mirror of
				https://github.com/ggml-org/llama.cpp.git
				synced 2025-10-30 08:42:00 +00:00 
			
		
		
		
	 5656d10599
			
		
	
	5656d10599
	
	
	
		
			
			* MPI support, first cut * fix warnings, update README * fixes * wrap includes * PR comments * Update CMakeLists.txt * Add GH workflow, fix test * Add info to README * mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099) * mpi : add names for layer inputs + prep ggml_mpi_graph_compute() * mpi : move all MPI logic into ggml-mpi Not tested yet * mpi : various fixes - communication now works but results are wrong * mpi : fix output tensor after MPI compute (still not working) * mpi : fix inference * mpi : minor * Add OpenMPI to GH action * [mpi] continue-on-error: true * mpi : fix after master merge * [mpi] Link MPI C++ libraries to fix OpenMPI * tests : fix new llama_backend API * [mpi] use MPI_INT32_T * mpi : factor out recv / send in functions and reuse * mpi : extend API to allow usage with outer backends (e.g. Metal) --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
		
			
				
	
	
		
			264 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "build-info.h"
 | |
| 
 | |
| #include "llama.h"
 | |
| 
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <vector>
 | |
| #include <string>
 | |
| 
 | |
| struct quant_option {
 | |
|     std::string name;
 | |
|     llama_ftype ftype;
 | |
|     std::string desc;
 | |
| };
 | |
| 
 | |
| static const std::vector<struct quant_option> QUANT_OPTIONS = {
 | |
|     {
 | |
|         "Q4_0",
 | |
|         LLAMA_FTYPE_MOSTLY_Q4_0,
 | |
|         " 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M",
 | |
|     },
 | |
|     {
 | |
|         "Q4_1",
 | |
|         LLAMA_FTYPE_MOSTLY_Q4_1,
 | |
|         " 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L",
 | |
|     },
 | |
|     {
 | |
|         "Q5_0",
 | |
|         LLAMA_FTYPE_MOSTLY_Q5_0,
 | |
|         " 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M",
 | |
|     },
 | |
|     {
 | |
|         "Q5_1",
 | |
|         LLAMA_FTYPE_MOSTLY_Q5_1,
 | |
|         " 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M",
 | |
|     },
 | |
| #ifdef GGML_USE_K_QUANTS
 | |
|     {
 | |
|         "Q2_K",
 | |
|         LLAMA_FTYPE_MOSTLY_Q2_K,
 | |
|         " 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended",
 | |
|     },
 | |
|     {
 | |
|         "Q3_K",
 | |
|         LLAMA_FTYPE_MOSTLY_Q3_K_M,
 | |
|         "alias for Q3_K_M"
 | |
|     },
 | |
|     {
 | |
|         "Q3_K_S",
 | |
|         LLAMA_FTYPE_MOSTLY_Q3_K_S,
 | |
|         " 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss",
 | |
|     },
 | |
|     {
 | |
|         "Q3_K_M",
 | |
|         LLAMA_FTYPE_MOSTLY_Q3_K_M,
 | |
|         " 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss",
 | |
|     },
 | |
|     {
 | |
|         "Q3_K_L",
 | |
|         LLAMA_FTYPE_MOSTLY_Q3_K_L,
 | |
|         " 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss",
 | |
|     },
 | |
|     {
 | |
|         "Q4_K",
 | |
|         LLAMA_FTYPE_MOSTLY_Q4_K_M,
 | |
|         "alias for Q4_K_M",
 | |
|     },
 | |
|     {
 | |
|         "Q4_K_S",
 | |
|         LLAMA_FTYPE_MOSTLY_Q4_K_S,
 | |
|         " 3.56G, +0.1149 ppl @ 7B - small, significant quality loss",
 | |
|     },
 | |
|     {
 | |
|         "Q4_K_M",
 | |
|         LLAMA_FTYPE_MOSTLY_Q4_K_M,
 | |
|         " 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*",
 | |
|     },
 | |
|     {
 | |
|         "Q5_K",
 | |
|         LLAMA_FTYPE_MOSTLY_Q5_K_M,
 | |
|         "alias for Q5_K_M",
 | |
|     },
 | |
|     {
 | |
|         "Q5_K_S",
 | |
|         LLAMA_FTYPE_MOSTLY_Q5_K_S,
 | |
|         " 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*",
 | |
|     },
 | |
|     {
 | |
|         "Q5_K_M",
 | |
|         LLAMA_FTYPE_MOSTLY_Q5_K_M,
 | |
|         " 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*",
 | |
|     },
 | |
|     {
 | |
|         "Q6_K",
 | |
|         LLAMA_FTYPE_MOSTLY_Q6_K,
 | |
|         " 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss",
 | |
|     },
 | |
| #endif
 | |
|     {
 | |
|         "Q8_0",
 | |
|         LLAMA_FTYPE_MOSTLY_Q8_0,
 | |
|         " 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended",
 | |
|     },
 | |
|     {
 | |
|         "F16",
 | |
|         LLAMA_FTYPE_MOSTLY_F16,
 | |
|         "13.00G              @ 7B - extremely large, virtually no quality loss - not recommended",
 | |
|     },
 | |
|     {
 | |
|         "F32",
 | |
|         LLAMA_FTYPE_ALL_F32,
 | |
|         "26.00G              @ 7B - absolutely huge, lossless - not recommended",
 | |
|     },
 | |
| };
 | |
| 
 | |
| 
 | |
| bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
 | |
|     std::string ftype_str;
 | |
| 
 | |
|     for (auto ch : ftype_str_in) {
 | |
|         ftype_str.push_back(std::toupper(ch));
 | |
|     }
 | |
|     for (auto & it : QUANT_OPTIONS) {
 | |
|         if (it.name == ftype_str) {
 | |
|             ftype = it.ftype;
 | |
|             ftype_str_out = it.name;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     try {
 | |
|         int ftype_int = std::stoi(ftype_str);
 | |
|         for (auto & it : QUANT_OPTIONS) {
 | |
|             if (it.ftype == ftype_int) {
 | |
|                 ftype = it.ftype;
 | |
|                 ftype_str_out = it.name;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     catch (...) {
 | |
|         // stoi failed
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // usage:
 | |
| //  ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
 | |
| //
 | |
| void usage(const char * executable) {
 | |
|     fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
 | |
|     fprintf(stderr, "  --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
 | |
|     fprintf(stderr, "  --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
 | |
|     fprintf(stderr, "\nAllowed quantization types:\n");
 | |
|     for (auto & it : QUANT_OPTIONS) {
 | |
|         printf("  %2d  or  %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str());
 | |
|     }
 | |
|     exit(1);
 | |
| }
 | |
| 
 | |
| int main(int argc, char ** argv) {
 | |
|     if (argc < 3) {
 | |
|         usage(argv[0]);
 | |
|     }
 | |
| 
 | |
|     llama_model_quantize_params params = llama_model_quantize_default_params();
 | |
| 
 | |
|     int arg_idx = 1;
 | |
| 
 | |
|     for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
 | |
|         if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
 | |
|             params.quantize_output_tensor = false;
 | |
|         } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
 | |
|             params.allow_requantize = true;
 | |
|         } else {
 | |
|             usage(argv[0]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (argc - arg_idx < 3) {
 | |
|         usage(argv[0]);
 | |
|     }
 | |
| 
 | |
|     llama_backend_init(false);
 | |
| 
 | |
|     // parse command line arguments
 | |
|     const std::string fname_inp = argv[arg_idx];
 | |
|     arg_idx++;
 | |
|     std::string fname_out;
 | |
| 
 | |
|     std::string ftype_str;
 | |
|     if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
 | |
|         std::string fpath;
 | |
|         const size_t pos = fname_inp.find_last_of('/');
 | |
|         if (pos != std::string::npos) {
 | |
|             fpath = fname_inp.substr(0, pos + 1);
 | |
|         }
 | |
|         // export as [inp path]/ggml-model-[ftype].bin
 | |
|         fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
 | |
|         arg_idx++;
 | |
|     }
 | |
|     else {
 | |
|         fname_out = argv[arg_idx];
 | |
|         arg_idx++;
 | |
| 
 | |
|         if (argc <= arg_idx) {
 | |
|             fprintf(stderr, "%s: missing ftype\n", __func__);
 | |
|             return 1;
 | |
|         }
 | |
|         if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
 | |
|             fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
 | |
|             return 1;
 | |
|         }
 | |
|         arg_idx++;
 | |
|     }
 | |
| 
 | |
|     // parse nthreads
 | |
|     if (argc > arg_idx) {
 | |
|         try {
 | |
|             params.nthread = std::stoi(argv[arg_idx]);
 | |
|         }
 | |
|         catch (const std::exception & e) {
 | |
|             fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
 | |
| 
 | |
|     fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
 | |
|     if (params.nthread > 0) {
 | |
|         fprintf(stderr, " using %d threads", params.nthread);
 | |
|     }
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     const int64_t t_main_start_us = llama_time_us();
 | |
| 
 | |
|     int64_t t_quantize_us = 0;
 | |
| 
 | |
|     // load the model
 | |
|     {
 | |
|         const int64_t t_start_us = llama_time_us();
 | |
| 
 | |
|         if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
 | |
|             fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         t_quantize_us = llama_time_us() - t_start_us;
 | |
|     }
 | |
| 
 | |
|     // report timing
 | |
|     {
 | |
|         const int64_t t_main_end_us = llama_time_us();
 | |
| 
 | |
|         printf("\n");
 | |
|         printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
 | |
|         printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
 | |
|     }
 | |
| 
 | |
|     llama_backend_free();
 | |
| 
 | |
|     return 0;
 | |
| }
 |