mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-11-04 09:32:00 +00:00 
			
		
		
		
	* convert: Fix permute calls and method/func definitions * Cleanups for gguf-py * Minor types cleanups. * Initial implementation of handling merges and special tokens * convert: Handle special tokens and merges in vocab only mode convert: Vocab only mode no longer requires loading model tensors * gguf: Refactor tensor name mapping * convert: Fix type hint for special_token_types in SpecialVocab * Use common special vocab handling in various conversion scripts * First pass at implementing suggested changes * Second pass * gguf: SpecialVocab: Fix issue with special token content not in a dict gguf: SpecialVocab: Allow skipping handling of merges * convert-falcon-hf-to-gguf: Support --vocab-only option, bail out if no tokenizer.json * convert-gptneox-hf-to-gguf and convert: Only handle merges for BPE tokenizer * gguf: SpecialVocab: Actually set load_merges in object * Uniform args parsing and vocab only mode for convert examples * convert.py: Set gpt2 as tokenizer model when using BPE * Squish last type warning in gguf.py - yay!
		
			
				
	
	
		
			278 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# HF llama --> gguf conversion
 | 
						|
 | 
						|
import gguf
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import struct
 | 
						|
import json
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
import argparse
 | 
						|
 | 
						|
from typing import Any, List, Optional, TypeAlias
 | 
						|
from pathlib import Path
 | 
						|
from sentencepiece import SentencePieceProcessor
 | 
						|
 | 
						|
#NDArray = np.ndarray[Any, Any]
 | 
						|
# compatible with python < 3.9
 | 
						|
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
 | 
						|
 | 
						|
# reverse HF permute back to original pth layout
 | 
						|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
 | 
						|
 | 
						|
 | 
						|
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
 | 
						|
    if n_kv_head is not None and n_head != n_kv_head:
 | 
						|
        n_head //= n_kv_head
 | 
						|
 | 
						|
    return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
 | 
						|
            .swapaxes(1, 2)
 | 
						|
            .reshape(weights.shape))
 | 
						|
 | 
						|
 | 
						|
def count_model_parts(dir_model: str) -> int:
 | 
						|
    num_parts = 0
 | 
						|
 | 
						|
    for filename in os.listdir(dir_model):
 | 
						|
        if filename.startswith("pytorch_model-"):
 | 
						|
            num_parts += 1
 | 
						|
 | 
						|
    if num_parts > 0:
 | 
						|
        print("gguf: found " + str(num_parts) + " model parts")
 | 
						|
 | 
						|
    return num_parts
 | 
						|
 | 
						|
 | 
						|
def parse_args() -> argparse.Namespace:
 | 
						|
    parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
 | 
						|
    parser.add_argument("--vocab-only",  action="store_true",    help="extract only the vocab")
 | 
						|
    parser.add_argument("--outfile",     type=Path,              help="path to write to; default: based on input")
 | 
						|
    parser.add_argument("model",         type=Path,              help="directory containing model file, or model file itself (*.bin)")
 | 
						|
    parser.add_argument("ftype",     type=int, choices=[0, 1],   help="output format - use 0 for float32, 1 for float16", default = 1)
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
args = parse_args()
 | 
						|
 | 
						|
dir_model = args.model
 | 
						|
ftype = args.ftype
 | 
						|
if not dir_model.is_dir():
 | 
						|
    print(f'Error: {args.model} is not a directory', file = sys.stderr)
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# possible tensor data types
 | 
						|
#   ftype == 0 -> float32
 | 
						|
#   ftype == 1 -> float16
 | 
						|
 | 
						|
# map from ftype to string
 | 
						|
ftype_str = ["f32", "f16"]
 | 
						|
 | 
						|
if args.outfile is not None:
 | 
						|
    fname_out = args.outfile
 | 
						|
else:
 | 
						|
    # output in the same directory as the model by default
 | 
						|
    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
 | 
						|
 | 
						|
print("gguf: loading model "+dir_model.name)
 | 
						|
 | 
						|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
 | 
						|
    hparams = json.load(f)
 | 
						|
 | 
						|
if hparams["architectures"][0] != "LlamaForCausalLM":
 | 
						|
    print("Model architecture not supported: " + hparams["architectures"][0])
 | 
						|
 | 
						|
    sys.exit()
 | 
						|
 | 
						|
# get number of model parts
 | 
						|
num_parts = count_model_parts(dir_model)
 | 
						|
 | 
						|
ARCH=gguf.MODEL_ARCH.LLAMA
 | 
						|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 | 
						|
 | 
						|
print("gguf: get model metadata")
 | 
						|
 | 
						|
block_count = hparams["num_hidden_layers"]
 | 
						|
head_count = hparams["num_attention_heads"]
 | 
						|
 | 
						|
if "num_key_value_heads" in hparams:
 | 
						|
    head_count_kv = hparams["num_key_value_heads"]
 | 
						|
else:
 | 
						|
    head_count_kv = head_count
 | 
						|
 | 
						|
if "_name_or_path" in hparams:
 | 
						|
    hf_repo = hparams["_name_or_path"]
 | 
						|
else:
 | 
						|
    hf_repo = ""
 | 
						|
 | 
						|
if "max_sequence_length" in hparams:
 | 
						|
    ctx_length = hparams["max_sequence_length"]
 | 
						|
elif "max_position_embeddings" in hparams:
 | 
						|
    ctx_length = hparams["max_position_embeddings"]
 | 
						|
else:
 | 
						|
    print("gguf: can not find ctx length parameter.")
 | 
						|
 | 
						|
    sys.exit()
 | 
						|
 | 
						|
 | 
						|
gguf_writer.add_name(dir_model.name)
 | 
						|
gguf_writer.add_source_hf_repo(hf_repo)
 | 
						|
gguf_writer.add_tensor_data_layout("Meta AI original pth")
 | 
						|
gguf_writer.add_context_length(ctx_length)
 | 
						|
gguf_writer.add_embedding_length(hparams["hidden_size"])
 | 
						|
gguf_writer.add_block_count(block_count)
 | 
						|
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
 | 
						|
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
 | 
						|
gguf_writer.add_head_count(head_count)
 | 
						|
gguf_writer.add_head_count_kv(head_count_kv)
 | 
						|
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
 | 
						|
 | 
						|
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
 | 
						|
    if "type" in hparams["rope_scaling"]:
 | 
						|
        if hparams["rope_scaling"]["type"] == "linear":
 | 
						|
            gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
 | 
						|
 | 
						|
 | 
						|
# TOKENIZATION
 | 
						|
 | 
						|
print("gguf: get tokenizer metadata")
 | 
						|
 | 
						|
tokens: List[bytes] = []
 | 
						|
scores: List[float] = []
 | 
						|
toktypes: List[int] = []
 | 
						|
 | 
						|
tokenizer_model_file = dir_model / 'tokenizer.model'
 | 
						|
if not tokenizer_model_file.is_file():
 | 
						|
    print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
 | 
						|
    sys.exit(1)
 | 
						|
 | 
						|
# vocab type sentencepiece
 | 
						|
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
 | 
						|
 | 
						|
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
 | 
						|
 | 
						|
for i in range(tokenizer.vocab_size()):
 | 
						|
    text: bytes
 | 
						|
    score: float
 | 
						|
 | 
						|
    piece = tokenizer.id_to_piece(i)
 | 
						|
    text = piece.encode("utf-8")
 | 
						|
    score = tokenizer.get_score(i)
 | 
						|
 | 
						|
    toktype = 1  # defualt to normal token type
 | 
						|
    if tokenizer.is_unknown(i):
 | 
						|
        toktype = 2
 | 
						|
    if tokenizer.is_control(i):
 | 
						|
        toktype = 3
 | 
						|
 | 
						|
    # toktype = 4 is user-defined = tokens from added_tokens.json
 | 
						|
 | 
						|
    if tokenizer.is_unused(i):
 | 
						|
        toktype = 5
 | 
						|
    if tokenizer.is_byte(i):
 | 
						|
        toktype = 6
 | 
						|
 | 
						|
    tokens.append(text)
 | 
						|
    scores.append(score)
 | 
						|
    toktypes.append(toktype)
 | 
						|
 | 
						|
added_tokens_file = dir_model / 'added_tokens.json'
 | 
						|
if added_tokens_file.is_file():
 | 
						|
    with open(added_tokens_file, "r", encoding="utf-8") as f:
 | 
						|
        addtokens_json = json.load(f)
 | 
						|
 | 
						|
        print("gguf: get added tokens")
 | 
						|
 | 
						|
        for key in addtokens_json:
 | 
						|
            tokens.append( key.encode("utf-8") )
 | 
						|
            scores.append(-1000.0)
 | 
						|
            toktypes.append(4) # user-defined token type
 | 
						|
 | 
						|
 | 
						|
gguf_writer.add_tokenizer_model("llama")
 | 
						|
gguf_writer.add_token_list(tokens)
 | 
						|
gguf_writer.add_token_scores(scores)
 | 
						|
gguf_writer.add_token_types(toktypes)
 | 
						|
 | 
						|
special_vocab = gguf.SpecialVocab(dir_model)
 | 
						|
special_vocab.add_to_gguf(gguf_writer)
 | 
						|
 | 
						|
# TENSORS
 | 
						|
 | 
						|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 | 
						|
 | 
						|
# tensor info
 | 
						|
print("gguf: get tensor metadata")
 | 
						|
 | 
						|
if num_parts == 0:
 | 
						|
    part_names = iter(("pytorch_model.bin",))
 | 
						|
else:
 | 
						|
    part_names = (
 | 
						|
        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
 | 
						|
    )
 | 
						|
 | 
						|
for part_name in part_names:
 | 
						|
    if args.vocab_only:
 | 
						|
        break
 | 
						|
    print("gguf: loading model part '" + part_name + "'")
 | 
						|
    model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
 | 
						|
 | 
						|
    for name in model_part.keys():
 | 
						|
        data = model_part[name]
 | 
						|
 | 
						|
        # we don't need these
 | 
						|
        if name.endswith(".rotary_emb.inv_freq"):
 | 
						|
            continue
 | 
						|
 | 
						|
        old_dtype = data.dtype
 | 
						|
 | 
						|
        # convert any unsupported data types to float32
 | 
						|
        if data.dtype != torch.float16 and data.dtype != torch.float32:
 | 
						|
            data = data.to(torch.float32)
 | 
						|
 | 
						|
        data = data.squeeze().numpy()
 | 
						|
 | 
						|
        # reverse permute these
 | 
						|
        if name.endswith(".q_proj.weight"):
 | 
						|
            data = reverse_hf_permute(data, head_count)
 | 
						|
        if name.endswith(".k_proj.weight"):
 | 
						|
            data = reverse_hf_permute(data, head_count, head_count_kv)
 | 
						|
 | 
						|
        # map tensor names
 | 
						|
        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
 | 
						|
        if new_name is None:
 | 
						|
            print("Can not map tensor '" + name + "'")
 | 
						|
            sys.exit()
 | 
						|
 | 
						|
        n_dims = len(data.shape)
 | 
						|
        data_dtype = data.dtype
 | 
						|
 | 
						|
        # if f32 desired, convert any float16 to float32
 | 
						|
        if ftype == 0 and data_dtype == np.float16:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
 | 
						|
        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
 | 
						|
            data = data.astype(np.float32)
 | 
						|
 | 
						|
        # if f16 desired, convert any float32 2-dim weight tensors to float16
 | 
						|
        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
 | 
						|
            data = data.astype(np.float16)
 | 
						|
 | 
						|
        print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
 | 
						|
 | 
						|
        gguf_writer.add_tensor(new_name, data)
 | 
						|
 | 
						|
 | 
						|
print("gguf: write header")
 | 
						|
gguf_writer.write_header_to_file()
 | 
						|
print("gguf: write metadata")
 | 
						|
gguf_writer.write_kv_data_to_file()
 | 
						|
if not args.vocab_only:
 | 
						|
    print("gguf: write tensors")
 | 
						|
    gguf_writer.write_tensors_to_file()
 | 
						|
 | 
						|
gguf_writer.close()
 | 
						|
 | 
						|
print(f"gguf: model successfully exported to '{fname_out}'")
 | 
						|
print("")
 |