_split(std::string input, char separator);
 | 
						|
std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
 | 
						|
 | 
						|
//
 | 
						|
// Model utils
 | 
						|
//
 | 
						|
 | 
						|
// TODO: avoid tuplue, use struct
 | 
						|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
 | 
						|
 | 
						|
struct llama_model_params   llama_model_params_from_gpt_params  (const gpt_params & params);
 | 
						|
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
 | 
						|
 | 
						|
// Batch utils
 | 
						|
 | 
						|
void llama_batch_clear(struct llama_batch & batch);
 | 
						|
 | 
						|
void llama_batch_add(
 | 
						|
                 struct llama_batch & batch,
 | 
						|
                        llama_token   id,
 | 
						|
                          llama_pos   pos,
 | 
						|
    const std::vector<llama_seq_id> & seq_ids,
 | 
						|
                               bool   logits);
 | 
						|
 | 
						|
//
 | 
						|
// Vocab utils
 | 
						|
//
 | 
						|
 | 
						|
// tokenizes a string into a vector of tokens
 | 
						|
// should work similar to Python's `tokenizer.encode`
 | 
						|
std::vector<llama_token> llama_tokenize(
 | 
						|
  const struct llama_context * ctx,
 | 
						|
           const std::string & text,
 | 
						|
                        bool   add_bos,
 | 
						|
                        bool   special = false);
 | 
						|
 | 
						|
std::vector<llama_token> llama_tokenize(
 | 
						|
    const struct llama_model * model,
 | 
						|
           const std::string & text,
 | 
						|
                        bool   add_bos,
 | 
						|
                        bool   special = false);
 | 
						|
 | 
						|
// tokenizes a token into a piece
 | 
						|
// should work similar to Python's `tokenizer.id_to_piece`
 | 
						|
std::string llama_token_to_piece(
 | 
						|
        const struct llama_context * ctx,
 | 
						|
                       llama_token   token);
 | 
						|
 | 
						|
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
 | 
						|
//       that takes into account the tokenizer type and decides how to handle the leading space
 | 
						|
//
 | 
						|
// detokenizes a vector of tokens into a string
 | 
						|
// should work similar to Python's `tokenizer.decode`
 | 
						|
// removes the leading space from the first non-BOS token
 | 
						|
std::string llama_detokenize_spm(
 | 
						|
                         llama_context * ctx,
 | 
						|
        const std::vector<llama_token> & tokens);
 | 
						|
 | 
						|
// detokenizes a vector of tokens into a string
 | 
						|
// should work similar to Python's `tokenizer.decode`
 | 
						|
std::string llama_detokenize_bpe(
 | 
						|
                         llama_context * ctx,
 | 
						|
        const std::vector<llama_token> & tokens);
 | 
						|
 | 
						|
// Uses the value from the model metadata if possible, otherwise
 | 
						|
// defaults to true when model type is SPM, otherwise false.
 | 
						|
bool llama_should_add_bos_token(const llama_model * model);
 | 
						|
 | 
						|
//
 | 
						|
// YAML utils
 | 
						|
//
 | 
						|
 | 
						|
bool create_directory_with_parents(const std::string & path);
 | 
						|
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
 | 
						|
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
 | 
						|
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
 | 
						|
std::string get_sortable_timestamp();
 | 
						|
 | 
						|
void dump_non_result_info_yaml(
 | 
						|
    FILE * stream, const gpt_params & params, const llama_context * lctx,
 | 
						|
    const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
 | 
						|
 | 
						|
//
 | 
						|
// KV cache utils
 | 
						|
//
 | 
						|
 | 
						|
// Dump the KV cache view with the number of sequences per cell.
 | 
						|
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
 | 
						|
 | 
						|
// Dump the KV cache view showing individual sequences in each cell (long output).
 | 
						|
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
 |