mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-03 09:22:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			107 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			107 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// An interface allowing to compute ggml_cgraph with Metal
 | 
						|
//
 | 
						|
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
 | 
						|
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
 | 
						|
//
 | 
						|
// How it works?
 | 
						|
//
 | 
						|
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
 | 
						|
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
 | 
						|
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
 | 
						|
//
 | 
						|
// You only need to make sure that all memory buffers that you used during the graph creation
 | 
						|
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
 | 
						|
// used during the graph evaluation to determine the arguments of the compute kernels.
 | 
						|
//
 | 
						|
// Synchronization between device and host memory (for example for input and output tensors)
 | 
						|
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
 | 
						|
//
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include "ggml.h"
 | 
						|
#include "ggml-backend.h"
 | 
						|
 | 
						|
#include <stddef.h>
 | 
						|
#include <stdbool.h>
 | 
						|
 | 
						|
// max memory buffers that can be mapped to the device
 | 
						|
#define GGML_METAL_MAX_BUFFERS 16
 | 
						|
#define GGML_METAL_MAX_COMMAND_BUFFERS 32
 | 
						|
 | 
						|
struct ggml_tensor;
 | 
						|
struct ggml_cgraph;
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
extern "C" {
 | 
						|
#endif
 | 
						|
 | 
						|
//
 | 
						|
// internal API
 | 
						|
// temporary exposed to user-code
 | 
						|
//
 | 
						|
 | 
						|
struct ggml_metal_context;
 | 
						|
 | 
						|
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
 | 
						|
 | 
						|
// number of command buffers to use
 | 
						|
struct ggml_metal_context * ggml_metal_init(int n_cb);
 | 
						|
void ggml_metal_free(struct ggml_metal_context * ctx);
 | 
						|
 | 
						|
void * ggml_metal_host_malloc(size_t n);
 | 
						|
void   ggml_metal_host_free  (void * data);
 | 
						|
 | 
						|
// set the number of command buffers to use
 | 
						|
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
 | 
						|
 | 
						|
// creates a mapping between a host memory buffer and a device memory buffer
 | 
						|
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
 | 
						|
// - the mapping is used during computation to determine the arguments of the compute kernels
 | 
						|
// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
 | 
						|
// - max_size specifies the maximum size of a tensor and is used to create shared views such
 | 
						|
//   that it is guaranteed that the tensor will fit in at least one of the views
 | 
						|
//
 | 
						|
bool ggml_metal_add_buffer(
 | 
						|
        struct ggml_metal_context * ctx,
 | 
						|
                       const char * name,
 | 
						|
                             void * data,
 | 
						|
                           size_t   size,
 | 
						|
                           size_t   max_size);
 | 
						|
 | 
						|
// set data from host memory into the device
 | 
						|
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
 | 
						|
 | 
						|
// get data from the device into host memory
 | 
						|
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
 | 
						|
 | 
						|
// try to find operations that can be run concurrently in the graph
 | 
						|
// you should run it again if the topology of your graph changes
 | 
						|
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
 | 
						|
 | 
						|
// if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
 | 
						|
int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
 | 
						|
 | 
						|
// output the concur_list for ggml_alloc
 | 
						|
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
 | 
						|
 | 
						|
// same as ggml_graph_compute but uses Metal
 | 
						|
// creates gf->n_threads command buffers in parallel
 | 
						|
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
 | 
						|
 | 
						|
//
 | 
						|
// backend API
 | 
						|
// user-code should use only these functions
 | 
						|
//
 | 
						|
 | 
						|
GGML_API ggml_backend_t ggml_backend_metal_init(void);
 | 
						|
 | 
						|
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
 | 
						|
 | 
						|
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
}
 | 
						|
#endif
 | 
						|
 |