mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 5cdb27e091
			
		
	
	5cdb27e091
	
	
	
		
			
			* examples/finetune -opt SGD (stochastic gradient descent) memory opt
add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.
support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)
llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)
(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00
SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)
note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')
-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.
note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence
new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)
cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)
since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)
test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)
* Vulkan: Implement GGML_OP_OPT_STEP_SGD
* tests: Fix OPT_STEP_SGD test-backend-ops
* SGD op param store weight-decay and not 1-alpha*wd
* minor + cosmetic changes
* fix vulkan sgd
* try CI fix
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
		
	
		
			
				
	
	
		
			1094 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1094 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "ggml-opt.h"
 | |
| 
 | |
| #include "ggml.h"
 | |
| #include "ggml-alloc.h"
 | |
| #include "ggml-backend.h"
 | |
| #include "ggml-impl.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| #include <cinttypes>
 | |
| #include <map>
 | |
| #include <random>
 | |
| #include <vector>
 | |
| 
 | |
| struct ggml_opt_dataset {
 | |
|     struct ggml_context   * ctx    = nullptr;
 | |
|     ggml_backend_buffer_t   buf    = nullptr;
 | |
|     struct ggml_tensor    * data   = nullptr;
 | |
|     struct ggml_tensor    * labels = nullptr;
 | |
| 
 | |
|     int64_t ndata       = -1;
 | |
|     int64_t ndata_shard = -1;
 | |
|     size_t  nbs_data    = -1;
 | |
|     size_t  nbs_labels  = -1;
 | |
| 
 | |
|     std::vector<int64_t> permutation;
 | |
| };
 | |
| 
 | |
| struct ggml_opt_context {
 | |
|     ggml_backend_sched_t       backend_sched        = nullptr;
 | |
|     ggml_cgraph              * allocated_graph      = nullptr;
 | |
|     ggml_cgraph              * allocated_graph_copy = nullptr;
 | |
|     struct ggml_context      * ctx_static           = nullptr;
 | |
|     struct ggml_context      * ctx_cpu              = nullptr;
 | |
|     struct ggml_context      * ctx_compute          = nullptr;
 | |
|     struct ggml_context      * ctx_copy             = nullptr;
 | |
|     ggml_backend_buffer_t      buf_static           = nullptr;
 | |
|     ggml_backend_buffer_t      buf_cpu              = nullptr;
 | |
|     std::mt19937               rng;
 | |
|     enum ggml_opt_loss_type    loss_type;
 | |
|     enum ggml_opt_build_type   build_type;
 | |
|     enum ggml_opt_build_type   build_type_alloc;
 | |
| 
 | |
|     struct ggml_tensor * inputs  = nullptr;
 | |
|     struct ggml_tensor * outputs = nullptr;
 | |
|     struct ggml_tensor * labels  = nullptr;
 | |
| 
 | |
|     struct ggml_tensor * loss     = nullptr;
 | |
|     struct ggml_tensor * pred     = nullptr;
 | |
|     struct ggml_tensor * ncorrect = nullptr;
 | |
| 
 | |
|     struct ggml_cgraph * gf      = nullptr;
 | |
|     struct ggml_cgraph * gb_grad = nullptr;
 | |
|     struct ggml_cgraph * gb_opt  = nullptr;
 | |
|     bool static_graphs           = false;
 | |
|     bool eval_ready              = false;
 | |
|     std::vector<struct ggml_tensor *> grad_accs;
 | |
|     std::vector<struct ggml_tensor *> grad_m;
 | |
|     std::vector<struct ggml_tensor *> grad_v;
 | |
| 
 | |
|     int64_t iter               = 1;
 | |
|     int32_t opt_period         = 1;
 | |
|     int32_t opt_i              = 0;
 | |
|     bool    loss_per_datapoint = false;
 | |
| 
 | |
|     ggml_opt_get_optimizer_params get_opt_pars    = nullptr;
 | |
|     void *                        get_opt_pars_ud = nullptr;
 | |
|     struct ggml_tensor *          opt_step_params = nullptr; // Stores output of get_opt_pars.
 | |
| 
 | |
|     enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW;
 | |
| };
 | |
| 
 | |
| struct ggml_opt_result {
 | |
|     int64_t              ndata    = 0;
 | |
|     std::vector<float>   loss;
 | |
|     std::vector<int32_t> pred;
 | |
|     int64_t              ncorrect = 0;
 | |
| 
 | |
|     int64_t opt_period         = -1;
 | |
|     bool    loss_per_datapoint = false;
 | |
| };
 | |
| 
 | |
| // ====== Dataset ======
 | |
| 
 | |
| ggml_opt_dataset_t ggml_opt_dataset_init(
 | |
|         enum ggml_type type_data,
 | |
|         enum ggml_type type_label,
 | |
|         int64_t        ne_datapoint,
 | |
|         int64_t        ne_label,
 | |
|         int64_t        ndata,
 | |
|         int64_t        ndata_shard) {
 | |
|     GGML_ASSERT(ne_datapoint >  0);
 | |
|     GGML_ASSERT(ne_label     >= 0);
 | |
|     GGML_ASSERT(ndata        >  0);
 | |
|     GGML_ASSERT(ndata_shard  >  0);
 | |
| 
 | |
|     ggml_opt_dataset_t result = new ggml_opt_dataset;
 | |
|     result->ndata       = ndata;
 | |
|     result->ndata_shard = ndata_shard;
 | |
| 
 | |
|     {
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ 2*ggml_tensor_overhead(),
 | |
|             /*.mem_buffer =*/ nullptr,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         result->ctx = ggml_init(params);
 | |
|     }
 | |
| 
 | |
|     result->data = ggml_new_tensor_2d(result->ctx, type_data, ne_datapoint, ndata);
 | |
|     result->nbs_data = ggml_nbytes(result->data) * ndata_shard/ndata;
 | |
| 
 | |
|     if (ne_label > 0) {
 | |
|         result->labels = ggml_new_tensor_2d(result->ctx, type_label, ne_label, ndata);
 | |
|         result->nbs_labels = ggml_nbytes(result->labels) * ndata_shard/ndata;
 | |
|     } else {
 | |
|         result->labels = nullptr;
 | |
|         result->nbs_labels = 0;
 | |
|     }
 | |
| 
 | |
|     result->buf = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx, ggml_backend_cpu_buffer_type());
 | |
| 
 | |
|     const int64_t nshards = ndata/ndata_shard;
 | |
|     result->permutation.resize(nshards);
 | |
|     for (int64_t i = 0; i < nshards; ++i) {
 | |
|         result->permutation[i] = i;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void ggml_opt_dataset_free(ggml_opt_dataset_t dataset) {
 | |
|     ggml_backend_buffer_free(dataset->buf);
 | |
|     ggml_free(dataset->ctx);
 | |
|     delete dataset;
 | |
| }
 | |
| 
 | |
| int64_t ggml_opt_dataset_ndata(ggml_opt_dataset_t dataset) {
 | |
|     return dataset->ndata;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_opt_dataset_data(ggml_opt_dataset_t dataset) {
 | |
|     return dataset->data;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset) {
 | |
|     return dataset->labels;
 | |
| }
 | |
| 
 | |
| void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata) {
 | |
|     GGML_ASSERT(idata <= dataset->ndata);
 | |
| 
 | |
|     if (idata < 0) {
 | |
|         std::shuffle(dataset->permutation.begin(), dataset->permutation.end(), opt_ctx->rng);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(idata % dataset->ndata_shard == 0);
 | |
|     const int64_t ishard_max = idata / dataset->ndata_shard;
 | |
|     std::shuffle(dataset->permutation.begin(), dataset->permutation.begin() + ishard_max, opt_ctx->rng);
 | |
| }
 | |
| 
 | |
| void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor * data_batch, struct ggml_tensor * labels_batch, int64_t ibatch) {
 | |
|     GGML_ASSERT(   data_batch && ggml_is_contiguous(data_batch));
 | |
|     GGML_ASSERT(!labels_batch || ggml_is_contiguous(labels_batch));
 | |
|     GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr));
 | |
|     GGML_ASSERT(                   data_batch->type == dataset->data->type);
 | |
|     GGML_ASSERT(!labels_batch || labels_batch->type == dataset->labels->type);
 | |
| 
 | |
|     const size_t nb_data_batch = ggml_nbytes(data_batch);
 | |
|     GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0);
 | |
|     const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data;
 | |
| 
 | |
|     if (labels_batch) {
 | |
|         const size_t nb_labels_batch = ggml_nbytes(labels_batch);
 | |
|         GGML_ASSERT(nb_labels_batch == shards_per_batch*dataset->nbs_labels);
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size()));
 | |
| 
 | |
|     for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) {
 | |
|         const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch];
 | |
| 
 | |
|         const char * ptr_data = (const char *) dataset->data->data + ishard*dataset->nbs_data;
 | |
|         ggml_backend_tensor_set(data_batch, ptr_data, ishard_batch*dataset->nbs_data, dataset->nbs_data);
 | |
| 
 | |
|         if (!labels_batch) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const char * ptr_labels = (const char *) dataset->labels->data + ishard*dataset->nbs_labels;
 | |
|         ggml_backend_tensor_set(labels_batch, ptr_labels, ishard_batch*dataset->nbs_labels, dataset->nbs_labels);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_opt_dataset_get_batch_host(ggml_opt_dataset_t dataset, void * data_batch, size_t nb_data_batch, void * labels_batch, int64_t ibatch) {
 | |
|     GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr));
 | |
|     GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0);
 | |
| 
 | |
|     const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data;
 | |
| 
 | |
|     GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size()));
 | |
| 
 | |
|     for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) {
 | |
|         const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch];
 | |
| 
 | |
|         const char * ptr_data       = (const char *) dataset->data->data + ishard      *dataset->nbs_data;
 | |
|         char       * ptr_data_batch = (char       *) data_batch          + ishard_batch*dataset->nbs_data;
 | |
|         memcpy(ptr_data_batch, ptr_data, dataset->nbs_data);
 | |
| 
 | |
|         if (!labels_batch) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         const char * ptr_labels       = (const char *) dataset->labels->data + ishard      *dataset->nbs_labels;
 | |
|         char       * ptr_labels_batch = (char       *) labels_batch          + ishard_batch*dataset->nbs_labels;
 | |
|         memcpy(ptr_labels_batch, ptr_labels, dataset->nbs_labels);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ====== Model / Context ======
 | |
| 
 | |
| struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata) {
 | |
|     GGML_UNUSED(userdata);
 | |
| 
 | |
|     ggml_opt_optimizer_params result;
 | |
| 
 | |
|     result.adamw.alpha = 0.001f;
 | |
|     result.adamw.beta1 = 0.9f;
 | |
|     result.adamw.beta2 = 0.999f;
 | |
|     result.adamw.eps   = 1e-8f;
 | |
|     result.adamw.wd    = 0.0f;
 | |
| 
 | |
|     result.sgd.alpha   = 1e-3f;
 | |
|     result.sgd.wd      = 0.0f;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct ggml_opt_optimizer_params ggml_opt_get_constant_optimizer_params(void * userdata) {
 | |
|     return *((struct ggml_opt_optimizer_params *) userdata);
 | |
| }
 | |
| 
 | |
| struct ggml_opt_params ggml_opt_default_params(
 | |
|         ggml_backend_sched_t      backend_sched,
 | |
|         enum ggml_opt_loss_type   loss_type) {
 | |
|     return {
 | |
|         /*backend_sched   =*/ backend_sched,
 | |
|         /*ctx_compute     =*/ nullptr,
 | |
|         /*inputs          =*/ nullptr,
 | |
|         /*logits          =*/ nullptr,
 | |
|         /*loss_type       =*/ loss_type,
 | |
|         /*build_type      =*/ GGML_OPT_BUILD_TYPE_OPT,
 | |
|         /*opt_period      =*/ 1,
 | |
|         /*get_opt_pars    =*/ ggml_opt_get_default_optimizer_params,
 | |
|         /*get_opt_pars_ud =*/ nullptr,
 | |
|         /*optimizer       =*/ GGML_OPT_OPTIMIZER_TYPE_ADAMW,
 | |
|     };
 | |
| }
 | |
| 
 | |
| static ggml_tensor * map_tensor(std::map<ggml_tensor *, ggml_tensor *> & tensor_map, ggml_context * ctx, ggml_tensor * tensor) {
 | |
|     if (!tensor) {
 | |
|         return nullptr;
 | |
|     }
 | |
| 
 | |
|     if (tensor_map.find(tensor) != tensor_map.end()) {
 | |
|         return tensor_map[tensor];
 | |
|     }
 | |
| 
 | |
|     ggml_tensor * new_tensor = ggml_dup_tensor(ctx, tensor);
 | |
|     tensor_map[tensor] = new_tensor;
 | |
| 
 | |
|     new_tensor->op = tensor->op;
 | |
|     for (int i = 0; i < GGML_MAX_DIMS; i++) {
 | |
|         new_tensor->nb[i] = tensor->nb[i];
 | |
|     }
 | |
|     new_tensor->flags = tensor->flags;
 | |
|     memcpy(new_tensor->op_params, tensor->op_params, sizeof(tensor->op_params));
 | |
|     strcpy(new_tensor->name, tensor->name);
 | |
|     new_tensor->data = tensor->data;
 | |
|     new_tensor->buffer = tensor->buffer;
 | |
|     new_tensor->extra = tensor->extra;
 | |
|     new_tensor->view_offs = tensor->view_offs;
 | |
|     new_tensor->view_src = map_tensor(tensor_map, ctx, tensor->view_src);
 | |
|     for (int i = 0; i < GGML_MAX_SRC; i++) {
 | |
|         new_tensor->src[i] = map_tensor(tensor_map, ctx, tensor->src[i]);
 | |
|     }
 | |
| 
 | |
|     return new_tensor;
 | |
| }
 | |
| 
 | |
| static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * src) {
 | |
|     std::map<ggml_tensor *, ggml_tensor *> tensor_map;
 | |
| 
 | |
|     ggml_cgraph * dst = ggml_new_graph_custom(ctx, src->size, /*grads =*/ true);
 | |
| 
 | |
|     for (int i = 0; i < src->n_leafs; i++) {
 | |
|         ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->leafs[i]));
 | |
|     }
 | |
|     GGML_ASSERT(dst->n_leafs == src->n_leafs);
 | |
|     for (int i = 0; i < src->n_nodes; i++) {
 | |
|         ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->nodes[i]));
 | |
|     }
 | |
|     GGML_ASSERT(dst->n_nodes == src->n_nodes);
 | |
|     for (int i = 0; i < src->n_nodes; ++i) {
 | |
|         const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
 | |
|         const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
 | |
| 
 | |
|         GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
 | |
|         GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
 | |
|         GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
 | |
|         GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
 | |
| 
 | |
|         dst->grads[igrad_dst]     = src->grads[igrad_src];
 | |
|         dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
 | |
|     }
 | |
| 
 | |
|     return dst;
 | |
| }
 | |
| 
 | |
| static void ggml_opt_build(ggml_opt_context_t opt_ctx) {
 | |
|     GGML_ASSERT(opt_ctx->ctx_compute && "no compute context set, either use static graphs or set one with ggml_opt_prepare_alloc");
 | |
|     GGML_ASSERT((!opt_ctx->static_graphs || opt_ctx->inputs->data) && "when using static graphs the inputs must be allocated statically");
 | |
| 
 | |
|     const enum ggml_opt_optimizer_type optimizer = opt_ctx->optimizer;
 | |
| 
 | |
|     const bool accumulate = opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_GRAD &&
 | |
|         !(opt_ctx->static_graphs && opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT && opt_ctx->opt_period == 1);
 | |
| 
 | |
|     const bool need_momenta = opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT &&
 | |
|         opt_ctx->optimizer == GGML_OPT_OPTIMIZER_TYPE_ADAMW;
 | |
| 
 | |
|     ggml_set_input(opt_ctx->inputs);
 | |
|     ggml_set_output(opt_ctx->outputs);
 | |
| 
 | |
|     int n_param = 0;
 | |
|     for (int i = 0; i < opt_ctx->gf->n_nodes; ++i) {
 | |
|         const struct ggml_tensor * node = opt_ctx->gf->nodes[i];
 | |
|         if (node->flags & GGML_TENSOR_FLAG_PARAM) {
 | |
|             n_param++;
 | |
|         }
 | |
|         GGML_ASSERT(!(node->flags & GGML_TENSOR_FLAG_LOSS) && "support for extra loss terms not implemented");
 | |
|     }
 | |
| 
 | |
|     if (!opt_ctx->ctx_static) {
 | |
|         // The static context is used for:
 | |
|         //   - gradients (1 per loss, 1 tensor per param if using gradient accumulation)
 | |
|         //   - optimizer momenta (2 tensors per param)
 | |
|         //   - labels (if using static graphs)
 | |
|         //   - loss (if using static graphs, up to 5 tensors)
 | |
|         //   - pred (if using static graphs)
 | |
|         //   - ncorrect (if using static graphs, 2 tensors).
 | |
|         constexpr size_t n_loss = 1;
 | |
|         const size_t tensors_per_param = (accumulate ? 1 : 0) + (need_momenta ? 2 : 0);
 | |
|         const size_t tensors_const = opt_ctx->static_graphs ? 9 : 0;
 | |
|         const size_t size_meta = (n_loss + tensors_per_param*n_param + tensors_const) * ggml_tensor_overhead();
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ size_meta,
 | |
|             /*.mem_buffer =*/ nullptr,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         opt_ctx->ctx_static = ggml_init(params);
 | |
|     }
 | |
|     GGML_ASSERT(opt_ctx->build_type <= opt_ctx->build_type_alloc);
 | |
| 
 | |
|     {
 | |
|         // The cpu context is allocated statically if using static graphs, dynamically otherwise.
 | |
|         // It is used for:
 | |
|         //   - optimizer parameters (1 shared for all optimizer invocations)
 | |
|         const size_t size_meta = 1 * ggml_tensor_overhead();
 | |
|         struct ggml_init_params params = {
 | |
|             /*.mem_size   =*/ size_meta,
 | |
|             /*.mem_buffer =*/ nullptr,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         ggml_free(opt_ctx->ctx_cpu);
 | |
|         opt_ctx->ctx_cpu = ggml_init(params);
 | |
| 
 | |
|         ggml_backend_buffer_free(opt_ctx->buf_cpu);
 | |
|         opt_ctx->buf_cpu = nullptr;
 | |
|     }
 | |
| 
 | |
|     struct ggml_context * ctx_results = opt_ctx->static_graphs ? opt_ctx->ctx_static : opt_ctx->ctx_compute;
 | |
| 
 | |
|     switch (opt_ctx->loss_type) {
 | |
|         case GGML_OPT_LOSS_TYPE_MEAN: {
 | |
|             opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->outputs);
 | |
|             ggml_set_name(opt_ctx->loss, "loss_sum");
 | |
|             const float scale = 1.0f / (opt_ctx->opt_period * ggml_nelements(opt_ctx->outputs));
 | |
|             opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, scale);
 | |
|             ggml_set_name(opt_ctx->loss, "loss_mean");
 | |
|             opt_ctx->loss_per_datapoint = true;
 | |
|             break;
 | |
|         }
 | |
|         case GGML_OPT_LOSS_TYPE_SUM: {
 | |
|             opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->outputs);
 | |
|             ggml_set_name(opt_ctx->loss, "loss_sum");
 | |
|             opt_ctx->loss_per_datapoint = false;
 | |
|             break;
 | |
|         }
 | |
|         case GGML_OPT_LOSS_TYPE_CROSS_ENTROPY: {
 | |
|             opt_ctx->labels = ggml_dup_tensor(ctx_results, opt_ctx->outputs);
 | |
|             ggml_set_input(opt_ctx->labels);
 | |
|             ggml_set_name(opt_ctx->labels, "labels");
 | |
|             opt_ctx->loss = ggml_cross_entropy_loss(ctx_results, opt_ctx->outputs, opt_ctx->labels);
 | |
|             ggml_set_name(opt_ctx->loss, "loss_cross_entropy");
 | |
|             if (opt_ctx->opt_period > 1) {
 | |
|                 opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, 1.0f / opt_ctx->opt_period);
 | |
|                 ggml_set_name(opt_ctx->loss, "loss_cross_entropy_scaled");
 | |
|             }
 | |
|             opt_ctx->loss_per_datapoint = true;
 | |
|             break;
 | |
|         }
 | |
|         case GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR: {
 | |
|             opt_ctx->labels = ggml_dup_tensor(ctx_results, opt_ctx->outputs);
 | |
|             ggml_set_input(opt_ctx->labels);
 | |
|             ggml_set_name(opt_ctx->labels, "labels");
 | |
|             opt_ctx->loss = ggml_sub(ctx_results, opt_ctx->outputs, opt_ctx->labels);
 | |
|             ggml_set_name(opt_ctx->loss, "loss_error");
 | |
|             opt_ctx->loss = ggml_sqr(ctx_results, opt_ctx->loss);
 | |
|             ggml_set_name(opt_ctx->loss, "loss_squared_error");
 | |
|             opt_ctx->loss = ggml_sum(ctx_results, opt_ctx->loss);
 | |
|             ggml_set_name(opt_ctx->loss, "loss_sum_squared_error");
 | |
|             const float scale = 1.0f / (opt_ctx->opt_period * ggml_nelements(opt_ctx->outputs));
 | |
|             opt_ctx->loss = ggml_scale(ctx_results, opt_ctx->loss, scale);
 | |
|             ggml_set_name(opt_ctx->loss, "loss_mean_squared_error");
 | |
|             opt_ctx->loss_per_datapoint = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     ggml_set_output(opt_ctx->loss);
 | |
|     ggml_set_loss(opt_ctx->loss);
 | |
|     ggml_build_forward_expand(opt_ctx->gf, opt_ctx->loss);
 | |
| 
 | |
|     if (opt_ctx->loss_type == GGML_OPT_LOSS_TYPE_CROSS_ENTROPY) {
 | |
|         opt_ctx->pred = ggml_argmax(ctx_results, opt_ctx->outputs);
 | |
|         ggml_set_name(opt_ctx->pred, "pred");
 | |
|         ggml_set_output(opt_ctx->pred);
 | |
|         ggml_build_forward_expand(opt_ctx->gf, opt_ctx->pred);
 | |
| 
 | |
|         opt_ctx->ncorrect = ggml_count_equal(ctx_results, opt_ctx->pred, ggml_argmax(ctx_results, opt_ctx->labels));
 | |
|         ggml_set_name(opt_ctx->ncorrect, "ncorrect");
 | |
|         ggml_set_output(opt_ctx->ncorrect);
 | |
|         ggml_build_forward_expand(opt_ctx->gf, opt_ctx->ncorrect);
 | |
|     }
 | |
| 
 | |
|     if (opt_ctx->buf_static) {
 | |
|         if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_FORWARD) {
 | |
|             return;
 | |
|         }
 | |
|     } else if (opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_FORWARD) {
 | |
|         opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(
 | |
|             opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (opt_ctx->grad_accs.empty()) {
 | |
|         GGML_ASSERT(opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_GRAD);
 | |
| 
 | |
|         const int n_nodes = opt_ctx->gf->n_nodes;
 | |
|         opt_ctx->grad_accs.resize(n_nodes);
 | |
|         for (int i = 0; i < n_nodes; ++i) {
 | |
|             ggml_tensor * node = opt_ctx->gf->nodes[i];
 | |
|             if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) {
 | |
|                 opt_ctx->grad_accs[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
 | |
|             } else {
 | |
|                 opt_ctx->grad_accs[i] = nullptr;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (need_momenta && opt_ctx->build_type_alloc >= GGML_OPT_BUILD_TYPE_OPT) {
 | |
|             opt_ctx->grad_m.resize(n_nodes);
 | |
|             opt_ctx->grad_v.resize(n_nodes);
 | |
|             for (int i = 0; i < n_nodes; ++i) {
 | |
|                 ggml_tensor * node = opt_ctx->gf->nodes[i];
 | |
|                 if (node->flags & GGML_TENSOR_FLAG_PARAM) {
 | |
|                     opt_ctx->grad_m[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
 | |
|                     opt_ctx->grad_v[i] = ggml_new_tensor(opt_ctx->ctx_static, GGML_TYPE_F32, GGML_MAX_DIMS, node->ne);
 | |
|                 } else {
 | |
|                     opt_ctx->grad_m[i] = nullptr;
 | |
|                     opt_ctx->grad_v[i] = nullptr;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients.
 | |
|     opt_ctx->gb_grad = ggml_graph_dup(opt_ctx->ctx_compute, opt_ctx->gf, /*force_grads =*/ true);
 | |
|     ggml_build_backward_expand(opt_ctx->ctx_compute, opt_ctx->gb_grad, opt_ctx->grad_accs.data());
 | |
| 
 | |
|     if (opt_ctx->buf_static) {
 | |
|         if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_GRAD) {
 | |
|             return;
 | |
|         }
 | |
|     } else if (opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_GRAD) {
 | |
|         opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0));
 | |
|         ggml_graph_reset(opt_ctx->gb_grad);
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(opt_ctx->build_type_alloc == GGML_OPT_BUILD_TYPE_OPT);
 | |
| 
 | |
|     // gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step.
 | |
|     opt_ctx->gb_opt = ggml_graph_dup(opt_ctx->ctx_compute, opt_ctx->gb_grad, /*force_grads =*/ true);
 | |
| 
 | |
|     opt_ctx->opt_step_params = ggml_new_tensor_1d(opt_ctx->ctx_cpu, GGML_TYPE_F32, need_momenta ? 7 : 2);
 | |
|     ggml_tensor * adamw_params = opt_ctx->opt_step_params;
 | |
|     ggml_set_input(adamw_params);
 | |
|     const char * optimizer_name = ggml_opt_optimizer_name(opt_ctx->optimizer);
 | |
|     ggml_format_name(adamw_params, "%s_params", optimizer_name);
 | |
|     for (int i = opt_ctx->gf->n_nodes-1; i >= 0; --i) {
 | |
|         struct ggml_tensor * node = opt_ctx->gb_opt->nodes[i];
 | |
|         struct ggml_tensor * grad = ggml_graph_get_grad(opt_ctx->gb_opt, node);
 | |
| 
 | |
|         if (grad && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
 | |
|             struct ggml_tensor * m = nullptr;
 | |
|             struct ggml_tensor * v = nullptr;
 | |
|             if (need_momenta) {
 | |
|                 m = opt_ctx->grad_m[i];
 | |
|                 v = opt_ctx->grad_v[i];
 | |
|                 ggml_format_name(m, "AdamW m for %s", node->name);
 | |
|                 ggml_format_name(v, "AdamW v for %s", node->name);
 | |
|             }
 | |
|             struct ggml_tensor * opt_step;
 | |
|             switch (optimizer) {
 | |
|                 case GGML_OPT_OPTIMIZER_TYPE_ADAMW:
 | |
|                     opt_step = ggml_opt_step_adamw(opt_ctx->ctx_compute, node, grad, m, v, adamw_params);
 | |
|                     break;
 | |
|                 case GGML_OPT_OPTIMIZER_TYPE_SGD:
 | |
|                     opt_step = ggml_opt_step_sgd(opt_ctx->ctx_compute, node, grad, adamw_params);
 | |
|                     break;
 | |
|                 default:
 | |
|                     GGML_ABORT("fatal error");
 | |
|             }
 | |
|             ggml_format_name(opt_step, "%s step for %s", optimizer_name, node->name);
 | |
|             ggml_build_forward_expand(opt_ctx->gb_opt, opt_step);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!opt_ctx->buf_static) {
 | |
|         opt_ctx->buf_static = ggml_backend_alloc_ctx_tensors(
 | |
|             opt_ctx->ctx_static, ggml_backend_sched_get_backend(opt_ctx->backend_sched, 0));
 | |
|         ggml_graph_reset(opt_ctx->gb_opt);
 | |
|     }
 | |
| 
 | |
|     opt_ctx->buf_cpu = ggml_backend_alloc_ctx_tensors_from_buft(opt_ctx->ctx_cpu, ggml_backend_cpu_buffer_type());
 | |
| }
 | |
| 
 | |
| ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
 | |
|     ggml_opt_context_t result = new struct ggml_opt_context;
 | |
|     result->backend_sched    = params.backend_sched;
 | |
|     result->ctx_compute      = params.ctx_compute;
 | |
|     result->loss_type        = params.loss_type;
 | |
|     result->build_type       = params.build_type;
 | |
|     result->build_type_alloc = params.build_type;
 | |
|     result->inputs           = params.inputs;
 | |
|     result->outputs          = params.outputs;
 | |
|     result->opt_period       = params.opt_period;
 | |
|     result->get_opt_pars     = params.get_opt_pars;
 | |
|     result->get_opt_pars_ud  = params.get_opt_pars_ud;
 | |
|     result->optimizer        = params.optimizer;
 | |
| 
 | |
|     GGML_ASSERT(result->opt_period >= 1);
 | |
| 
 | |
|     result->static_graphs = result->ctx_compute;
 | |
| 
 | |
|     if (!result->static_graphs) {
 | |
|         GGML_ASSERT(!result->inputs);
 | |
|         GGML_ASSERT(!result->outputs);
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(result->inputs);
 | |
|     GGML_ASSERT(result->outputs);
 | |
| 
 | |
|     result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass.
 | |
|     ggml_build_forward_expand(result->gf, result->outputs);
 | |
| 
 | |
|     ggml_opt_build(result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void ggml_opt_free(ggml_opt_context_t opt_ctx) {
 | |
|     if (opt_ctx == nullptr) {
 | |
|         return;
 | |
|     }
 | |
|     ggml_backend_buffer_free(opt_ctx->buf_static);
 | |
|     ggml_backend_buffer_free(opt_ctx->buf_cpu);
 | |
|     ggml_free(opt_ctx->ctx_static);
 | |
|     ggml_free(opt_ctx->ctx_cpu);
 | |
|     delete opt_ctx;
 | |
| }
 | |
| 
 | |
| void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer) {
 | |
|     if (optimizer) {
 | |
|         ggml_graph_reset(opt_ctx->gb_opt);
 | |
|         opt_ctx->iter = 1;
 | |
|     } else {
 | |
|         ggml_graph_reset(opt_ctx->gb_grad);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool ggml_opt_static_graphs(ggml_opt_context_t opt_ctx) {
 | |
|     return opt_ctx->static_graphs;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_opt_inputs(ggml_opt_context_t opt_ctx) {
 | |
|     return opt_ctx->inputs;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_opt_outputs(ggml_opt_context_t opt_ctx) {
 | |
|     return opt_ctx->outputs;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_opt_labels(ggml_opt_context_t opt_ctx) {
 | |
|     return opt_ctx->labels;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_opt_loss(ggml_opt_context_t opt_ctx) {
 | |
|     return opt_ctx->loss;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_opt_pred(ggml_opt_context_t opt_ctx) {
 | |
|     return opt_ctx->pred;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx) {
 | |
|     return opt_ctx->ncorrect;
 | |
| }
 | |
| 
 | |
| struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node) {
 | |
|     return ggml_graph_get_grad_acc(opt_ctx->gb_opt, node);
 | |
| }
 | |
| 
 | |
| // ====== Optimization Result ======
 | |
| 
 | |
| ggml_opt_result_t ggml_opt_result_init() {
 | |
|     return new ggml_opt_result;
 | |
| }
 | |
| 
 | |
| void ggml_opt_result_free(ggml_opt_result_t result) {
 | |
|     delete result;
 | |
| }
 | |
| 
 | |
| void ggml_opt_result_reset(ggml_opt_result_t result) {
 | |
|     result->ndata = 0;
 | |
|     result->loss.clear();
 | |
|     result->pred.clear();
 | |
|     result->ncorrect = 0;
 | |
| }
 | |
| 
 | |
| void ggml_opt_result_ndata(ggml_opt_result_t result, int64_t * ndata) {
 | |
|     *ndata = result->ndata;
 | |
| }
 | |
| 
 | |
| void ggml_opt_result_loss(ggml_opt_result_t result, double * loss, double * unc) {
 | |
|     const int64_t nbatches = result->loss.size(); // Number of physical batches.
 | |
| 
 | |
|     if (nbatches == 0) {
 | |
|         *loss = 0.0;
 | |
|         *unc  = NAN;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     double sum         = 0.0;
 | |
|     double sum_squared = 0.0;
 | |
| 
 | |
|     for (const float & loss : result->loss) {
 | |
|         // If the loss is per datapoint it was scaled by 1.0f/opt_period for each physical batch.
 | |
|         const float loss_scaled = result->loss_per_datapoint ? loss*result->opt_period : loss;
 | |
|         sum         += loss_scaled;
 | |
|         sum_squared += loss_scaled*loss_scaled;
 | |
|     }
 | |
| 
 | |
|     const double mean = sum/nbatches;
 | |
|     *loss = result->loss_per_datapoint ? mean : sum;
 | |
| 
 | |
|     if (!unc) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (nbatches < 2) {
 | |
|         *unc = NAN;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const double var_sum = sum_squared/nbatches - mean*mean; // variance without Bessel's correction, i.e. nbatches/(nbatches-1)
 | |
|     *unc = result->loss_per_datapoint ? sqrt(var_sum / (nbatches - 1)) : sqrt(var_sum * nbatches/(nbatches - 1));
 | |
| }
 | |
| 
 | |
| void ggml_opt_result_pred(ggml_opt_result_t result, int32_t * pred) {
 | |
|     for (size_t i = 0; i < result->pred.size(); ++i) {
 | |
|         pred[i] = result->pred[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc) {
 | |
|     *accuracy = result->ncorrect >= 0 ? double(result->ncorrect) / double(result->ndata) : NAN;
 | |
| 
 | |
|     if (!unc) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     *unc = result->ncorrect >= 0 && result->ndata >= 2 ?
 | |
|         sqrt((*accuracy) * (1.0 - (*accuracy)) / double(result->ndata - 1)) : NAN;
 | |
| }
 | |
| 
 | |
| // ====== Computation ======
 | |
| 
 | |
| void ggml_opt_prepare_alloc(
 | |
|         ggml_opt_context_t    opt_ctx,
 | |
|         struct ggml_context * ctx_compute,
 | |
|         struct ggml_cgraph  * gf,
 | |
|         struct ggml_tensor  * inputs,
 | |
|         struct ggml_tensor  * outputs) {
 | |
|     GGML_ASSERT(!opt_ctx->static_graphs);
 | |
|     opt_ctx->ctx_compute = ctx_compute;
 | |
|     opt_ctx->gf          = gf;
 | |
|     opt_ctx->inputs      = inputs;
 | |
|     opt_ctx->outputs     = outputs;
 | |
| }
 | |
| 
 | |
| void ggml_opt_alloc(ggml_opt_context_t opt_ctx, bool backward) {
 | |
|     GGML_ASSERT(!opt_ctx->eval_ready);
 | |
|     if (opt_ctx->build_type == GGML_OPT_BUILD_TYPE_OPT && opt_ctx->opt_period > 1 && opt_ctx->opt_i == 0) {
 | |
|         ggml_graph_reset(opt_ctx->gb_grad);
 | |
|     }
 | |
|     if (backward) {
 | |
|         const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
 | |
|         opt_ctx->build_type = opt_i_next == 0 ? GGML_OPT_BUILD_TYPE_OPT : GGML_OPT_BUILD_TYPE_GRAD;
 | |
|     } else {
 | |
|         opt_ctx->build_type = GGML_OPT_BUILD_TYPE_FORWARD;
 | |
|     }
 | |
| 
 | |
|     if (!opt_ctx->static_graphs) {
 | |
|         ggml_opt_build(opt_ctx);
 | |
|     }
 | |
| 
 | |
|     struct ggml_cgraph * graph = nullptr;
 | |
|     switch (opt_ctx->build_type) {
 | |
|         case GGML_OPT_BUILD_TYPE_FORWARD: {
 | |
|             graph = opt_ctx->gf;
 | |
|         } break;
 | |
|         case GGML_OPT_BUILD_TYPE_GRAD: {
 | |
|             graph = opt_ctx->gb_grad;
 | |
|         } break;
 | |
|         case GGML_OPT_BUILD_TYPE_OPT: {
 | |
|             graph = opt_ctx->gb_opt;
 | |
|         } break;
 | |
|     }
 | |
|     GGML_ASSERT(graph);
 | |
| 
 | |
|     if (opt_ctx->allocated_graph == graph) {
 | |
|         opt_ctx->eval_ready = true;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph
 | |
| 
 | |
|     if (opt_ctx->static_graphs) {
 | |
|         ggml_init_params params = {
 | |
|             /*.mem_size   =*/ graph->size*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph->size, graph->grads),
 | |
|             /*.mem_buffer =*/ nullptr,
 | |
|             /*.no_alloc   =*/ true,
 | |
|         };
 | |
|         ggml_free(opt_ctx->ctx_copy);
 | |
|         opt_ctx->ctx_copy = ggml_init(params);
 | |
| 
 | |
|         opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph);
 | |
|     } else {
 | |
|         opt_ctx->allocated_graph_copy = graph;
 | |
|     }
 | |
| 
 | |
|     ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
 | |
|     opt_ctx->allocated_graph = graph;
 | |
| 
 | |
|     opt_ctx->eval_ready = true;
 | |
| }
 | |
| 
 | |
| void ggml_opt_eval(ggml_opt_context_t opt_ctx, ggml_opt_result_t result) {
 | |
|     GGML_ASSERT(opt_ctx->eval_ready);
 | |
|     if (opt_ctx->allocated_graph == opt_ctx->gb_opt) {
 | |
|         const ggml_opt_optimizer_params & opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud);
 | |
| 
 | |
|         switch (opt_ctx->optimizer) {
 | |
|             case GGML_OPT_OPTIMIZER_TYPE_ADAMW: {
 | |
|                 GGML_ASSERT(opt_pars.adamw.alpha > 0.0f);
 | |
|                 GGML_ASSERT(opt_pars.adamw.beta1 >= 0.0f);
 | |
|                 GGML_ASSERT(opt_pars.adamw.beta1 <= 1.0f);
 | |
|                 GGML_ASSERT(opt_pars.adamw.beta2 >= 0.0f);
 | |
|                 GGML_ASSERT(opt_pars.adamw.beta2 <= 1.0f);
 | |
|                 GGML_ASSERT(opt_pars.adamw.eps >= 0.0f);
 | |
|                 GGML_ASSERT(opt_pars.adamw.wd >= 0.0f);
 | |
|                 GGML_ASSERT(opt_pars.adamw.wd <= 1.0f);
 | |
| 
 | |
|                 // beta1, beta2 after applying warmup
 | |
|                 const float beta1h = 1.0f / (1.0f - powf(opt_pars.adamw.beta1, opt_ctx->iter));
 | |
|                 const float beta2h = 1.0f / (1.0f - powf(opt_pars.adamw.beta2, opt_ctx->iter));
 | |
| 
 | |
|                 float * adamw_par_data = ggml_get_data_f32(opt_ctx->opt_step_params);
 | |
|                 adamw_par_data[0] = opt_pars.adamw.alpha;
 | |
|                 adamw_par_data[1] = opt_pars.adamw.beta1;
 | |
|                 adamw_par_data[2] = opt_pars.adamw.beta2;
 | |
|                 adamw_par_data[3] = opt_pars.adamw.eps;
 | |
|                 adamw_par_data[4] = opt_pars.adamw.wd;
 | |
|                 adamw_par_data[5] = beta1h;
 | |
|                 adamw_par_data[6] = beta2h;
 | |
|             } break;
 | |
|             case GGML_OPT_OPTIMIZER_TYPE_SGD: {
 | |
|                 GGML_ASSERT(opt_pars.sgd.alpha > 0.0f);
 | |
|                 GGML_ASSERT(opt_pars.sgd.wd >= 0.0f);
 | |
|                 GGML_ASSERT(opt_pars.sgd.wd <= 1.0f);
 | |
|                 float * sgd = ggml_get_data_f32(opt_ctx->opt_step_params);
 | |
|                 sgd[0] = opt_pars.sgd.alpha;
 | |
|                 sgd[1] = opt_pars.sgd.wd;
 | |
|             } break;
 | |
|             default:
 | |
|                 GGML_ABORT("fatal error");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
 | |
|     opt_ctx->iter += opt_ctx->allocated_graph == opt_ctx->gb_opt;
 | |
|     opt_ctx->opt_i = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
 | |
| 
 | |
|     if (!opt_ctx->static_graphs) {
 | |
|         opt_ctx->gf                   = nullptr;
 | |
|         opt_ctx->gb_grad              = nullptr;
 | |
|         opt_ctx->gb_opt               = nullptr;
 | |
|         opt_ctx->allocated_graph      = nullptr;
 | |
|         opt_ctx->allocated_graph_copy = nullptr;
 | |
|     }
 | |
| 
 | |
|     opt_ctx->eval_ready = false;
 | |
| 
 | |
|     if (!result) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (result->ndata == 0) {
 | |
|         result->loss_per_datapoint = opt_ctx->loss_per_datapoint;
 | |
|         result->opt_period         = opt_ctx->opt_period;
 | |
|     } else {
 | |
|         GGML_ASSERT(result->loss_per_datapoint == opt_ctx->loss_per_datapoint);
 | |
|         GGML_ASSERT(result->opt_period         == opt_ctx->opt_period);
 | |
|     }
 | |
| 
 | |
|     const int64_t ndata = opt_ctx->outputs->ne[1];
 | |
|     GGML_ASSERT(result->ndata == ndata*int64_t(result->loss.size()) && "varying batch size not supported");
 | |
|     result->ndata += ndata;
 | |
| 
 | |
|     GGML_ASSERT(ggml_is_scalar(opt_ctx->loss));
 | |
|     GGML_ASSERT(opt_ctx->loss->type == GGML_TYPE_F32);
 | |
|     float loss;
 | |
|     ggml_backend_tensor_get(opt_ctx->loss, &loss, 0, ggml_nbytes(opt_ctx->loss));
 | |
|     result->loss.push_back(loss);
 | |
| 
 | |
|     if (opt_ctx->pred) {
 | |
|         GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32);
 | |
|         std::vector<int32_t> pred(ndata);
 | |
|         ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred));
 | |
|         result->pred.insert(result->pred.end(), pred.begin(), pred.end());
 | |
|     }
 | |
| 
 | |
|     if (!opt_ctx->ncorrect || result->ncorrect < 0) {
 | |
|         result->ncorrect = -1;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     GGML_ASSERT(ggml_is_scalar(opt_ctx->ncorrect));
 | |
|     GGML_ASSERT(opt_ctx->ncorrect->type == GGML_TYPE_I64);
 | |
|     int64_t ncorrect;
 | |
|     ggml_backend_tensor_get(opt_ctx->ncorrect, &ncorrect, 0, ggml_nbytes(opt_ctx->ncorrect));
 | |
|     result->ncorrect += ncorrect;
 | |
| }
 | |
| 
 | |
| // ====== High-Level Functions ======
 | |
| 
 | |
| void ggml_opt_epoch(
 | |
|         ggml_opt_context_t      opt_ctx,
 | |
|         ggml_opt_dataset_t      dataset,
 | |
|         ggml_opt_result_t       result_train,
 | |
|         ggml_opt_result_t       result_eval,
 | |
|         int64_t                 idata_split,
 | |
|         ggml_opt_epoch_callback callback_train,
 | |
|         ggml_opt_epoch_callback callback_eval) {
 | |
|     GGML_ASSERT(ggml_opt_static_graphs(opt_ctx) && "ggml_opt_epoch requires static graphs");
 | |
|     struct ggml_tensor * inputs = ggml_opt_inputs(opt_ctx);
 | |
|     struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
 | |
|     struct ggml_tensor * data   = ggml_opt_dataset_data(dataset);
 | |
|     GGML_ASSERT(data->ne[0] == inputs->ne[0]);
 | |
| 
 | |
|     const int64_t ndata       =   data->ne[1];
 | |
|     const int64_t ndata_batch = inputs->ne[1];
 | |
| 
 | |
|     GGML_ASSERT(data->ne[1] % inputs->ne[1] == 0);
 | |
|     const int64_t nbatches = ndata/ndata_batch;
 | |
| 
 | |
|     idata_split = idata_split < 0 ? ndata : idata_split;
 | |
|     GGML_ASSERT(idata_split % ndata_batch == 0);
 | |
|     const int64_t ibatch_split = idata_split / ndata_batch;
 | |
| 
 | |
|     int64_t ibatch = 0;
 | |
|     int64_t t_loop_start = ggml_time_us();
 | |
|     for (; ibatch < ibatch_split; ++ibatch) {
 | |
|         ggml_opt_alloc(opt_ctx, /*backward =*/ true);
 | |
|         ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
 | |
|         ggml_opt_eval(opt_ctx, result_train);
 | |
|         if (callback_train) {
 | |
|             callback_train(true, opt_ctx, dataset, result_train, ibatch+1, ibatch_split, t_loop_start);
 | |
|         }
 | |
|     }
 | |
|     t_loop_start = ggml_time_us();
 | |
|     for (; ibatch < nbatches; ++ibatch) {
 | |
|         ggml_opt_alloc(opt_ctx, /*backward =*/ false);
 | |
|         ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
 | |
|         ggml_opt_eval(opt_ctx, result_eval);
 | |
|         if (callback_eval) {
 | |
|             callback_eval(false, opt_ctx, dataset, result_eval, ibatch+1-ibatch_split, nbatches-ibatch_split, t_loop_start);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ggml_opt_epoch_callback_progress_bar(
 | |
|         bool               train,
 | |
|         ggml_opt_context_t opt_ctx,
 | |
|         ggml_opt_dataset_t dataset,
 | |
|         ggml_opt_result_t  result,
 | |
|         int64_t            ibatch,
 | |
|         int64_t            ibatch_max,
 | |
|         int64_t            t_start_us) {
 | |
|     fprintf(stderr, "%s[", train ? "train: " : "val:   ");
 | |
| 
 | |
|     // The progress bar consists of partially filled blocks, unicode has 8 separate fill levels.
 | |
|     constexpr int64_t bar_length = 8;
 | |
|     const int64_t ibatch8 = 8 * ibatch;
 | |
|     for (int64_t j = 0; j < bar_length; ++j) {
 | |
|         if        (ibatch_max * (8*j + 8) / bar_length < ibatch8) {
 | |
|             fprintf(stderr, "\u2588"); // full block
 | |
|         } else if (ibatch_max * (8*j + 7) / bar_length < ibatch8) {
 | |
|             fprintf(stderr, "\u2589"); // 7/8 filled
 | |
|         } else if (ibatch_max * (8*j + 6) / bar_length < ibatch8) {
 | |
|             fprintf(stderr, "\u258A"); // 6/8 filled
 | |
|         } else if (ibatch_max * (8*j + 5) / bar_length < ibatch8) {
 | |
|             fprintf(stderr, "\u258B"); // 5/8 filled
 | |
|         } else if (ibatch_max * (8*j + 4) / bar_length < ibatch8) {
 | |
|             fprintf(stderr, "\u258C"); // 4/8 filled
 | |
|         } else if (ibatch_max * (8*j + 3) / bar_length < ibatch8) {
 | |
|             fprintf(stderr, "\u258D"); // 3/8 filled
 | |
|         } else if (ibatch_max * (8*j + 2) / bar_length < ibatch8) {
 | |
|             fprintf(stderr, "\u258E"); // 2/8 filled
 | |
|         } else if (ibatch_max * (8*j + 1) / bar_length < ibatch8) {
 | |
|             fprintf(stderr, "\u258F"); // 1/8 filled
 | |
|         } else {
 | |
|             fprintf(stderr, " ");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const int64_t batch_size = ggml_opt_inputs(opt_ctx)->ne[1];
 | |
|     const int64_t idata      = ibatch*batch_size;
 | |
|     const int64_t idata_max  = ibatch_max*batch_size;
 | |
| 
 | |
|     double loss;
 | |
|     double loss_unc;
 | |
|     ggml_opt_result_loss(result, &loss, &loss_unc);
 | |
| 
 | |
|     double accuracy;
 | |
|     double accuracy_unc;
 | |
|     ggml_opt_result_accuracy(result, &accuracy, &accuracy_unc);
 | |
| 
 | |
|     const int64_t t_ibatch_us = ggml_time_us() - t_start_us;
 | |
|     int64_t t_ibatch_s = t_ibatch_us / 1000000;
 | |
|     const int64_t t_ibatch_h = t_ibatch_s / 3600;
 | |
|     t_ibatch_s -= t_ibatch_h * 3600;
 | |
|     const int64_t t_ibatch_m = t_ibatch_s / 60;
 | |
|     t_ibatch_s -= t_ibatch_m * 60;
 | |
| 
 | |
|     const int64_t t_eta_us = t_ibatch_us * (ibatch_max - ibatch)/ibatch;
 | |
|     int64_t t_eta_s = t_eta_us / 1000000;
 | |
|     const int64_t t_eta_h = t_eta_s / 3600;
 | |
|     t_eta_s -= t_eta_h * 3600;
 | |
|     const int64_t t_eta_m = t_eta_s / 60;
 | |
|     t_eta_s -= t_eta_m * 60;
 | |
| 
 | |
|     fprintf(stderr, "] data=%07" PRId64 "/%07" PRId64 " loss=%.5lf±%.5lf acc=%.2lf±%.2lf%% "
 | |
|             "t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 " ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 " \r",
 | |
|             idata, idata_max, loss, loss_unc, 100.0*accuracy, 100.0*accuracy_unc,
 | |
|             t_ibatch_h, t_ibatch_m, t_ibatch_s, t_eta_h, t_eta_m, t_eta_s);
 | |
|     if (ibatch == ibatch_max) {
 | |
|         fprintf(stderr, "\n");
 | |
|     }
 | |
|     fflush(stderr);
 | |
| 
 | |
|     GGML_UNUSED(dataset);
 | |
| }
 | |
| 
 | |
| void ggml_opt_fit(
 | |
|         ggml_backend_sched_t            backend_sched,
 | |
|         ggml_context                  * ctx_compute,
 | |
|         ggml_tensor                   * inputs,
 | |
|         ggml_tensor                   * outputs,
 | |
|         ggml_opt_dataset_t              dataset,
 | |
|         enum ggml_opt_loss_type         loss_type,
 | |
|         enum ggml_opt_optimizer_type    optimizer,
 | |
|         ggml_opt_get_optimizer_params   get_opt_pars,
 | |
|         int64_t                         nepoch,
 | |
|         int64_t                         nbatch_logical,
 | |
|         float                           val_split,
 | |
|         bool                            silent) {
 | |
|     ggml_time_init();
 | |
|     const int64_t t_start_us = ggml_time_us();
 | |
| 
 | |
|     const int64_t ndata           = ggml_opt_dataset_data(dataset)->ne[1];
 | |
|     const int64_t nbatch_physical = inputs->ne[1];
 | |
|     GGML_ASSERT(ndata          % nbatch_logical  == 0);
 | |
|     GGML_ASSERT(nbatch_logical % nbatch_physical == 0);
 | |
| 
 | |
|     const int64_t opt_period       = nbatch_logical / nbatch_physical;
 | |
|     const int64_t nbatches_logical = ndata / nbatch_logical;
 | |
| 
 | |
|     GGML_ASSERT(val_split >= 0.0f);
 | |
|     GGML_ASSERT(val_split <  1.0f);
 | |
|     const int64_t ibatch_split = int64_t(((1.0f - val_split) * nbatches_logical)) * opt_period; // train <-> val split index (physical)
 | |
|     const int64_t idata_split  = ibatch_split * nbatch_physical;
 | |
| 
 | |
|     int64_t epoch = 1;
 | |
| 
 | |
|     ggml_opt_params params = ggml_opt_default_params(backend_sched, loss_type);
 | |
|     params.ctx_compute     = ctx_compute;
 | |
|     params.inputs          = inputs;
 | |
|     params.outputs         = outputs;
 | |
|     params.opt_period      = opt_period;
 | |
|     params.get_opt_pars    = get_opt_pars;
 | |
|     params.get_opt_pars_ud = &epoch;
 | |
|     params.optimizer       = optimizer;
 | |
|     ggml_opt_context_t opt_ctx = ggml_opt_init(params);
 | |
| 
 | |
|     // Shuffling the data is generally useful but there is only a point if not all data is used in a single batch.
 | |
|     if (nbatch_logical < ndata) {
 | |
|         ggml_opt_dataset_shuffle(opt_ctx, dataset, -1); // Shuffle all data (train + validation).
 | |
|     }
 | |
| 
 | |
|     ggml_opt_result_t result_train = ggml_opt_result_init();
 | |
|     ggml_opt_result_t result_val   = ggml_opt_result_init();
 | |
| 
 | |
|     ggml_opt_epoch_callback epoch_callback = silent ? nullptr : ggml_opt_epoch_callback_progress_bar;
 | |
| 
 | |
|     for (; epoch <= nepoch; ++epoch) {
 | |
|         if (nbatch_logical < idata_split) {
 | |
|             ggml_opt_dataset_shuffle(opt_ctx, dataset, idata_split);
 | |
|         }
 | |
| 
 | |
|         ggml_opt_result_reset(result_train);
 | |
|         ggml_opt_result_reset(result_val);
 | |
| 
 | |
|         if (!silent) {
 | |
|             fprintf(stderr, "%s: epoch %04" PRId64 "/%04" PRId64 ":\n", __func__, epoch, nepoch);
 | |
|         }
 | |
|         ggml_opt_epoch(opt_ctx, dataset, result_train, result_val, idata_split, epoch_callback, epoch_callback);
 | |
|         if (!silent) {
 | |
|             fprintf(stderr, "\n");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!silent) {
 | |
|         int64_t t_total_s = (ggml_time_us() - t_start_us) / 1000000;
 | |
|         const int64_t t_total_h = t_total_s / 3600;
 | |
|         t_total_s -= t_total_h * 3600;
 | |
|         const int64_t t_total_m = t_total_s / 60;
 | |
|         t_total_s -= t_total_m * 60;
 | |
|         fprintf(stderr, "%s: training took %02" PRId64 ":%02" PRId64 ":%02" PRId64 "\n", __func__, t_total_h, t_total_m, t_total_s);
 | |
|     }
 | |
| 
 | |
|     ggml_opt_free(opt_ctx);
 | |
|     ggml_opt_result_free(result_train);
 | |
|     ggml_opt_result_free(result_val);
 | |
| }
 | |
| 
 | |
| enum ggml_opt_optimizer_type ggml_opt_context_optimizer_type(ggml_opt_context_t c) {
 | |
|     return c->optimizer;
 | |
| }
 | |
| 
 | |
| GGML_API const char * ggml_opt_optimizer_name(enum ggml_opt_optimizer_type o) {
 | |
|     switch (o) {
 | |
|         case GGML_OPT_OPTIMIZER_TYPE_ADAMW:
 | |
|             return "adamw";
 | |
|         case GGML_OPT_OPTIMIZER_TYPE_SGD:
 | |
|             return "sgd";
 | |
|         default:
 | |
|             return "undefined";
 | |
|     };
 | |
| }
 |